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Abstract. This new research considers the 3 main motions of the moored floater (surge,
heave and pitch) in head waves and it explores ways to estimate the systematic uncertainties
on the RAOs, and 2 other metrics for these signals. Based on linear hydrostatics and the linear
potential flow theory, simple relations can be found that bind the main characteristics of a
floater. These relations are transformed using linear algebra to express how uncertainty bias
on the main characteristics of the tested system can be propagated to the motion responses of
the floater. Thanks to this approach, variations of the mooring stiffness, position of the centre
of mass, radia of gyration can be represented through simple formulations that allow to very
effectively assess their impact of the motion RAOs and other metrics. This approach is verified
by comparing simulation and test results of the semisubmersible of the MARINET2 floating
wind round robin campaign to approximations deduced from these theoretical relations.

1. Introduction
The present research is motivated by the inter-laboratory comparison of model-tests carried
out during the wind round robin testing of MARINET2. However, the concept of uncertainty
analysis (UA) in engineering is not specific to model-testing, nor to experimental results but
can also be applied to numerical simulations. Including the uncertainty bound in numerical
results becomes more and more popular especially as the complexity of these tools increases
(e.g. uncertainty in CFD results by [3] and [12]). Following the definition given by the
American Society of Mechanical Engineering ([9]), the total uncertainty is a combination of
random uncertainty and systematic uncertainty. The random errors can easily be captured by
quantifying the dispersion among the results of repeated experiments: the larger the dispersion
is, the less precise a measurement is. This is not only due to the intrinsic precision of the
measurement device but also caused by the influence of all changes in the test environment and
model set-up. Thus, it is interpreted as a random behaviour. On the other hand, the systematic
uncertainty is a reflection of how accurately all parameters of the experiment are known. Thus,
the analysis of the systematic uncertainty starts by identifying the parameters whose lack of
accurate knowledge of may lead to a significant deviation of the experimental results. In the
particular context of testing a semisubmersible floating wind turbine in a wave basin, the present
study can build upon previous studies done by Robertson ([11]) and Somoano ([13]). Robertson
has found that among 24 parameters with significant levels of systematic uncertainty, a small
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selection contributes the most to the total systematic uncertainty: the position of the centre
of gravity (CoG), the moment of inertia, the stiffness of the mooring system, the diameter
of the floater’s columns, the draft and the mass of the floater, and the wave amplitude. It
is noteworthy that most of these parameters relate to the basic characteristics of the floater.
Biases on floater’s characteristics are due to the construction of the model, or to the inaccuracy
in the measurements of these characteristics. Once that realistic bias on these main parameters
are determined, their impact on the responses of the tested specimen must be evaluated. In the
current state of the art of UA for hydrodynamic testing, there are no well established methods
to carry out this evaluation. Based on a review of recent published works on UA applied to
floating wind ([11], [13], [2]), the preferred approach seems to be to propagate bias through
numerical simulations. The numerical tools used in these works are time domain simulation
tools. The common approach of these works consist in ”comparing the platform response of
these uncertainty propagations with the ones of the unperturbed simulation as a baseline” ([13]).
Although engineering tools (or mid-fidelity according to [8]) are widely used for the loads analysis
of FOWTs, these tools still require a large number of input parameters, some of which needs to
be calibrated (e.g. damping coefficients, Morison drag and inertia coefficients) in order to obtain
reasonable results. Moreover, there are no unique ways of building such a numerical model (even
with the same tool) and different approaches can give a significant spreading in their results (e.g.
[10]). As a consequence, running many simulations is still a significant investment of time (man
and computer) for an accuracy that is sometimes disputable. For instance, Robertson based
her assessment of the systematic uncertainty levels on 6 distinct numerical models. All these
concerns raises the question of the necessity of employing time domain simulation tools for the
propagation of the systematic uncertainty? The research effort of this paper investigates if easier
numerical modelling approaches are sufficient to propagate systematic uncertainty.

2. Theoretical background
This section considers several ways of describing the motions of a floating structure in waves.
The 6 degrees of freedom (DoF) associated with the floater’s motion are 3 translations (1st
column) and 3 rotations (2nd column):
• Surge: x

• Sway: y

• Heave: z

• Roll: ϕ

• Pitch: θ

• Yaw: ψ

In this article all data are given at basin’s scale. The rotation are expressed in radians (rad) in
all equations whereas they are given in degrees (deg) in tables and graphics. A local orthogonal
system of axes is defined as drawn in Fig. 1. The x-axis is opposed to the wave direction, the
y-axis in pointing towards port-side and the z-axis is vertical upwards. The origin of this system
of axes is located underneath the geometrical centre of the hull at its lowest point. The origin is
called K for keel. The motions are expressed in this referential that coincides with the floater’s
initial position (zero tilt and zero trim). Newton’s second law can be rewritten in multiple ways
leading to different expressions of the motion responses. First, 2 main approaches to assess the
motion responses of a moored floater are described. Then variations of these approaches are
compared with the aim to find at least one simple method which is still accurate enough to
propagate the uncertainty levels on the some of the main characteristics of the floater to its
motion responses.

2.1. Equation of floating body motions under the assumption of linear potential flow
Assuming inviscid, incompressible fluid and irrotational flow, the motions of a floating body
in waves is given by Equation (1). In linear potential theory, the velocity potential and fluid
pressure on the submerged surface of a body are solved using the boundary element method
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Figure 1. Layout and dimensions of the 1/60th scale model of the MARINET2 round robin
testing

(BEM). Separate solutions are carried out simultaneously for the diffraction problem, giving the
effects of incident waves on the body, and the radiation problem, giving the effects of the motion
of the body for each of the prescribed modes of motion. For small motions, the added-mass,
the potential damping and the hydrostatic stiffness terms depend exclusively on the submerged
geometry. Additionally, the wave loads are also following from the knowledge of the submerged
geometry when small wave amplitudes are considered. In other words, varying the location of
the centre of gravity (CoG) and the mass distribution ( I in (1)) has no impact on all other
terms of (1); excepted that the equation needs to be rewritten at the new CoG location.

(I +A).Ẍ +Bp.Ẋ + C.X = F (1)

where,
X = 6 DoF motion vector at CoG (surge, sway, heave, roll, pitch, yaw);
Ẋ = 6 DoF velocity vector at CoG (surge, sway, heave, roll, pitch, yaw);
Ẍ = 6 DoF acceleration vector at CoG (surge, sway, heave, roll, pitch, yaw);
I = (dry) inertia 6x6 matrix;
A = added-mass 6x6 matrix, which is frequency dependent;
Bp = potential damping 6x6 matrix, which is frequency dependent;
C = hydrostatic 6x6 matrix;
F = wave excitation 6 component vector (surge, sway, heave, roll, pitch, yaw).

For the particular case of a moored floater which experienced some viscous damping, new
terms can be added to Equation (1) without compromising its linearity:

• a linear viscous damping Bv can be added to the potential damping Bp,

• a linear mooring stiffness K can be added to the hydrostatic stiffness C.

Equation (1) becomes equation (2) for a moored floater.

(I +A).Ẍ + (Bp +Bv).Ẋ + (C +K).X = F (2)

If the CoG location is modified then Equation (2) needs to be transferred to the new CoG
location. Appendix A gives all details of how this transfer is done. Such that the more generic
linear equation (3) can be kept for the rest of the demonstration.

(IG +AG).Ẍ +BG.Ẋ + CG.X = FG (3)



EERA DeepWind Offshore Wind R&D Conference
Journal of Physics: Conference Series 2362 (2022) 012015

IOP Publishing
doi:10.1088/1742-6596/2362/1/012015

4

where,
BG is the total damping at CoG;
CG is the total stiffness at CoG.

If an harmonic excitation is applied to this linear system then the motions will also be har-
monic.

FG = Fω ∗ exp(k.X0 + ϕ− j ∗ ω.t), XG = Xω ∗ exp(k.X0 + β − j ∗ ω.t).
where,
ω = frequency of a single harmonic wave;
FG = wave excitation at the centre of gravity for frequency ω;
Fω = wave excitation amplitude coefficient at frequency ω;
ϕ = wave excitation phase value at frequency ω;
k = wave number for frequency ω;
X0 = initial values of position vector;
j = imaginary unit number (j =

√
(−1));

Xω = motion amplitude coefficient at frequency ω;
β = phase value of the motion response at frequency ω.

As we are uniquely interested in the motion amplitude, we deliberately leave any phase in-
formation aside:

FG = Fω ∗ exp(−j ∗ ω.t), XG = Xω ∗ exp(−j ∗ ω.t).
Equation (3) defines a linear relation between the wave loading and the motion responses for
every frequency:

(−ω2.(IG +AG)− j ∗ ω.BG + CG) ∗Xω = Fω (4)

Equation (4) constitutes a system of 6 equations with 6 unknown variables (one per DoF) for
every frequency. This system of equations can be inversed all at once, such that the couplings
between DoFs are accounted for. For every frequency, the solution is a series of complex numbers
which amplitudes are the motion RAO coefficients. Otherwise, it can be simplified by keeping
only the diagonal terms of IG +AG, BG and CG and zeroing all cross terms (which comes down
to neglecting any coupling between DoFs). In the latter case, there is an algebric solution to
this simplification of equation (3) for each kth-DoF:

Xωk
=

Fωk√
(−ω2.(IGkk

+AGkk
) + CGkk

)2 + (ω.BGkk
.)2

(5)

The algebric expression in (5) is a simple formula that estimates the motion RAO amplitude
for a single DoF (k) for every frequency (ω).

The eigen modes of the system are found by solving Equation (4) when the damping and the
right hand side are forced to zero (see Appendix B for more details). The eigen modes are usually
made of a combination of several DoFs due to the influence of the coupling terms in IG + AG

and CG. There again, these couplings between DoFs can be ignored by zeroing all crossing
terms. The solution will then be eigen frequencies (or natural periods) for the 6 independent
DoFs: surge, sway, heave, roll, pitch and yaw. These periods should be similar to the natural
period determined from the decay tests in each respective DoF. For levels of damping that are
far below the critical damping, the natural period of the kth-DoF can be written as:

Tk = 2.π.

√
(IGkk

+AGkk
)

CGkk

(6)
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For a moored floater considered as a rigid-body with weak coupling between DoFs, the 2
equations (5) and (6) make 2 first-hand approximations of its responses to waves and its natural
periods that will appear very handy while doing an uncertainty analysis.

2.2. Equation of motion as a system of differential equations
The motions of a floating body in waves can be modelled by using Cummin’s Equation ([1]) as
follows:

6∑
l=1

(Ikl +A∞
kl ).Ẍl +

∫ t

−∞
κkl(t− τ).Ẋl(τ).dτ + Ckl.Xl = Fk(t) (7)

where,
Xl = motion at CoG for lth DoF (l=1 for surge, l=6 for yaw);
Ẋl = velocity at CoG for lth DoF (l=1 for surge,..., l=6 for yaw);
Ẍl = acceleration at CoG for lth DoF (l=1 for surge,..., l=6 for yaw);
Fk = wave excitation load at CoG for lth DoF (l=1 for surge,..., l=6 for yaw);
Ikl = element of inertia matrix for kth row and lth column;
Ckl = element of hydrostatic stiffness matrix for kth row and lth column;
A∞

kl = element of added mass matrix for infinite frequency for kth row and lth column;
κkl = element of impulse response function matrix for kth row and lth column;

A∞
kl and κkl are directly linked to the potential damping Bp of Equation (1) by the following

relations:

A∞
kl = Akl(ω) +

1

ω
∗
∫ +∞

0
κkl(τ).sin(ωt).dτ (8)

κkl(t) =
2

π
∗
∫ +∞

0
Bpkl(ω).cos(ωt).dω (9)

Cummins equation for ship motion can be used to model the motion of a moored floater
in waves. This can be done by adding a mooring stiffness to the hydrostatic stiffness of Ckl

like previously done in Equation (2). Nevertheless, it is also possible to include non-linear
mooring loads by including mooring loads to the right hand side of Equation (7). These
two options are also available for the inclusion of viscous damping too. In fact, Equation
(2) allows for the inclusion of any non-linear loads, like higher order wave loads, which makes
it much more realistic than Equation (2) of the previous section. Being a system of ordinary
differential equations (ODE), Equation (2) is solved numerically by integration using for instance
Runge-Kutta methods. Many commercial engineering tools have this functionality (e.g. ANSYS
AQWA, Orcaflex). For the present study an internal research tool has been used. The results
of this process are time series of the motions for 6 DoFs.

Through post-processing analysis, the RAOs of the motion can be determined. These RAOs
are taken as reference as the numerical model is more capable of capturing the main physics
leading the response of the platform. For instance, the motions resulting from the numerical ODE
model of the present study include both first and second order difference frequency wave loading,
the mooring lines are modelled individually as spring-lines, the equivalent linear damping is
calibrated from experimental decay tests.

2.3. Synopsis
When the moored floater is considered as a linear mass-spring-damper system, the natural
periods can be estimated by (6) ignoring any coupling between DoFs. In addition, the
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motion RAOs can be easily estimated in frequency domain and variations of some mechanical
characteristics of the system can be propagated to the motion RAOs.

Equation (A.2) is providing us with the mean to vary basic properties of the floater as long
as the submerged geometry remains the same. The following parameters can be changed:

• the position of the CoG (KG),

• the inertia moments contained in the sub-matrix I4..6,4..6,

• terms of the hydrostatic stiffness C4..6,4..6 that depend on KG or the inertia moments,

• the mooring stiffness K can be modified.

The solutions of the system of equations presented in (3) are the motion RAOs that
account for possible coupling between DoFs. When coupling between DoFs are neglected, each
independent motion RAO can be approximated by the simple formula conforming to (5). In
parallel, a more sophisticated approach can be followed. This consists in solving the Cummin’s
Equation (7) in time domain. Note that this time domain approach is commonly implemented
in mid-fidelity (or engineering) tools like OpenFAST. This approach offers the possibility of
accounting for more effects that can alter the motion responses, like:

• more realistic description of the mooring system (i.e. modelling of the mooring lines),

• inclusion of non-linear damping (e.g. quadratic damping or Morison drag loads),

• second-order wave loads.

As this latter approach is more complete than the simplified frequency domain approaches, it
will serve as a reference for the evaluation of all other approximations (i.e. different ways to
solve the equations of motion in frequency domain). Finding the motion RAOs in frequency
domain like in the first approach is more direct than simulating the motions in time-domain and
subsequently determining the RAOs by post-processing like in the second approach.

3. Propagation of systematic uncertainties
The question that this paper attempts to answer is: which degree of complexity is necessary
to propagate bias on some key parameters to RAO’s and other metrics used for the analysis of
model-tests?

To this end, RAOs and 2 other metrics utilized in the wind round robin basin tests of a
semisubmersible floating wind turbine ([4]) will be compared following the approaches of the
previous section.

This comparison has been done for a few irregular waves of the wind round robin test plan
(given in Table 1). For practical reasons, the tests in irregular waves are analyzed on a fixed
range of frequencies [f1, f2]. This range of frequency is chosen as a function of the considered
theoretical spectrum and also the capacities of the wave maker. Gueydon et Al ([5]) discusses
how each of these waves are likely to excite the model based on their power spectral densities
and the associated group power spectral contents.

This paper uses two metrics which have been introduced by Gueydon et Al in [4]. The metric
used to examine the response of the system in the wave frequency range, MWF is calculated
from

MWF =

√√√√∫ f2
f1
Ssignal df∫ f2
f1
Sη df

, (10)

where:
Ssignal is the PSD of the signal (surge, heave or pitch),
Sη is the wave power spectrum,
[f1, f2] (Hz) is the wave frequency range considered for the analysis.
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Table 1. Expected resonance responses for irregular wave conditions (low frequency (LF) or
wave frequency (WF)) and WF range [f1,f2] (Hz) per wave condition

Motion mode Surge Heave Pitch f1 (Hz) f2 (Hz)

JONSWAP Tp = 1.29 s LF LF LF 0.50 1.3
JONSWAP Tp = 1.81 s LF WF LF 0.35 1.2
JONSWAP Tp = 2.58 s LF WF WF 0.25 1.2
Pink-Noise LF WF WF 0.25 1.2

The metric Tr gives an estimate of the period of the resonance response:

Tr =

∫ fe+δf
fe−δf S

4
signal df∫ fe+δf

fe−δf f · S4
signal df

. (11)

Where:
Ssignal is the PSD of the signal (surge, heave or pitch),
fe is its main resonance frequency and δf is a frequency band around fe that covers the peak
shaped resonance response of the signal. The natural periods measured during decay tests are
used for fe ([4]).

On top of the 3 ways to estimate the RAOs presented in the previous section, an additional
way is suggested. Having a formula to estimate the RAOs opens up the possibility to easily
optimized some of its parameters to better match the reference case. An optimization parameter
α is added to the formula (3). This parameter acknowledges the fact that the level of damping in
waves is not always known. The linear damping Bv of (1) is usually determined from the analysis
of decay tests in still water. For the subject of this study, previous publications have reported
that the damping is mainly quadratic for surge, heave and pitch ([5]). Such that Bv alone would
not be enough to represent the total damping acting on the semisubmersible in waves. In the
new formula (12), α represents the equivalent linear damping added to the system to best fit the
metric MWF of the reference case in the considered seastate. An optimization scheme delivers
the value of α for each DoF. In this approach, coupling between DoFs are ignored.

Xωk
=

Fωk√
(−ω2.(IGkk

+AGkk
) + CGkk

)2 + ω2 ∗ (BGkk
+ α)2

; (12)

Finally, 4 different ways to estimate the motion RAOs and the metrics MWF are compared:

• ’LSE’ is the approach solver the linear system of equation (LSE) (2),

• ’Formula’ is the approach based on the formula (5) (relying on non-optimized output data
of the potential flow solver),

• ’Fit’ is the approach based on the optimization of the linear damping in the formula (12),

• ’ODE’ is the approach which calculate RAO’s from the time domain solution of equation
(7).

The 3 first approaches can be classified as ”low-fidelity” whereas the last one uses a ”mid-fidelity”
simulation tool ([8]).

The evolution of these metrics under the variations of the diverse key parameters can be studied:

(i) the mooring stiffness in surge K11,
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(ii) the vertical position of the CoG KGz,

(iii) the radius of gyration around pitch R55.

This can easily be done in a numerical study for which individual parameters (such as K11,
KGz and R55) can be varied independently from the others. In that case, the results of a
time domain simulation (i.e. ODE) constitutes the reference set to which the approximations
(LSE, Formula and Fit) are compared to. Such comparison has been carried out as part of this
research. It has confirmed the excellent resemblance of RAO’s obtained by these 4 different
approaches. Differences were only noticed around the resonance peaks when those are inside
the wave frequency range ([f1, f2] of Table 1). For the conciseness of this paper, no results of
this numerical study are presented here. Instead, another variation which combines changes in
KGz and R55 is further developed in the next section. The availability of experimental results
for this variation motivated this choice.

4. Demonstration and validation against model-tests
In April 2021, UCC has executed an additional campaign of model-tests during which some
properties of the physical model were voluntary varied. This test campaign is reported by
Lyden ([7]). One of these variations consisted in shifting some mass from the nacelle to the top
of the 3 columns. Distributing some of the nacelle mass among the 3 columns is a way to change
the position of the CoG and the inertia moments of the floating platform. 3 systems were tested
in the pink-noise waves of Table 1):

• System O: The system with its original mass distribution (5 repeats),

• System A: a system in which 1200g of the nacelle was replaced by 400 g of lead on top of
each of the 3 column (4 repeats),

• System B: a system in which 1500g of the nacelle was replaced by 500 g of led on top of
each of the 3 column (5 repeats).

Care was taken to keep the equilibrium trim and tilt angle of all systems as small as possible,
such that the submerged geometry remains the same for O, A and B. The mooring was identical
and conform to the description of the original test set-up ([5]). These experiments provides us
with data that can be used to calculate the metrics Tr andMWF for 3 distinct mass distributions
of the moored submersible platform.

To complement the experimental data, a numerical study was run in which the shifting of
mass between the nacelle and the 3 columns was modelled in more and smaller steps than during
the experiments. 13 cases were simulated:

• Negative mass shift: 6 steps in which mass was taken off from the columns and put on the
nacelle (i.e. -3*100g, -3*200g, -3*300g, -3*400g, -3*500g, -6*600g),

• System O: The system with its original mass distribution (i.e. 0g shifted),

• Positive mass shift: 6 steps in which mass was taken off from the nacelle and put on top of
the columns (i.e. 3*100g, 3*200g, 3*300g, 3*400g, 3*500g, 6*600g).

For each mass shift, the corresponding variations of KGz and R55 need to be calculated before
they can be propagated in the formulae (LSE, Formula, Fit) and the numerical model (ODE)
for the 4 approaches. As the results of these variations, values of KGz lie in a range of ±15(%)
of the original value (O) while R55 belongs to a range of ±30(%).

The demonstration of the method is done with the pink-noise irregular waves of the wind
round robin test plan (given in Table 1). Thanks to its broad wave frequency range, the pink-
noise gives RAOs with the largest frequency range from all waves. The heave and pitch resonance
frequencies are directly excited by the wave energy of this sea-state. This wave was run in the
basin for 1860 s.
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First, the approximations (LSE, Formula and Fit) are directly compared to test results of the
original system exposed to the pink-wave. Figure 2 displays the motion RAOs. The RAOs are
plotted on three rows: surge on the top row, heave on the middle row and pitch on the bottom
row. While the RAOs for the test are obtained from the analysis of the recorded motions
and wave elevation, the other 3 approximations are directly deduced in frequency domain from
Equations (4), (5) and (12). On the one hand, the global shape of the RAOs are similar, with
resonance peaks approximately located at the same frequencies. On the other, there are many
differences. The surge RAO of the test results is dented for frequencies below 0.8 Hz whereas
the approximated surge RAOs are smooth. It has been shown that these irregularities in the
surge RAO of the test data are caused by wave reflection in the basin ([5]). The shape and the
magnitudes of the resonance peaks in heave and pitch for the test data look very different for
the approximations. Non-linear effects are amplified at resonance in real life. The resonance
responses in heave and pitch have been shown to be non-linear for this system ([5], [4]). The
theoretical approach upon which the approximations are based does not account of any basin
effect (i.e. reflection). Moreover, the approximations are fully linear and account exclusively for
a linear damping. The RAOs of the ’Fit’ approximation is calculated using a linear damping
coefficient that has been optimized to match the MWF of the test data. In heave, this RAO is
higher than the RAOs of other approximations (’LSE’ and ’Formula’). In pitch this is the other
way round, the ’Fit’ RAO is smaller than the RAOs of ’LSE’ and ’Formula’. The peak of the
’Fit’ RAO in pitch is smaller and broader than for the pitch RAO of the test. In heave and
pitch, the correspondance between all RAOs is stronger for frequencies well above the respective
resonance frequencies. This illustrates the specific challenges of approximating the RAOs around
the resonance peaks.

Secondly, the metrics Tr and MWF of the approximations are compared to the results of a
numerical model (ODE). The numerical simulations were run in an R&D software for a duration
corresponding to the test duration. Actually, the wave elevation measured during the calibration
of these model-tests was scaled-up and used as input wave for the simulations (run at full scale).
The numerical model used 3 horizontal spring lines for the mooring system conform to the
description of the model-test set-up ([5]). In order to keep the response of the model as linear
as possible, linear damping coefficients were used. The damping Bv was calibrated using decay
tests in still water for LSE, Formula and Fit. In the Fit approximation, the linear damping
α is added on top of Bv to obtain matching MWF for Fit and the reference case (ODE). The
hydrodynamic input data characterizing the floater come from a linear potential flow calculation
extended to the second-order for the low frequency wave loads. First and second-order wave
loads were accounted for in the simulations. The inertia matrix, the added-mass, the potential
damping and first-order wave loads are shared input data between the 4 approaches (ODE & the
3 approximations: LSE, Formula and Fit). While the actual mooring loads are calculated based
on the position of the floater in the simulation (ODE), the approximations used an equivalent
mooring stiffness. In all cases, the equilibirum between the weight and the buoyancy loads is
based on the linear expression of the hydrostatic matrix ([6]). Figure 3 gives an overview of the
process leading to the comparison of the metrics Tr and MWF in this numerical study.

Thirdly, the evolution of the metrics Tr and MWF for every method are compared to each
other. The metrics resulting from the tests are displayed on the same figures using diamond
symbols.

The variations of the metrics are plotted with 3 graphics on top of each other: surge being
on top, heave being in the middle and pitch being at the bottom. Figure 6 gives the variations
of Tr when the mass distribution varies. Tr varies mainly for surge. The evolution of MWF

is shown in Figure 7. The effect of variation of the mass distribution is small for surge and
heave whereas it is large in pitch. Although there are differences in the estimates of Tr and
MWF depending on the followed approximation (LSE, Formula, Fit), all trends with regards
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Figure 2. Motion RAOs of original system calculated following 3 approximations versus test
results in the ’Pink-Noise’ wave of Table 1

to the variation of the mass distribution are the same whatever the approach is. Focusing on
the metrics in pitch which are the most impacted by the considered variation, the numerical
results ODE agree reasonably well with the experimental data (Test). Figure 7 also shows that
the approximation of MWF based on the fitted formula (Fit) of Eq. (12) gives values that are
equivalent to the simulations and the model-tests. This demonstrates that simple formulae can
accurately predict the evolution of these metrics.

Even if the proposed approximations don’t reproduce perfectly the results of model-tests
(Figure 2), they are able to capture the evolution of the motion RAOs and metrics MWF and
Tr with a good accuracy for a very low computational cost. It is thereby justified to use these
formulae for the propagation of the uncertainties on some of the design parameters of the physical
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Figure 3. Overview of the process for the comparison of the different approaches

Figure 4. Metrics Tr of original system
calculated following 4 different approaches.

Figure 5. Metrics MWF of original system
calculated following 4 different approaches.

model.

5. Conclusions
This paper follows up the introduction of metrics Tr and MWF describing the response of the
moored semisubmersible floating wind turbine tested during the wind round robin campaign
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Figure 6. Evolution of metrics Tr when weights are shifted between the nacelle and the top of
the 3 columns.

of the Horizon2020 MARINET2 project ([4]). It demonstrates that simple formulae derived
from linear hydrostatics and the equation of motion can be used to represent the evolution of
these two metrics when the mass distribution varies. This shows that such approximations are
sufficient to accurately predict the evolution of the motion responses under the variations of some
main characteristics of the tested system (like the position of the CoG, the inertia moments,
stiffness of the mooring system). This finding can be used for the assessment of the level of
uncertainties inherent to these main characteristics. Any impact on the motion responses caused
by a bias on the position of the CoG, the inertia moments, the stiffness of the mooring system
can be predicted using these approximations. These approximations require only the potential
flow solution of the system and overall characteristics which are usually determined prior to or
during the test campaign: global stiffness coefficients, estimated position of the CoG and inertia
moments. With these input data, the impact of any variation of the main parameters of the
system can be determined instantly using these approximations. Considering how much more
efficient these formulations are compared to time domain simulations of common engineering
tools, the authors propose to use these formulations for the uncertainty analysis of the floating
wind semisubmersible of the round robin testing of MARINET2. The authors believe that these
approximations can be applied to propagate uncertainty levels on the motions of any floater as
long as it fulfills 3 main conditions:
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Figure 7. Evolution of metrics MWF when weights are shifted between the nacelle and the top
of the 3 columns.

(i) its motion can be reasonably well predicted by the linear potential flow theory,

(ii) it behaves like a rigid body,

(iii) the considered DoFs are weakly coupled.

The first condition exclude any metric that would represent the amplitude of the low frequency
motion of a moored floater (e.g. the amplitude of the low frequency surge motion response).
Further research is require to derive formulae that capture the motion outside the wave frequency
range (i.e. the low and the high frequency non-linear responses).
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7. Abbreviations
The following abbreviations are used in this manuscript:
CoG Centre of Gravity
DoF Degree of Freedom
FOWT Floating Offshore Wind Turbine
ITTC International Towing Tank Conference
JONSWAP Joint North Sea Wave Project
LF Low Frequency
PSD Power Spectral Density
RAO Response Amplitude Operator
WF Wave Frequency
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B Boudet, C Brun, Z Chen, M Féron, D Forbush, C Galinos, J Galvan, P Gilbert, J Gómez, V Harnois,
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Appendix A. Transfer of the equation of motions from H to G

Let’s take
−−→
KH the position vector of the original point where the potential flow solver has solved

equation (1) (i.e. where A, Bp and C are known) and write down this equation at a new centre

of mass with location
−−→
KG.

−−→
HG =

∆x∆y
∆z


The forces applied at H come with additional moments when they are expressed at G.[ −→

F
−−→
MG

]
=

[
F⃗

−−→
MH +

−−→
GH ×

−→
F

]
This transfer of loads can be rewritten in matrix form. Defining 6 component vectors for the
loads with the forces in the first 3 rows (along the axes x, y and z) and the moment (around the
axes x, y and z), the relation for the transfer of the loads between H and G becomes:

Fx

Fy

Fz

MxG

MyG

MzG

 = P.


Fx

Fy

Fz

MxH

MyH

MzH


with

P =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 ∆z −∆y 0 0 0

−∆z 0 ∆x 0 0 0
∆y −∆x 0 0 0 0


The transformation matrix P has the handy property of being orthogonal and therefore P−1 is
equal to P T .
The motion at H is expressed in a 6 component vector with the translations in the first 3 rows
(surge, sway and heave) and the rotations (in rad) in the last 3 rows (roll, pitch and yaw):

−−→
XH =


x
y
z
ϕ
θ
ψ


”For small angles, the transformation matrix from the body-bound coordinate system to

the steadily translating coordinate system is very simple” (dixit Journee in [6], section 6.2.5 ).

Motions at the new CoG (
−−→
KG) are obtained from the motions at the point H (

−−→
KH) by the

following linear relations:

xG = x−∆y.ψ +∆z.θ

yG = y +∆x.ψ −∆z.ϕ

zG = z −∆x.θ +∆y.ϕ
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These relations can be written in matrix form using the same transformation matrix P:

−→
XG = P T .

−−→
XH ; (A.1)

For small harmonic motions, the matrix relation A.1 is also valid to link velocities and
accelerations at G and H. And finally the equation of motions (2) can be fully rewritten at
G in Equation (A.2).

P.(I +A).P−1.ẌG + P.(Bp +Bv).P
−1.ẊG + P.(C +K).P−1.XG = P.FH (A.2)

where,
I, A, Bp and C are still quantities that are valid at the location H where the potential flow solver
was run. Bv and K were also originally defined at H. All these terms are simply transferred to
a new location G. Equations (1) and (A.2) are basically the same; only each of the terms of (1)
has been replaced by a new expression:

• the inertia is replaced by the inertia at G: IG +AG = P.(I +A).P T ,

• the total damping is replaced by the damping at G: BG = P.(Bp +Bv).P
T ,

• the total stiffness is replaced by the stiffness at G: CG = P.(C +K).P T ,

• the forcing term is replaced by loads transferred at G: FG = P.F .

Appendix B. Eigen frequencies
The eigen modes of the system are solutions of Equation (4) when the excitation and damping
terms are not considered:

(−ω2.(IG +AG) + CG) ∗Xω = 0 (B.1)

For harmonic motion Equation (B.1) can be rewritten in:

((IG +AG)
−1.CG) ∗Xω = ω2.Xω (B.2)

Replacing ω2 by λ and E by (IG+AG)
−1.CG in (B.2) leads to the typical eigenvalue problem:

E ∗Xω = λ.Xω (B.3)

This equation is solved by looking for the values of λn for which the determinant of |E − λ . I|
is null ( I being the identity matrix). The natural oscillation modes of the systems are defined
by the eigen frequencies ωn and the corresponding eigen modes Xωn .


