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Abstract. The presence of offshore wind farms causes downstream regions of reduced wind
velocity, i.e. wind farm (cluster) wakes, which can affect the power of wind farms downstream.
Engineering models are now being used to simulate the effects of these wakes, and an important
requirement for model validation is a comparison with full-field measurements. Our objective
in this paper is to parametrize and validate two engineering wake models with long-range lidar
measurements. We use a long-range scanning Doppler lidar to scan the near wake region of
a 400 MW offshore wind farm and compare the wind velocities in the wake to the outputs of
two engineering models: FarmFlow and flappy. We adapt FarmFlow to solve the flow in highly
unstable atmospheres by modifying the boundary conditions, which enables the comparison
of velocity profiles behind the farm. The models perform qualitatively well in predicting the
wake deficit and shape close to the farm and at lower heights. They predict higher wake losses
within the farm when compared to production power data in a strongly unstable atmospheric
case. However, the current analysis is limited due to the lack of inflow measurements for
model initialization, compounded by limited data availability. We discuss the possibilities
and limitations of long-range scanning lidar data for cluster wake model validation and the
need for inflow measurements for model initialization. We conclude that with detailed inflow
measurements, scanning long-range lidars could serve as a good tool for the validation of wind
farm wake models.

1. Introduction
Engineering wake models for wind farm resource assessment have primarily focused on the
representation of the wakes of single wind turbines and inner wind farm effects. The combined
wakes of all wind turbines in a wind farm (called cluster wakes or wind farm wakes) have
been shown to adversely affect the power production of downstream wind farms in specific
meteorological situations [1]. A validated representation of cluster wake effects in engineering
models can reduce uncertainty in resource assessment for future offshore wind farm projects.

Cluster wakes have been studied for several years using spaceborne synthetic aperture radar
(SAR) [2], Doppler radar [3], research aircrafts [4], long-range lidar [1], met masts [5] and wind
farm operational data [6]. Platis et al. found that cluster wakes can last more than 50 km
downstream in stable atmospheric conditions [4], while Schneemann et al. proved an effect of
cluster wakes on the power of a downstream wind farm lasting 55 km in stable and weakly
unstable atmospheric conditions [1].
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Large eddy simulations [7] and mesoscale simulations with e.g. the Weather Research and
Forecasting model [8], while covering large areas offshore, are computationally expensive. The
industry has thus continued to depend on analytical wake models for resource assessment, due
to lower computational costs and also robustness for the calculation of the wind farm Annual
Energy Production (AEP).

Several engineering wind turbine wake models have been used to model inner wind farm
effects [9]. Recently, the focus of engineering wake models has shifted to the region behind wind
farms, to include large scale effects such as wind farm wakes [6, 10]. Proper validation of large
scale wind farm wake modelling is still a challenge since accurate measurement data is rarely
available.

Traditional engineering models such as the Park model [11] underestimate the wake deficit
behind large offshore wind farms when validated with the production data of a downstream
wind farm. Applying a turbulence optimisation brought the Park model closer to a realistic
representation of the wind farm wake. However, possible influences of the coast and uncertainties
due to the indirect validation with wind farm production data have to be considered [6].
Parameterization of engineering wake models with a direct validation of the wind farm wake
flow, especially in varying atmospheric stabilities, is still pending.

The objective of this paper is the tuning and validation of two engineering wind farm wake
models with lidar measurement data. We achieve this goal by a) using a long-range scanning
Doppler lidar to scan the wake region up to 8 km downstream of a 400 MW offshore wind farm
in the German North Sea, and b) comparing the simulations of the wind farm wake from the
two engineering models FarmFlow and flappy to the measurements.

2. Methodology
2.1. Lidar measurements at the offshore wind farm Global Tech I
A Leosphere WindCube 200S lidar was operated on the Transition Piece (TP) of turbine GT 58
in the Global Tech I (GT I) wind farm in the German North Sea. The lidar on the transition
piece is 24.6 m above the sea surface. Figure 1 shows the layout of GT I and a photograph of the
lidar. GT I consists of 80 Adwen AD5-116 wind turbines with a total rated power of 400 MW.
The turbines have a rotor diameter (D) of 116 m and a hub height of 90 m.

The lidar performed Plan Position Indicator (PPI) scans with a fixed elevation (δ) of 0.8 ◦in an
azimuthal range of 150 ◦. This results in a range of heights from approximately 31 m until 135 m
above the sea surface (including turbine thrust caused platform tilt). This enables comparisons
of the velocities behind the farm at different heights. The lidar scan settings are summarized in
Table 1.

Table 1. Utilized lidar scan settings for the Leosphere WindCube 200S

φ range (◦) ∆φ (◦) Scan time (s) Range gates (m)

150 2 150 500:35:7990

The lidar scan output contains the raw line-of-sight (vLOS) velocities across the scanned ranges
and azimuth angles φ. We processed the raw lidar data from individual scans using the data
density filter of [12]. The horizontal velocities

u =
vLOS

cos(φ− ϕ) cos δ
(1)
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Figure 1. Leosphere WindCube 200S placed on the TP of a turbine in the Global Tech I wind
farm (left). Scanned sector of the lidar measurements (right). Images taken from [1].

were obtained using the VAD fit method [13] with the assumption of a homogeneous wind field
(uniform wind direction ϕ).

To compare the lidar measurements to the engineering models introduced in Sections 2.4
and 2.5, we consider two distances to compare the velocities within the wake, 20 D and 40 D
downstream of the lidar and extending perpendicular to the wind direction. The lidar is located
in the last row of turbines in the case of NNE wind, and the distance is calculated from the lidar
location, along the direction of the wind. There is a hard target in the middle of the lidar scan
resulting in a small blind sector. After the VAD fit, the result is a scatter of points as a function
of range and azimuth. This was then interpolated over a uniform grid to fill in the missing data
at longer ranges, as shown in Figure 2.

2.2. Lidar measurement uncertainties
The uncertainties for the lidar measurements can be divided into two categories: velocity and
height uncertainties. The velocity derived from Equation (1) explicitly assumes a homogeneous
wind direction. We did not account for the spatial wind direction changes within each scan.
To reduce the effect of temporal wind direction changes, we selected a scenario where the wind
direction was nearly constant (28◦± 1◦) throughout the lidar scan period. We corrected deviating
measurement heights caused by wind turbine thrust induced platform tilt using the algorithm
introduced by [14]. In addition to this, the curvature of the earth was also taken into account
using Equation (2), where Lrange is the lidar measurement distance and R ≈ 6378 km is the
radius of the Earth. The effective measurement height is given by Equation (3).

hcurvature =
√
L2
range +R2 −R (2)

heffective = hlidar ± htilt + hcurvature (3)
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Figure 2. Lidar (red diamond) scan of the GT I wake, averaged over 20 minutes with the two
cuts of 20 D (red dashed line) and 40 D (pink dashed line), perpendicular to the wind direction.

2.3. Atmospheric stability
We measured air pressure (Vaisala PTB330), temperature and relative humidity (Vaisala
HMP155) simultaneously with the lidar scans and used the local sea surface temperature from a
local measurement buoy to determine atmospheric stability at lidar height. This was input to the
engineering models. The stability parameter used in the current study is the Monin-Obukhov
length L, based on the the definition by [15]. We use this directly as an input in FarmFlow
and account for the stability by tuning the wake decay and turbulence intensity in flappy. The
Bulk Richardson number (Rib) is calculated first, from which the stability parameter ζ and
consequently, L is determined using Equations (5)- (7), with the same assumptions as in [16].

Rib =
g

Tv

0.5zTP∆Θ

u2TP

(4)

u10 = umeas

ln( z10z0
)− Φ( z10L )

ln( zmeas
z0

)− Φ( zmeas
L )

(5)

ζ =


10Rib

1− 5Rib
Rib > 0

10Rib, Rib ≤ 0

(6)

L =
0.5zTP

ζ
(7)

For the case analysed in this paper, the atmospheric stability L = −45 m, which indicates
a highly unstable atmosphere. However, it has to be noted that there is a high degree of
uncertainty in using this stability to initialize the models, mainly due to the location of sensors.
GT 58 is located far downstream, and in addition to being within the wake, it is representative
of the stability at lidar height with the atmospheric measurements.
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2.4. FarmFlow
FarmFlow is a wind farm wake modelling software developed by TNO. It solves the 3D
parabolized Navier-Stokes equations using the k-ϵ model. It models the turbines as actuator
disks and has been validated for several offshore wind farms [17]. The wakes from individual
turbines are divided into three regions: the near-wake, the transition and the far-wake region.
The k-ϵ model tends to overestimate the wake recovery in the near-wake region since it is time
averaged and the turbulent kinetic energy production delay due to tip vortices is not accounted
for. The turbulence production in the near-wake region is thus strongly limited in FarmFlow,
adapted in the transition region and the normal k-ϵ model is applied in the far-wake.

FarmFlow was initially developed for simulating the wake interactions within a wind farm
and hence accurately estimate its power production (thereby AEP). When inter-farm effects are
considered, the flow is solved for larger distances behind the farm, where no turbine interactions
exist. In neutral atmospheric conditions, this does not cause an issue, as the boundary conditions
over each flow grid cell are unaffected. The boundary conditions for each grid cell (5.5 D in
both width and height) are Neumann at the side and top walls, and Dirichlet at the bottom
wall. The restriction is that mass conservation ensures a constant wake deficit in the cell. In
very unstable atmospheric conditions, this restriction becomes unrealistic as the wake recovery
is greatly enhanced by vertical mixing. One solution could be to increase the domain size to
reduce the mass conservation effect, but that would result in very high computational times.

Results from a larger domain were thus first analyzed to get an estimate of the deficit at the
boundary of a smaller domain. Hence, we updated FarmFlow so that the results from the smaller
domain compared very well with the larger domain. This was achieved since the restriction from
mass conservation allowed a reduction of the total wake deficit (not unrealistically high as before)
from this estimated recovery rate at the boundary. The effect on power production was compared
for two years of data on the Windpark Egmond aan Zee near the Dutch North Sea coast, and
a small increase in power production (0.7%) was observed due to the enhanced recovery in the
newer model, with no other noticeable changes in the outputs.

FarmFlow was optimized to provide velocity fields at any point by defining virtual met masts.
This was set-up to coincide with the points considered in the lidar scans at 20 D and 40 D,
with a height resolution of 14 m. To compare the velocity at a particular height, the closest
matching height within FarmFlow was selected. This process was repeated for each point, since
the uncertainty due to extrapolation errors (assuming a stability dependant velocity profile) was
high. This results in a maximum error in height of 7 m, which is well within acceptable limits.

2.5. flappy
The Farm Layout Program in Python (flappy) is an in-house engineering model, developed by
Fraunhofer IWES [18]. The turbines’ interactions with the wind are represented according to
analytical models that do not require the use of a grid for the solution. The wind properties at
a turbine are sampled through a rotor model, this information is used by a wake model and a
added turbulence intensity model, to characterize the wake generated by any single turbine in
the simulation. Finally a superposition model takes care of composing the computed wakes with
the undisturbed flow the simulation is initialized with. The combination of models we used is:

• Rotor model: averaged at 16 points in the rotor plane

• Wake decay model: Bastankhah Gaussian [19]

• Turbulence in the wind farm: Crespo and Hernandez [20]

• Wake superposition: Linear

While flappy offers also the possibility of representing the induction based wind farm blockage,
the effects of this phenomenon on the current analysis were found to be negligible, thus we do not
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included this type of model in the simulation performed. In flappy, the grid-less algorithm allows
to directly sample the velocity field at any user defined point, this ensures to add no further
uncertainty when comparing the model to the lidar scans due to mismatch in the sampling point
locations. flappy is oriented to large time series processing, we performed a single simulation
based on a very short time series created with the conditions found in the different lidar scans.
The simulation is steady state, where any entry of the time series is processed independently from
the others. For any timestamp, wind speed, wind direction, and ambient turbulence intensity
must be defined. The wake modelling also require to set different coefficients modulating the
wake recovery and the turbine added turbulence intensity decay. In our cases we defined a set
of parameters that fit the atmospheric conditions found during the lidar scans.

2.6. Model initialization
The comparison of modeled wind fields and wind measurement data requires identical or at
least similar flow situations. Therefore the initial conditions of the model, i.e. the inflow
wind profile, atmospheric stability and turbulence intensity need to be known. In practice
an undisturbed inflow measurement requires high efforts like a met mast, a second scanning
lidar looking upstream or a lidar buoy. We did not have any upstream measurement available,
therefore we used operational data of the upstream wind turbines in GT I to estimate the inflow.
The power produced by the turbines in the entire first row (GT 1-8) was taken during the initial
20 minutes of the lidar measurements. This was done to account for the time the wind takes to
reach the lidar location and the subsequent comparison distances of the velocity profiles from
the inflow. A mean value of the front row turbines’ power from the SCADA data was taken,
and the inflow velocity was determined using this value (we reconstructed the power curve from
the SCADA power data).

There were no measurements available for the turbulence intensity in the inflow. The
FarmFlow update allowed solving the flow up to an Obukhov length of L=-200 m, and the
turbulence intensity was increased until the flow could no longer be solved. The final values
set within FarmFlow were 7.3 m/s for the free-stream wind speed and 14.5% for the turbulence
intensity. To compare both models with the same inflow, the same conditions were set in flappy.

3. Results
3.1. Wake velocity comparison
We compare the lidar measurements with the simulated model outputs for a highly unstable
atmosphere, along the specified downstream distances. Figure 3 shows the velocities in the wake
of the GT I wind farm as a function of the distance perpendicular to the wind direction. Each
point of the lidar measurements is at a different height, and despite a lack of information about
the vertical wind profile, the match between the models and measurements is qualitatively good
at 20 D. The models’ behaviour at 40 D is more difficult to analyse as there are larger variations
in the lidar measurements due to lower carrier to noise ratio. We noticed in the measurements
that there was a small variation in the wind direction within the wake of the farm, which is quite
complex to analyse and represent in the models. The qualitative match between measurements
and models is, however, limited to the regions closer to the farm and at lower heights.

3.2. Comparison of model output to SCADA data
We compare the power output of the models to those of the turbines in the farm to evaluate the
performance for intra-farm effects, in a highly unstable atmosphere. We use the freely available
power and thrust curves of the NREL 5 MW reference turbine [21], which is very similar in
performance to the Adwen turbine of the GT I farm. The power output of each turbine is
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Figure 3. Comparison of the wake velocity profiles between the Lidar measurements (black,
averaged over 20 min, as in Figure 2), FarmFlow simulations (blue) and flappy simulations (red),
at 20 D (left) and 40 D (right) downstream and perpendicular to the wind direction.

normalized with the mean power of the first row as in Equation (8), and the deviation from the
SCADA power is expressed as a percentage.

Pnorm =
Pturbine

Pavg,firstrow
(8)

For the power production analysis, we divide the farm into two regions: the front, which
includes the first two rows, and the back which consists of the last few rows, as shown in
Figure 4. We do this to determine how the models perform immediately after the front row,
(which is used for the inflow velocity) and how the magnitude of error shifts the further we
proced into the farm. The two regions for NNE wind are shown in Figure 4. The error is
calculated for each turbine in both regions by calculating the deviation of the normalised model
power from the normalised SCADA power, and then averaged for the front and back turbines.
Both models underestimate the power in the front, possibly due to uncertainties in the method
of determining the inflow velocity. However, this underestimation in the inflow power (< −5 %)
is much lower than the overestimation in the downstream part of the farm (35 % in FarmFlow
and 16 % in flappy). This is possibly due to the increased recovery set in the models to match
the scan scenario of stability.

In addition to the progression of error through the farm, we also computed the overall error
by averaging the individual error across all turbines. This might give biased results due to the
averaging of outliers and thereby give the picture of better performance, so we compared the
standard deviation of the power to assess the model performance within the farm. Both of
these error quantifiers are summarised in Table 2. We found that both models overestimate the
power production in the farm as a whole, and that flappy has lower errors in the mean and
standard deviation when compared to SCADA power, indicating that it might better represent
the intra-farm effects. Modifying the models to match the power was not performed since the
velocities in the wake behind the farm were matched quite well, and the differences could be
explained by the uncertainties in the inflow.
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Figure 4. Division of the wind farm into the upstream (yellow frame) and downstream (green
frame) regions (left). Percentage deviation of the mean power error predicted by FarmFlow and
flappy when compared to the SCADA power data for the front and back regions (right).

Table 2. Comparison of the mean and standard deviation of the individual errors between
FarmFlow and flappy when compared to the SCADA power data

Model Mean error σ (local effects)

FarmFlow 8.57 % 22 %
flappy 4.17 % 14 %

4. Challenges in the analysis
Parameterization of the engineering models based on lidar measurements led to a qualitative
match closer to the farm and at lower heights, despite the lack of direct inflow measurements.
The power output from the models was overestimated in the downstream part of the farm,
possibly due to parameter settings in the models to match the highly unstable atmosphere. In
addition to the aforementioned issues, there were also other challenges in the analysis, that
hindered a comprehensive validation of the two models.

4.1. Time averaging and wind direction variability
We averaged the lidar scans (each scans takes 150 s) over a 20-minute period with a nearly
constant wind direction. The averaging serves to smooth out or diffuse local turbulence. This
does not have a noticeable effect when averaging out, but even longer averaging periods would
be useful to compare the profiles to mesoscale models and smooth out any local effects that
could affect wake formation.

4.2. Comparing the farm power output to the models
The average turbine output power in the first row is considered to represent the undisturbed
wind farm inflow, but even within the first row, there are wind speed fluctuations that averaged
out. This could be due to several reasons, and in some other cases we analysed, a clear variation
in the inflow wind speed for each turbine was observed due to heterogeneities in the wind field.
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4.3. Recommendations for future measurement campaigns
Based on our experience of analysing the available data of wind farm wakes and comparing the
lidar measurements to models, we have the following recommendations for future campaigns
with similar aims:

• A major source of uncertainty is the inflow. When the wake of the farm is under
consideration for analysis, a detailed inflow description is necessary. While production
data can be a good guide, an ideal campaign should have either a met mast or another
lidar looking in front of the farm. An advantage in having a lidar is that heterogeneous
wind fields can be identified and Range Height Indicator (RHI) scans can be performed to
simultaneously determine the vertical wind profile.

• A comprehensive inflow measurement is not only limited to the free-stream velocity, but also
the turbulence intensity and the atmospheric stability. Anemometers on a turbine could
aid in real-time accurate TI values. In the current analysis, we utilised the difference in the
temperature between the sea surface and the lidar heights, but this has two disadvantages:
this is already inside the wake and the stability will also change with height. This remains
a difficult measurement to perform accurately, especially offshore. One solution could be to
account for the stability using the wind shear, or temperature sensors on the nacelle could
be directly used.

• Ideally, the perfect farm layout for model validation should be symmetrical, or even better
a standard layout, such as a square. This makes it easier for analysing multiple inflow
directions, without having to account for local farm effects due to the geometry that might
not be easily accommodated for in the models.

• Another goal could be that of a considerably longer measurement period which covers
a variety of different atmospheric conditions in a statistically significant manner. A
comparison of the power output to the Annual Energy Production (AEP) after the update
of the models will be of great interest to wind farm operators.

5. Conclusions
The aim of the study was to parametrize engineering models to better represent the wake of
an offshore wind farm by comparing the simulations to lidar measurements. We captured the
near-wake of a large offshore wind farm using a long-range lidar, with elevated PPI scans. The
velocities in the wake of this wind farm were compared to the output of the two engineering
models, flappy and FarmFlow in a highly unstable atmosphere. Long-range remote sensing
devices like a scanning lidar are well suited for the analysis of wind farm wakes. However,
without a proper description of the inflow with additional (often more complex) measurements,
a quantitative comparison to models is difficult.

We found that by changing the wake recovery parameter in analytical engineering models (like
flappy) and by changing the boundary conditions in FarmFlow (RANS model), the models can
predict the profile of the wind farm wake at 20 D, albeit closer to the farm and at lower heights.
However, modifications in both models without definitive measurements of the atmospheric
stability, turbulence intensity and the vertical wind profile causes an over prediction in the
power in the downstream part of the farm, due to the enhanced recovery to match the highly
unstable atmosphere. Wind farm wake model validation remains a challenging and important
topic to address, and we conclude that a more extensive measurement campaign is required to
obtain a validation with scanning lidars. To this end, we propose several recommendations for
future measurements campaigns with the aim of model validation and wind farm wake analysis.
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