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Abstract. The results of modeling a finite system of interacting two-dimensional electrons
placed at zero temperature into an external parabolic potential well are presented. The structure
of the 2D Wigner cluster is found. The distribution functions of interelectron distances and
the coordination numbers of internal and external electrons are obtained. The ”string-zigzag”
transition is analyzed. The low-temperature specific heat of the system is determined. An
electronic Wigner crystal on a sphere is also considered.

1. Introduction

The Wigner crystal [1, 2], is a system of repulsing charged particles with compensating uniformly
distributed opposite charges. If the repulsion is strong enough, the charged particles will
form a crystal. The Wigner crystal was initially proposed as a hypothetical model of a
metal, where positive ions are smeared and electrons are localized into a crystal lattice. This
model is orthogonal to the usual adiabatic model, in which electrons are smeared out due
to Fermi statistics and heavy ions are static. It was used by Wigner in order to interpolate
the thermodynamic properties of a metal between weakly interacting and strongly interacting
electrons for an intermediate case.

Unfortunately, 3D systems are usually electrically neutral. With a large interaction force in
such systems, unlike charges are bound into atoms instead of ordering similar charges into the
crystal lattice.

A.V. Chaplik [3] (see, also [4]) pointed out that, in a two-dimensional system, positive and
negative charges can be separated - some are on the gate electrode, while others are in the two-
dimensional system itself. Then the requirement to smear opposite charges is eliminated and the
Wigner crystal becomes accessible. The realization of a two-dimensional Wigner crystal is the
cherished dream in physics of solid low-dimensional systems. Unfortunately, this is hindered by
the relatively low electron interaction constant, despite the fact that the electron crystallization
is expected at its value of about 100.

Main efforts were pooled in the theoretical study of infinite Wigner crystals (see, e.g., [5] and
references therein). The problem of the Wigner crystal is related to the problem of the string-
zigzag transition [6] in an infinite system of electrons placed in a one-dimensional parabolic
confining potential. Such a system can be interpreted as a transition in the formation of two
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Wigner crystal layers from one layer. Note, that recently, however, the signature in exciton
spectrum of the 2D Wigner crystal was observed [7].

In fact, the Wigner crystal was observed in the electron system on the liquid helium surface
[8], where very low electron densities are attainable, and the Coulomb interaction is practically
not screened due to the dielectric constant of the medium. Another representative of systems
with the Wigner crystal is, e.g., a dusty plasma crystal, a system implemented in microgravity
(see, e.g. [9, 10] and references therein). In such a system, massive charged dust particles are
not smeared out due to the Fermi energy and can form a crystal.

The Wigner clusters with a limited but large number of particles have their own nontrivial
properties. The systems with few electrons were studied both experimentally [11] and
theoretically [12]-[13]. Electrons in an isotropic potential well form a near-isotropic distribution
with polycrystalline core with a shell structure (see [14]-[18], and references therein).

In contrast to the previous papers, here we study the formation of a two-dimensional cluster
from a system of a large number (50-200) of electrons placed in a two-dimensional symmetric and
asymmetric confining potential. Our approach is based on computer simulations accompanied
by theoretical estimates.

2. Computer simulations

We consider a two-dimensional system of N classical electrons placed in a field with potential
U = k(x2 + βy2)/2. An imaginary installation for the 2D confinement of electrons is shown in
figure 1. Electrons repel each other with the Coulomb potential e2/|ri − rj |, r = (x, y). The
temperature is assumed to be zero.

Figure 1. Electrons on the liquid He surface are surrounded by upper and bottom parabolic
metallic gates, producing a parabolic well in the center of the He container. Electrons are
collected in the center of the well.

Under these conditions, electrons will minimize the total potential energy. This means that
they will be located near the minimum of the external potential at the maximum possible
relative distance. The inner part of such a cluster should obviously be a periodic lattice. The
system energy was minimized at N = 50, 100, 200. The results of computer calculations of the
arrangement of electrons for different β are shown in figure 2. If β = 1, then, on the average,
the electrons system should occupy a circular region (figures 2(e) and 2(f)). On the contrary, if
β →∞, the electrons will be pressed to the abscissa axis.

3. 1D cluster and string-zigzag transition

The different cluster shapes replace each other via the increase in the number of electron rows.
The first electrons protruding beyond the y = 0 line arise at β ∼ 18.7. This is the beginning of
the string-zigzag transition in the final system. The transition occurs due to the loss of stability
of the central electrons in the cluster, and then of the surrounding electrons, by sequentially
decreasing β. The region of the electrons unstable on the y = 0 line gradually grows. Then
electrons with y �= 0 lose their stability, and the third row appears. The circular area is formed
gradually.



RYCPS-2021
Journal of Physics: Conference Series 2227 (2022) 012012

IOP Publishing
doi:10.1088/1742-6596/2227/1/012012

3

���

���

���

���

���

�	
�

Figure 2. Cluster structure at (a) N = 50, β = 20, (b) N = 50, β = 10, (c) N = 50, β = 5,
(d) N = 50, β = 2, (e) N = 50, β = 1, (f) N = 200, β = 1.

Let us examine why the restructuring process takes place gradually. The electron density on
the y = 0 line decreases towards the x axis the edges. The potential from neighboring electrons

is
∑

j 1/
√
(xi − xj)2 + (yi − yj)2 ≈

∑
j 1/|xi − xj | − (yi − yj)

2/2|xi − xj |3. The lateral potential
decreases in density to the edges quadratically. When this part of the potential becomes greater
than the potential of the well, the central minimum of the electron energy turns into a maximum:
the equilibrium at the center becomes unstable.

For this reason, with a relatively small β, electrons in the line center lose their stability, and,
at the edges they retain their rest.

The structures of clusters of N electrons, depending on the asymmetry of the potential
well, are shown in the figures. When the crystal degenerates into one-dimensional, its density
decreases towards the edges due to a decrease in pressure. When decreasing to 18.7, the one-
dimensional crystal loses its stability, turning into a zigzag one, and then increases the number
of layers.

4. One-dimensional cluster. Analysis

Let us analyze the nature of the electron distribution within a one-dimensional cluster.
According to figure 2, the cluster has a finite size, and the electron density is higher in the
center of the cluster. The equilibrium position of electrons satisfies the system

∑
j �=i

sign(xi − xj)

(xi − xj)2
− kxi = 0. (1)

We consider the electron distribution in a continuous model with use of mean density c(x).
First, let the density be constant. In this case all electrons to the right from the given one will
press on it with the force

c2
∞∑
n=1

1

n2
=

π2

6
c2.
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If electrons are placed in the well with potential kx2/2, density c begins to depend on the
coordinate x. The force applied to an element of electron gas c(x)dx should be equated to the
force from the well kxc(x)dx. Hence, we have:

π2

6

dc2(x)

dx
= −c(x)kx, c(x) = c(0) − 3kx2

2π2
. (2)

The distribution boundaries ±L are determined by the condition c(L) = 0. The total number

of electrons in a cluster is N = 2π(2c(0)3 )3/2/
√
k. As a function of xi, density c(xi) = 1/(xi+1−xi)

from the computer calculation and the function c(x), in accordance with (2), are shown together
in figure 3. This shows their good agreement.

The large density in the central part of the elongated cluster converts it to a zigzag while the
edges stay intact.
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Figure 3. Electron density versus distance (dotted) for the 1D cluster in figure 2(a), in
comparison with the analytical result (line).

5. 2D cluster

When β = 1, the crystal occupies, on the average, a circular area. Inside the central part of
the circular region, electrons are located equidistantly, minimizing the mutual repulsion energy.
On a small scale, electrons form a triangular crystal lattice. Typically, each electron has a
hexagonal coordination. However, the inner part is periodic, but polycrystalline. The lattice
contains defects, such as crystalite boundaries and pentagonal-coordinated point defects.

The periodicity violation results from the competition of the isotropic surface pressure from
the well and the requirement for the minimum of the mutual electron-electron interaction energy
repulsion. The lattice periodicity requires the point symmetry group C6, and the surface energy
minimization requires the symmetry group O2, the competition between which is allowed by
breaking the crystal into blocks-crystallites. In other words, polycrystallinity is a result of the
minimization of the cluster surface energy and the spatial periodicity of the lattice.

In this case, the intercrystaline boundary length must be of the order of outer perimeter of
the cluster, so that the orders of the energies of the outer and intercrystaline boundaries could
coincide. Therefore, the number of clusters should be of the order of unity.

The same competition melts the outer cluster part. Approximately two edge layers near the
circle border have a highly damaged structure. This surface layer ”melting” is due to the need
to combine the minimum surface energy of the crystal and the spatial periodicity of the lattice.
The competition of these two factors leads to melting.



RYCPS-2021
Journal of Physics: Conference Series 2227 (2022) 012012

IOP Publishing
doi:10.1088/1742-6596/2227/1/012012

5

6. Wigner cluster on a spherical surface

This system has an advantage from the point of view of the transition to an infinite crystal, since
all points in it are initially equivalent and, therefore, there are no edge effects. The spherical
cluster resembles fullerenes. However, their ordering is different.

Figure 4 shows the result of the energy minimization of the energy of 60 Coulomb particles
in the assumption that the sphere itself does not affect the Coulomb interaction. The lattice
consists of hexagonal and pentagonal faces and corresponds to icosahedral symmetry, like the
C60 fullerene. However, not atoms but the most of internodes form the densest triangular lattice
in this cluster, unlike graphene (and most C60 cells). The reason for this difference originates
from the fact that carbon atoms attract each other, forming the densest packing on the sphere,
while electrons repeal each other, so, their internodes tend to attract each other.

If we consider the spherical Wigner cluster as a part of an infinite lattice, then attention is
drawn to the presence of local symmetry of the axes sixth (compatible with the translational
symmetry of the two-dimensional lattice) and fifth orders (incompatible with it). This structure
hints at the possibility of quasi-crystallinity in an infinite planar lattice.

A large spherical Wigner cluster can be considered as a part of an infinite lattice. However,
the spherical Wigner cluster has a local symmetry axes of the sixth order compatible with the
translational symmetry of the two-dimensional lattice) and fifth orders (incompatible with it).
This structure hints at the possibility of quasi-crystallinity in an infinite planar lattice.

Figure 4. Wigner cluster of 60 electrons on a sphere (left) in comparison with fullerene C60

(right).

7. Low temperature specific heat

To determine the specific heat of the Wigner cluster, a spectrum of its vibration frequencies is
required. Consider the system of classical Newton equations for crystal electrons

m
d2rn,i
dt2

=
d2U

drn,idrm,j
rm,j , (3)

where the indices m,n refer to the electron number, and i, j - to the coordinate. The squares of
the frequencies ωk are the eigenvalues of the force matrix

1

m

∂2U

∂rn,i∂rm,j
.

The specific heat at a constant number of electrons in a cluster is given by the formula

C =
∂E

∂T
=

∂

∂T

∑
k

ωkf

(
ωk

kBT

)
, (4)
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where kB is the Boltzmann constant, f(x) = 1/(ex − 1) is the Bose function. When the
temperature decreases, the leading contribution arises from the terms with minimum frequencies.
Note that, near the Wigner cluster stability threshold, one or a group of frequencies vanish. In
this case, these terms become the main ones, contributing to the specific heat. Exactly at the
threshold, C = kBν, where ν is the number of frequencies that simultaneously vanish.

The multiplicity of degeneracy ν is dictated by the symmetry of the problem. Let us introduce
the collective coordinate of the electrons across the u line. The initial symmetry of the system
dictates the parity of the energy expansion in u: E = au2 + bu4. The frequency vanishing at
some value of the parameters s = s0 gives a = α(s − s0). Then, the equilibrium value of u is
u0 = ±√

α(s − s0)/b. A valid solution exists for α(s − s0)/b > 0. In this case two equilibrium
states arise and ν = 2. Otherwise, the minimum is reached at u0 = 0 and there is only one
equilibrium state of the chain and ν = 1. The critical vibration frequency vanishes like

√|s− s0|.
Another degeneracy arises from the global system symmetry. In particular, if β = 1, the

system possesses the rotational O(2) symmetry. If b �= 1 the system has C2v group symmetry.
The zigzag system has a symmetry depending on the electron numbers. For example, the
clusters (b) and (c) in figure 2 have symmetry under reflection in the vertical axis. It should
be emphasized that our consideration neglects electron spins. This degeneracy reflects in the
low-temperature specific heat.

8. Conclusions

We have studied the 2D Wigner clusters confined in parabolic 2D wells. It was found that, under
a change of the well eccentricity from strong to small, these clusters are the reconstructions from
the 1D chain to a round cluster with a 2D polycrystal interior. Its exterior is melted down due
to the concurrence between the crystal ordering and the surface tension. The interelectron
valence angles demonstrate the narrow distribution around the value π/3 corresponding to the
coordinate number 6.

The ”string-zigzag” transition was also found. It was established that this transition first
touches the chain center, subsequently propagating to the edges when the eccentricity drops.
These findings are supported by the analytical estimations.
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