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Abstract—This paper firstly gives an introduction of robot path planning problem, which 

includes the brief definition of path planning, some representative methods and previous 

applications of Q-learning. Secondly, the paper compares some typical methods, like Breadth 

First Search and Depth-First-Search, A* and deep learning, with corresponding pseudo codes in 

detail. Their advantages and disadvantages are also listed in this part. Thirdly,  we carry out a 

simple simulation experiment by applying Q-learning method. The experiment is clearly 

presented in several parts which includes environment establishment, realizing the Q-learning, 

simulation experiment and interpretation of the Q-table. In the end, a short conclusion 

summarizes the achievement of our results. 

1.  Introduction 

Mobile robots have been widely used in several aspects of our life, namely, military, agriculture, and 

logistics [1]. Under such circumstance, it’s necessary to do researches about the moving of robots. Robot 

navigation is a technique that shows the robot’s ability to establish its own position and orientation 

within the frame of reference. The robot navigation mainly consists of three steps: (1) self-localisation, 

(2) path planning, (3) map-building and interpretation. Among them, the ‘path planning’ path has been 

discussed most.  

Robot path planning is to navigate a mobile object from the start position to the goal position. There 

are a set of moving or fixed obstacles in the whole two-dimensional plane [2]. Refining the robot path 

planning not only can improve the efficiency of robot’s work but also avoid some dangerous situations 

happen in real life in future. 

Principle of artificial potential field method is a simple mobile robot path planning algorithm, it will 

target point location as potential energy low, obstacles in the map as a potential energy high, calculating 

the potential field figure known map, and ideally, the robot is like a rolling ball and roll automatically 

to avoid the various obstacles to the target point 

In the PRM (1996) method, configuration-free space (the prearrangement of motion that can be 

realized) is withdrawn, reduced to, or plotted on a one-dimensional linear system. The scan of the 

response is limited to the system, and the moving arrangement becomes a graph search problem. This 

particular approach is also known as the skeleton approach, the retreat approach, or the highway 

approach. 
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A Virtual Impedance technique for multi-purpose robot improves the motion stability of the robot. 

This technology improves the robot's performance under dynamic conditions of static and portable 

obstacles. Furthermore, it is inferred from the direct framework of the above algorithm that it is more 

efficient than previous strategies. Program analysis is carried out on a physically moving multi-

functional robot platform under internal conditions. The impedance control strategy is introduced into 

collision avoidance calculation, and the separated multi-functional robot and obstacle are switched to 

virtual obstacle resolving robot. Production efficiency and smooth variation are also the key problems 

of multi-functional robot headway control. Considering the high performance of independent collision 

avoidance in a small local space, the teleoperation headway controller realized by self-collision 

avoidance is a suitable path for practical application. 

Another famous and basic method is Q-learning, which our article will also focus on. Q-learning is 

a value-based reinforcement learning algorithm depends on stochastic transitions and rewards. The key 

element of this algorithm is state, action and reward. Usually, the target function is Q(s,a), where ‘s’ is 

the current state and ‘a’ is the action. The value of Q can be interpreted by the reward to carry out action 

‘a’ under the state ‘s’. The main ideal of Q-learning algorithm is to make a table which include state and 

action to store the Q value. After that, the learning subject will choose the action that can get maximal 

benefit according to the table. 

Moreover, another important concept in reinforcement learning is policy. There are two policies, one 

is behavior policy and the other is target policy. The behavior policy is used to make decision  in practice, 

while the target policy uses the data from behavior policy. Under the condition of on-policy,  the target 

policy approaches to its value during the implement of behavior policy. Although it seems simple, the 

value of target policy maybe regional optimal, not global optimal. Because the data is not comprehensive 

enough to find out the global optimal value. However, in the process of off-policy, the target policy will 

not make any decision until the behavior policy collect all data for it. Thus, the value of the target policy 

in off-policy is the global optimal. 

A series of significant researches in different areas have been carried out by using Q-learning. For 

instance, Wyatt proposed Q-value sampling to solve bandit problem [3]. Also, the reinforcement Q-

learning can be used to study model-free optimal tracking control for discrete-time system [4].  However, 

Q-learning has a better prospect in the aspect of robot. It has applications in the path planning of both 

solitary robot and multiple robots. After setting a reward mechanism, with the Q-learning, robot can find 

an optimal path which obtains the max rewards among all, staring from the current state. On the one 

hand, for solitary robots, Q-learning combined with neural network present a new hybrid path planning 

method for robot arm [5]. Besides, using Q-learning helps high-level path planning for an autonomous 

sailboat robot [6]. Moreover, the method based on Voronoi and Q-learning algorithm gives a path 

planning for car-like robot [7]. On the other hand, for multiple robots, one of the most typical cases 

maybe using a deep reinforcement learning Q-network(DQN) to realize the path planning for robots in 

unmanned warehouse [8]. Similarly, fuzzy Q-learning help deal with the underactuated dynamics of the 

unmanned aerial vehicles(UAVs) [9]. 

2.  Some common path-planning algorithm principles 

The path planning problem of robot is to find an optimal path to avoid obstacles in the workspace from 

the initial state of the robot to the target state according to some or some optimization criteria (such as 

minimum work cost, shortest walking path, shortest walking time).  In this essay will set up a simple 

maze environment, red position, black position represents failure, yellow position represents success, 

let the red block slowly through continuous exploration and learning to walk to the yellow position as 

shown in Fig.1.The goal is to find an algorithm to get the best path to the end with higher efficiency. 
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Fig.1 path planning diagram 

2.1. Breadth First Search and Depth-First-Search. 

The most basic principles for path-planning are Breadth First Search (bfs) and Depth-First-Search(dfs). 

bfs takes the starting point “A” as the center of the circle, first searches all points around A to form “A” 

point search area similar to a circle, and then expands the search radius to get a larger search area until 

the end “B” point is found in the search area. bfs guarantees minimal cost to get from the starting point 

to the end point that means getting the shortest path regardless of whether the process involves searching 

many grids, so this way unless can get the best path, but have low efficiency. [10] The table Algorithem.1 

show Pseudo code for bfs[11]. 

Algorithem.1 pseudo code 

1     q.push(head);   

2     while(!  q.empty())  {   

3       temp=q.front();   

4       q.pop();   

5       If (tempI is the target state)   

6           Output or record   

7      If (temp is invalid)   

8          continue;   

9     If (temp)   

10         Q.p ush (temp + ¦ Δ);   

11   }   

 

dfs takes starting point “A” and searches in the direction of end point “B”. dfs is to search as far away 

from A as possible and as close to B as possible, unless don’t know where is the shortest path and can’t 

find it. dfs is that by constantly correcting the relationship between the direction of travel and the 

direction of the destination, this way need search less area but can't find the best path between start point 

to end point.[12] .The table Algorithem.2 show Pseudo code for dfs[13]. 

Algorithem.2 dfs pseudo code 

1   Void DFS (state A)  {   

2     If (A is illegal)   

3         return;   

4     If (A is the target state)   

5        Output or record path   

6     If (A is not the target state)   

7         DFS (A + Δ)   

8   }   

2.2.A* 

A new algorithm can be obtained by combining bfs and dfs that is A*. A* considering the cost from the 

starting point through the current route, and constantly calculating whether the current route direction is 

closer to the direction of the end. A* formula is  

𝐹(𝑥) = 𝐺(𝑥) + 𝐻(𝑥). 
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F(x)is the comprehensive priority of node x and we will use the smallest one. G(x) is the cost of the 

distance between node x and the starting point, H(x) is the estimated cost of node x to the end point. 

And then each move one spot will afresh to confirm the direction until to the end point.  

A* is the most efficient way to find the path when not considering going to different points have 

different costs, such as having amplitude between the spots. 

2.3. deep learning 

The deep learning way is Q-learning and sarsa. Q-Learning algorithm is a kind of off-policy 

reinforcement Learning algorithm.  The algorithm uses the value of each step to perform the next action. 

The agent based on Q-Learning algorithm can judge the next step only by the current state without 

knowing the overall environment. Q-learning is a value-based algorithm among reinforcement Learning 

algorithms. Q refers to the expected benefits of taking an action in a certain state at a certain time.  The 

environment will feedback corresponding returns according to the actions of the agent, so the main idea 

of the algorithm is to construct a Q value table between the states and actions, and then select the actions 

that can obtain the maximum benefits according to the Q value. But Q-learning will take the behavior 

with the highest expected reward every time, you may not be able to explore other possible behaviors 

in the training process, and even enter the "local optimal". 

Sarsa is state-action-reward-state-action, it is also store action value functions in q-table mode. The 

difference is that Sarsa updates differently than Q-learning, it is off-policy and will update data after 

action. 

3.  Test Results 

3.1.  Environment Establishment 

For prior declaration, we use Python as our experiment tool. To simulate the experiment, we should 

firstly set up the environment. The definition of path planning is to find a feasible route from the starting 

point to the end point avoiding obstacles. According to such requirement, we create a maze which is 6 

units in length and 6 units in width. We present it in the form of grid in Figure 2. The Figure 1 also gives 

an overview of the initial environment setting. The small red square is our experiment robot with the 

initial position on the upper left corner of the maze. The black blocks represent traps. In contrast, the 

white squares have no properties. The robot can move freely through out the whole maze. When robot 

move onto a square, it can move to adjacent squares. The yellow square stands for the treasure with an 

extra reward. The blue square on the bottom right corner of the maze is the terminal. When the robot get 

to the terminal successfully, then a feasible path is achieved. However, such feasible path can only be 

found after continuously learning and exploring. 

 
Fig.2 experiment environment 

 

Secondly, we are about to define the movements in the maze. Our explanation will still base on 

Figure 1. By choosing different moving directions (up/down/left/right), the current position changes 

following by different outcomes. It is worth noting that because the scale of the maze is 6*6, the first 

row cannot manage to carry out the ‘up’ action. Similarly, the last row cannot take ‘down’ action, the 

first column cannot take ‘left’ action and the last column can not take ‘right’ action. These restrictions 

should be added to the movement of robot to ensure the robot always adopting valid actions.  
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Thirdly, it is also important to build a incentive system. The matrix below shows the reward matrix 

which is according to the Figure 1. For instance,  if  moving to the black block, the score of this route 

will get a -10 credit punishment. Contrarily, if moving to the yellow block, the score of this route will 

have a 3 credit reward. The white squares have neither rewards nor punishments, so 0 is given to be 

these positions’ credits. When get to the terminal, the robot will get 10 credits and end this trial. All the 

credits should return to the score of current moving strategy.  

Reward Matrix=

























10010-

0310-

0010-

0

0

0

10-

10-

10-

0

0

0

0010-010-0

010-0010-0

000010-0

 

Fig.3 reward matrix 

3.2.Realizing the Q-learning 

Q-learning is a typical off-policy method in path planning. The off-policy means the learning policy 

differs from the enforcement policy, which is reflected in the Q-learning policy.  The key equation in 

Q-learning is: 

                                𝑄(𝑠, 𝑎) < − 𝑄(𝑠, 𝑎) + 𝛼[r+γ𝑚𝑎𝑥𝑎′Q(𝑠′,𝑎′)-Q(s,a)].                                    (1) 

 

In the stage of learning, the agent has a greedy attribute, which means it will always take the action 

that maximizes the reward. However, in the stage of enforcement, the parameter ε-greedy is introduced. 

In our experiment, an ε-greedy is set to be 0.8, so there is a 80 percent possibility for the agent to follow 

the greedy attribute, choosing the action which results in the largest reward according to the Q-table. 

While under the left 20 percent possibility, the agent will take a totally random action regardless to the 

Q-table. Another parameter α is the study rate that decides the amount of error to be learned. Moreover, 

the γ represents the loss of the reward which is introduced to make up for the difference between the 

real reward and the estimated reward. But our both the real and estimated rewards in our experiment are 

the same, then the γ is 1 in this experiment. In order to be clear, the Pseudo Code of Q-learning is shown 

in Figure 3. Q(s,a) represents a reward value by taking action ‘a’ under the state of ‘s’. 

Algorithem.3 Q-learning pseudo code 

1   Initialize Q(s,a) arbitrarily 

2   Repeat (for each episode):   

3        Initialize s   

4        Repeat (for each step of episode):   

5             Choose a from s using policy derived from Q(𝑒. 𝑔. , 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦) 

6              Take action a, observe r, s′ 

     7             Q(s,a) ← Q(s,a) +α[r+γmaxa′Q(s′,a′)-Q(s,a)]                                           

8            s ← s′ 

9        until s is terminal      

 

In conclusion, to realize the Q-learning, we should first draw the Q-table, which record the value of 

each state and action. Next, an ε-greedy is set to influence the agent choice in the enforcement stage. 

Finally, the agent is able to find a feasible path according to the Q-table. Thus, the Q-learning is achieved. 

3.3.Simulation Experiment 

Our simulation follows  three steps: 
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1. get the next process according to the current state, 

2. carry out the process and obtain the new state, 

3. record  the value calculated by the algorithm. 

Our algorithm gets its first reward at the 25th trail, and at about the 50th trail, the shortest route is 

almost obtained. Fig 3 shows the situation when achieving the success. 

 

Fig.4 achieve the success 

3.4.Interpretation of the Q-table 

Here is part of the Q-table:  

 

                                  0    1     2    3 

[5.0, 5.0, 35.0, 35.0]      0.0  0.0 -0.01  0.0 

[5.0, 45.0, 35.0, 75.0]     0.0  0.0 -0.01  0.0 

[45.0, 5.0, 75.0, 35.0]     0.0  0.0  0.00  0.0 

[5.0, 85.0, 35.0, 115.0]    0.0  0.0 -0.01  0.0 

[45.0, 85.0, 75.0, 115.0]   0.0  0.0  0.00  0.0 

[45.0, 45.0, 75.0, 75.0]    0.0  0.0  0.00  0.0 

[5.0, 125.0, 35.0, 155.0]   0.0  0.0 -0.01  0.0 

[45.0, 125.0, 75.0, 155.0]  0.0  0.0  0.00  0.0 

[5.0, 165.0, 35.0, 195.0]   0.0  0.0 -0.01  0.0. 
 

Fig.5 The first 9 rows of the Q-table 

 

The four values in bracket stands for current state (s). Here [5.0, 5.0, 35.0, 35.0] represents the initial 

position (state) in the maze. The first two numbers show the left top coordinate and the last two show 

the right bottom coordinates. The four numbers in first row imply four actions: up/right/right/left. And 

4 columns below them shows four rewards by taking different actions according to the current state. 

Taking the second row ‘[5.0, 5.0, 35.0, 35.0]      0.0  0.0 -0.01  0.0’ as an example, if the agent turn to 

right, it will be caught by a trap. Thus, the value here is -0.01. Moreover, 0.0 means that the agent moves 

to a blank square, 0.003 means the agent gets the treasure and 0.01 means the agent reaches the terminal 

point. 

 With refinement of the table, the first success happened at approximately the 30th trail. 

 

0     1         2         3 

[205.0, 205.0, 235.0, 235.0]  0.00  0.00  0.000000  0.010000 
 

Fig.6 the first success 

 

The last step from above table is a turning point. After that, the following trails will help achieve the 

optimal path.  

4.  Conclusion 

In this paper, we introduced the methods of path-planning and how it can be solved by using Q-leaning, 

including the benefits of Q-leaning, as well as three principles of path-planning algorithm, Breadth First 
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Search and Depth-First-Search, A* and deep learning. Then, we used Python to achieve Q-learning 

based on a maze which is 6 units in length and 6 units in width. In short, to realize the Q-learning, we 

should first draw the Q-table, which record the value of each state and action. Next, an ε-greedy is set 

to influence the agent choice in the enforcement stage. Finally, the agent is able to find a feasible path 

according to the Q-table.  

We got the result, it is concluded that the boundary conditions at ends of the specimens have great 

effect on static mechanical properties of the composite slabs presented here, and the composite slab with 

restraint at four corners has the largest bearing capacity. We have proved that robot can learn by 

themselves to find the best path, this further confirms the importance of Q-learning in path-planning 

research. We are looking forward to realize the goal of deeper implement of Q-learning and to learn 

more knowledge about path-planning in the future 
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