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Abstract—Since the traditional contract power decomposition in the power trading market is 

difficult to meet the needs of new energy participating in the system operation, an optimal 

decomposition method of contract power based on the Q-learning algorithm under the 

uncertainty of new energy power is proposed. Considering the uncertainty of new energy power 

output, an optimization model to minimize the power purchase cost of the power grid is 

established. Given the uncertainty of the newly added electricity and the quotation in the market 

transaction, it is proposed to use the enhanced Q-learning algorithm to obtain the contract 

decomposition of electricity. According to the actual annual contract electricity data, the monthly 

optimal decomposition results of contract electricity are obtained, which verifies the economy 

and effectiveness of the optimal electricity decomposition method. 

1.  Introduction 

The decomposition of contract electricity is completed by multiple time scales successively. The 

traditional contract electricity is decomposed by monthly peak and valley electricity, or by unit 

electricity. In [1], the electricity purchaser aims to minimize the cost of electricity purchase, and the 

target electricity is decomposed into contract electricity and new electricity. In [2], in the process of 

decomposing the annual contract electricity of the power station, the influence of the unit is ignored. It 

establishes a multi-objective function, which considered the decomposition of contract electricity from 

many aspects[3]. In [4], the influence of the unit in the electricity decomposition is considered, but the 

in-depth analysis is lacking.  

Reinforcement learning achieves specific goals by facilitating the interaction between the agent and 

the environment. Given the above problems, we need to explore and learn the optimal trading strategy 

under the maximization of cumulative rewards, without the need for complex optimization calculations. 

Likewise, there is no need to invest time and effort into the transaction process [5]. 

At present, the application of reinforcement learning in the power system mainly covers many aspects 

such as demand response management, operation control, and economic dispatch [6]. In the field of the 

electricity market, it proposed an intelligent quotation strategy based on an adaptive reinforcement 

learning model considering factors such as market demand and historical transaction conditions[7]. In 

[8], reinforcement learning methods are used to implement indirect client-to-client transactions.  
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Given the uncertainty of photovoltaic power generation, this paper fully considers the constraints of 

contract peak and valley power and photovoltaic power. Under the premise that the lowest electricity 

purchase cost of power grid enterprises is considered as the objective function, the optimal 

decomposition model of annual contract electricity is established, and Q-learning algorithm is used to 

solve the model. Finally, the results are verified in terms of electricity purchase cost and algorithm 

through an example. 

2. Electricity Decomposition Model Based on Chance Constrained Programming 

2.1. Objective Function Based on Chance Constraint Programming 

Since the monthly transaction volume and monthly load forecast of the electricity market are carried out 

according to the peak-valley period respectively, the peak-valley method is also used by this model to 

decompose the contracted electricity. In the model, the effects of new electricity and new electricity 

prices are considered, and the sources of new electricity are thermal power and photovoltaics. In the 

model, the contract peak electricity and valley electricity are used as the solution targets, and all new 

electricity and new electricity prices are predicted. In new energy grid-connect system, in order to 

minimize the electricity purchase cost of power grid enterprises, the following model can be established: 

, , , , , , , , , , , , , , , , , , , , ,

1 1 1

min[ ( ) ( ) )]
K K K

h c k c h k l c k c l k h f k f h k l f k f l k p k p h k p l k

k k k

f p q p q p q p q p q q
= = =

= + + + + +   （     （1）             

where , ,h c kp and , ,l c kp  are the contract electricity prices during peak and valley periods; , ,h f kp  and 

, ,l f kp  are the thermal power prices in the newly added electricity during peak and valley periods; ,p kp  

is the photovoltaic electricity price in the newly added electricity; , ,c h kq , , ,f h kq  and , ,p h kq  are the 

contracted electricity during the peak period, the thermal power among the newly added electricity, and 

the photovoltaic electricity among the newly added electricity； , ,c l kq , , ,f l kq , and , ,p l kq  are the 

contracted electricity during the valley period, the thermal power in the newly added electricity, and the 

photovoltaic electricity in the newly added electricity； K  is the total number of months. 

2.2. Restrictions 

(1) Unit power constraints 

The unit power constraint can be described as: 

, , , , , , ,c h k f h k p h k h kq q q q+ + =                                （2） 

, , , , , , ,c l k f l k p l k l kq q q q+ + =                              （3） 

, , , ,

1

( )
K

tol

c h k c l k c

k

q q Q
=

+ =                              （4） 

, , , ,

t

c h k c l k cq q Q+ =                                （5） 

where ,h kq  and ,l kq  are the total electricity during the peak period and the total electricity during the 

valley period in the month k , respectively; tol

cQ  is the total electricity in the annual contract; t

cQ  is 

the contracted electricity in the month k . 

(2) Power upper and lower limit constraints 

, , , ,h k c h k h klq q iq                                （6） 

 
, , , ,l k c l k l kuq q vq                               （7） 

where l  and i  are the minimum and maximum parameters of the contracted electricity during the 

peak periods in the month k , respectively. u and v  are the minimum and maximum parameters of 

the contracted electricity during the valley periods. 
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3. Q-learning Algorithm Solution 

3.1. The state space of the system 

The system state vector ks  consists of the following quantities: decision moment kt , predicted value 

of thermal power peak electricity price in newly added electricity , ,

y

h f kp , predicted value of thermal 

power trough electricity price in newly added electricity , ,

y

l f kp , monthly peak total electricity forecast 

value ,

y

h kq  and monthly trough total electricity forecast value ,

y

l kq .Specifically, as shown in formula (8): 

, , , , , ,( , , , , )y y y y

k k h f k l f k h k l ks t p p q q=                        （8） 

where   is the system state space, which represents the set of all state vectors. 

3.2. The action vector and the reward function of the system 

Action refers to the reflection of each agent in response to environmental changes. The various responses 

form an action set similar to 1 2 3( , , )a a a . In this paper, a similar action set is given in the peak power 

and the valley power respectively. In order to make the results of Q-learning more accurate, 0.001TWh 

is taken as   value. The action vectors of the peak contract electricity and the trough contract 

electricity to be sought are  , , , ,0, ,2 ,3 , , c h k c l kq q   +  and  , , , ,0, ,2 ,3 , , c h k c l kq q   + , respectively.  

Define system policy   as a set of state space-action mappings. Under this strategy, the system 

selects action ka  under the current state ks  and constraints, and transfers to the next decision-making 

period through strategy  . The peak-shaving compensation cost kr  is: 

, , , , , , , , , , , , , , , , , , , , , )k h c k c h k l c k c l k h f k f h k l f k f l k p k p h k p l kr p q p q p q p q p q q= + + + + +（            (9) 

The action ka  system is selected according to the strategy   in the current period, and the optimal 

expected value ( ),k kQ s a
 is also obtained. Based on the stochastic dynamic programming method, the 

system optimization objective is transformed into selecting an optimal strategy ( )ks 
 from the set of 

strategies for generating action ka  from the system state ks , so as to minimize the cost kr : 

( ) ( ) ( )
0

arg min , arg min ,
K

k k k k k k

k

s Q s a E r s a


 

 

 
=

= =                (10) 

where ( ),k kQ s a
 is the expected operating cost of the system in period k ;  is the set of all strategies 

 ;  is the discount factor, and 0 1  . 

3.3. The specific solution process 

The specific solution process of the Q-learning algorithm is as follows, and the process is shown in 

Figure 1: 

Step 1: Initialize the Q-value table. Input total number of learning sample tracks M , sample orbit 

decision period number K , learning rate  , learning rate update coefficient  , discount factor  . 

Let sample track 0m = . 

Step 2: Let 0k =  . Initialize system state data such as decision moment, predicted value of thermal 

power peak electricity price in newly added electricity, predicted value of thermal power trough 

electricity price in newly added electricity, monthly peak total electricity forecast value, monthly trough 

total electricity forecast value.  

Step 3: The greedy strategy is ( )
, (0,1)

, (0,1)

random

k

greedy

a random
a

a random







= 


. If the randomly generated number 

(0,1)random  is less than the greedy exploration probability  , select the random action randoma  and 

execute it. then randomly get the next state; otherwise, choose action ka  based on the Q value: 

( )arg min ,greedy k ka Q s a= .  

Step 4: Calculate the system cost kr  generated by executing action ka  in state ks  during decision 

period k . Update the Q value and update the strategy at the same time: 
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 1 1( , ) (1 ) ( , )+ min ( , )k k k k k k kQ s a Q s a r Q s a 

+ += − + . Continuously learn and update the minimum Q value in the state-

action set, and use the corresponding peak-valley contract power plan as the latest action to achieve the 

purpose of optimizing the strategy. Let : 1k k= + and go back to step 3; If 1k K= + , go to step 5. 

Step 5: Execute the action ka  selected by the current state ks , and calculate the cost kr  and the 

final state cost ( )1kr s +  generated in the state transition process. Update the Q value table according to 

formula (11), and update the strategy at the same time. Let : 1m m= + , : *  = .  

( )1( , ) (1 ) ( , )+k k k k k kQ s a Q s a r r s 

+= − +                    (11) 

Step 6: If m M , go back to step 2; Otherwise, the program ends and outputs the obtained contracted 

electricity during the peak period and contracted electricity during the valley period. 

 

Initialize the Q-value table. Input total number of 

learning sample tracks , sample orbit decision period 

number , learning rate , learning rate update 

coefficient, discount factor . Let sample track          .

Let          . Initialize system state 

data such as decision moment

Select action Select action

Yes
No

greedyk aa =
randomk aa =

No

Start

Perform action，
observe the next 

state and cost. 

Update the Q-

value table and 

let k=k+1

)1,0(random

Finish

0m =

0k =

         ?k K

Yes

          ?m M

Yes

No

Update 

learning rate

 

Fig.1 Q learning algorithm solution steps 

4. Case analysis 

Taking a medium and long-term contract transaction as an example, the total contract electricity is 

10TWh, and the contract execution time is one year. In order to simplify the calculation model, the peak-

to-valley electricity decomposition method is adopted. 22:00-8:00 the next day is the trough period. The 

contract peak electricity price is 248 yuan/MWh, and the contract trough electricity price is 

118yuan/MWh. The generator units are three groups of 600MW thermal power units and one group of 

photovoltaic units. The electricity in the contract and the newly added electricity each month are 

generated by the thermal power unit, and the photovoltaic power is generated by the photovoltaic 

generator unit. In the given optimization model, l  is 0.4, i  is 0.9, u  is 0.05, v  is 0.3, and the time 

interval k  is one month. 
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Fig.2 Confidence interval for the photovoltaic electricity among the newly added electricity 

 

Fig.3 Predicted monthly total power 

 

Fig.4 Thermal power price in the newly added electricity forecast average 
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Since the power grid and power generation companies obtain the clearing electricity price through 

the separate bidding and clearing during the peak and valley periods each month, load forecasting and 

electricity price forecasting should also be carried out according to the peak and valley periods 

respectively. The forecast of the photovoltaic electricity in the newly added electricity confidence 

interval is shown in Figure 2. The forecast of the total electricity during the peak and valley period is 

shown in Figure 3. The forecast of the average forecast of thermal power price in newly added electricity 

is shown in Figure 4. 

Considering the fluctuation of electricity prices and many uncertain factors in electricity market 

transactions, we use the Q-learning algorithm to solve the monthly electricity quantity. In order to take 

into account the accuracy and uncertainty, we take three groups of the obtained solutions to obtain the 

average value, and the results are shown in Table 1. Then we calculate the total electricity purchase cost 

obtained by different methods, and the result is shown in Figure 5. 

As shown in Figure 5, the total electricity purchase cost obtained by solving the model in this paper 

according to the Q-learning algorithm is 2.793 billion yuan, and the total electricity purchase cost 

obtained by using the nonlinear algorithm to solve the model in this paper is 2.799 billion yuan. The 

cost of electricity purchase is 2.812 billion and 2.821 billion yuan respectively. Instead of using the 

model in this paper, using the decomposition method that only decomposes the monthly electricity 

according to the proportion will cost 2.889 billion yuan to purchase electricity. Obviously, the method 

of Q-learning is used to solve the problem, which allows us to obtain better economic benefits while 

fully considering the uncertainty of electricity price and electricity. 

 

Tab.1 Q-learning algorithm breaks down results by monthly electricity 

Month 
Power breakdown results during peak hours 

/TWh 

Decomposition results of electricity during the trough 

period /TWh 

1 0.684 0.112 

2 0.469 0.165 

3 0.774 0.16 

4 0.728 0.139 

5 0.725 0.2 

6 0.792 0.144 

7 0.695 0.181 

8 0.492 0.189 

9 0.478 0.176 

10 0.667 0.189 

11 0.806 0.149 

12 0.747 0.149 

 
Fig.5 Cost comparison of three power decomposition methods 
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Not only that, as a widely used reinforcement learning algorithm, Q-learning has many advantages. 

Since Q-learning is based on temporal difference solution, its principle is simple, the required parameters 

are few, the acceptable range is wide, and the evaluation strategy is clear. It has better resource 

occupancy and solution speed in dealing with the uncertain problem in the calculation example. Because 

Q-learning has better timeliness and robustness, the prediction of photovoltaic output value is more 

accurate. Therefore, it can well meet the online real-time optimization requirements of the power system. 

5.  Conclusion 

This paper proposes the optimal decomposition model of contract electricity under the uncertainty of 

new energy, and solves the contracted electricity during the peak and the valley period. Fully considering 

the uncertainty of photovoltaic output, the Q-learning algorithm is used to efficiently complete the 

solution. Through the example analysis, the following conclusions can be drawn:  

(1) Compared with the traditional contract power decomposition method, the contract power 

decomposition model proposed in this paper fully takes into account the uncertainty and randomness of 

photovoltaic power, the impact of thermal power unit output, electricity price forecasting and load 

forecasting, making the decomposition results more convincing.  

(2) When solving, this paper adopts the Q-learning algorithm to solve. When the peak and valley 

electricity is decomposed in the model, each different decomposition method will have different 

electricity purchase costs, which is also in line with the characteristics of Q-learning trial and error and 

delayed reward. In the case of learning a better learning strategy based on this paper, the Q-learning 

algorithm can get results faster and more efficiently than the ordinary algorithm. 
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