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Abstract. The paper considers the problem of determining properties of an underwater moving 
source by analyzing the perturbation that it creates in electromagnetic or hydrodynamic fields. 
The computer program has been developed to simulate the spatial propagation of gravitational 
waves from the mass source moving along an arbitrary trajectory in a stratified fluid. The 
calculation results are in good agreement with analytical results obtained in the far-field 
approximation and with the results of experiments on the flow around underwater obstacles, 
moreover, the proposed technique allows to simulate any arbitrary motion of the source. Two 
new approaches to solving the inverse problem of determining the characteristics of the source 
of disturbances are proposed. The first one is based on the analysis of the signal received by 
radio-sensors, that scan the surface of the ocean. The second one uses data obtained from sensors 
installed directly in the water column. 

1. Introduction 

An important element in solving the problem of ocean tomography [1–3] is the development and 
implementation of numerical methods for modeling the motion of an underwater object. Despite of the 
fact that the problem of the motion of a body in a stratified fluid was solved analytically with the use of 
asymptotic methods, when the body was modeled by point mass sources moving horizontally [4] or at 
an angle to the horizon [5,6], and numerically (see, e.g., [7]), modeling was limited to the case of motion 
in a fixed direction with a constant velocity. This paper presents the results of numerical simulation of 
the propagation of gravitational waves from a mass source that moves arbitrarily in a stratified fluid. 
Next, two approaches are proposed to solve the inverse problem of identifying the parameters of an 
underwater source. In the first approach, it is proposed to solve this problem using data obtained by 
means of active or passive ocean radiometry. In the second one, the velocity, direction of movement, 
and size of the source of disturbances are determined by analyzing the signals received by underwater 
sensors. 

2. Simulation of Internal Waves Propagation 

When bodies move in a stratified fluid, they generate gravitational internal waves. The body can be 
modeled by point mass sources. The current section describes a numerical solution to the direct problem 
of modeling the propagation of internal gravitational waves generated by an arbitrarily moving 
underwater source. 

2.1. Problem Statement 

Consider the spatial propagation of internal gravitational waves generated by a mass source moving in 
an exponentially stratified fluid (the buoyancy frequency 𝑁 is constant). The model of an ideal fluid is 
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used. Since the changes in the density of the fluid with respect to the base stratification are small, the 
equations of motion are written in the Boussinesq approximation [4,8]. The body that moves with 
constant velocity 𝐯𝟎 is modeled by a mass source 𝑚(𝐫, 𝑡) = 𝑚0𝛿(𝐫 − 𝐯𝟎𝑡). Dynamic pressure 𝑃(𝐫, 𝑡) 
and fluid velocity 𝐮 = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) can be written in terms of internal potential 𝜓(𝐫, 𝑡): 

 𝑃 = −𝜌0 (
𝜕2

𝜕𝑡2 + 𝑁2)
𝜕

𝜕𝑡
𝜓, (1) 

 𝐮 = (
𝜕2

𝜕𝑡2 𝛻 + 𝑁2𝛻h)
𝜕

𝜕𝑡
𝜓, (2) 

where 𝛻h = (𝜕𝑥 , 𝜕𝑦, 0), and the internal potential 𝜓(𝐫, 𝑡) satisfies the equation 

 (
𝜕2

𝜕𝑡2 𝛻2 + 𝑁2𝛻h
2) 𝜓 = 𝑚. (3) 

To simulate the motion of the underwater source, it is required to calculate how the pressure, vertical 
displacement fields, and the shape of the free surface change over time. In the calculations, the point 
mass source 𝑚(𝐫, 𝑡) is modelled by the function 

 𝑓(𝑥, 𝑦, 𝑧) =
𝐵𝐴3

√𝜋3
e −𝐴2(𝑥2+𝑦2+𝑧2)

. 
Thus, in the case of rectilinear motion of the source, the equation (3) takes the form  

 Δ
𝜕2𝜓

𝜕𝑡2 + 𝑁2Δ𝑥𝑦𝜓 = 𝑓(𝐫 − 𝐫𝟎 − 𝐯𝟎𝑡),    𝐫 ∈ Ω. (4) 

It is assumed that the internal potential at the boundary of the computational domain is zero, 

 𝜓 = 0,    𝐫 ∈ 𝜕Ω. (5) 

This assumption simplifies the calculation scheme but leads to the fact that the results of the calculation 
are reliable only in some area that moves along with the source. At the initial moment of time  

 𝜓|𝑡=0 = 0.  (6) 

The problem (4)–(6) is numerically solved in the rectangular cuboid domain Ω. After calculating 𝜓, 
the formulas (1) and (2) are used to find the fluid velocity u and the pressure 𝑃. The vertical displacement 
of the fluid 휁(𝐫, 𝑡) is related to the velocity as 𝜕𝜁

𝜕𝑡
= 𝑣𝑧. Hence, considering the equation (2), we have 

 휁 =
𝜕

𝜕𝑡

𝜕

𝜕𝑧
𝜓.  

At the free surface of the fluid, we have 
 𝑃 − 휁𝜌0𝑔 = 𝑃0,  

where 𝜌0 is the density of the fluid, 𝑃0 is the atmospheric pressure, 𝑔 is the acceleration of gravity. One 
can calculate the shape of the free surface as follows. Let the function 휁𝑓.𝑠.(𝑥, 𝑦, 𝑡) define a surface near 
the plane 𝑧 = ℎ𝑓. For a free surface, the foolowing equality would be satisfied: 

 P(𝑥, 𝑦, ℎ𝑓 , 𝑡) − 휁f.s.(𝑥, 𝑦, 𝑡)𝜌0𝑔 = 𝑃0. (7) 
From the equations (1) and (7) we have 

 휁f.s.(𝑥, 𝑦, 𝑡) = −
1

𝑔
(

𝜕2

𝜕𝑡2 + 𝑁2)
𝜕

𝜕𝑡
𝜓(𝑥, 𝑦, ℎ𝑓 , 𝑡) −

𝑃0

𝑔𝜌0
.  

2.2. Description of the Computations 

The program is written in the C++ programming language that allows to solve the problem (4)–(6). The 
calculated internal potential ψ is then used to determine the pressure P, the vertical displacement of the 
fluid ζ, and the shape of the free surface ζf.s.. In the program, you can set an arbitrary law of motion of 



ISAIC-2021
Journal of Physics: Conference Series 2224 (2022) 012038

IOP Publishing
doi:10.1088/1742-6596/2224/1/012038

3

a mass source. An implicit finite-difference method is used to solve the problem (4)–(6). The domain Ω 
is divided into a grid that is uniform in spatial coordinates. At each time step, a system of linear algebraic 
equations (SLAE) is solved using the Generalized minimal residual method [9]. The GNU Scientific 
Library is used to perform elementary operations with sparse matrices and to solve SLAEs [10]. 

2.3. Example of Computation 

To illustrate the operation of the program and verify the calculation, the propagation of internal waves 
from a mass source moving horizontally at a constant velocity is simulated. Figure 1 shows the function 
of the normalized vertical displacement of the fluid in the vertical section y = 0. Figure 2 shows the 
shape of the free surface at time 𝑡 = 18s. The results of calculation of the vertical displacement of the 
fluid 휁 agree with the analytical results from [4], where an asymptotic solution of the problem (4) is 
constructed in the far-field approximation and show qualitative agreement with the results of 
experiments on the flow of a sphere moving uniformly and rectilinearly in a stratified fluid [11]. The 
results of calculations of the free surface 휁𝑓.𝑠. are qualitatively like the asymptotic results of solving 
similar problems, namely, the results from [12], where the free surface shape is perturbed by 
gravitational waves from a sphere moving under water, and the results of study of ship waves [13]. In 
contrast with [4,11–13], our approach allows to simulate motions along any arbitrary path with any 
given acceleration. 
 

     
Figure 2. Free surface shape, side view (left) and top view (right). 

3. Solving Inverse Problem 

Let us now consider the inverse problem of obtaining information about an underwater source from the 
disturbance it creates. One of the approaches to sea tomography is to reconstruct the properties of an 
underwater process using data received from an aerial- or space-based surface radiometer [1]. In such 
studies, the characteristics of an underwater source of disturbances can be found by analyzing the effect 
of the generated gravitational waves on the surface wind wave, the change of which, in turn, can be 

 

Figure 1. Vertical section of 휁(𝒓, 𝑡) at time instants t =  0s, 17.3s, 35s (from left to right). 
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registered by means of active or passive radio-sensing [2]. Another way to solve the inverse problem is 
to analyze information about hydrodynamic fields obtained from sensors installed directly in the ocean. 

 

 

 
Figure 3. An example of sea surface.   Figure 4. Simulation of active radiometry.  

3.1. Sea Surface Radiometry 

Sea surface radio-sensing can be active, when the sea surface is radiated by electromagnetic wave and 
a sensor receives a part of the scattered radiation, and passive, when a sensor receives self-radiation of 
the ocean [2]. We model the sea surface by a homogeneous layer of finite thickness bounded from above 
by the surface  

 𝑆1(𝑥) = 𝑆1
0(𝑥) + 𝜉2sin (

2𝜋

2Λ
𝑥) + 𝜉3sin (

2𝜋
1

2
Λ

𝑥),  

 𝑆1
0(𝑥) = 𝐴1sin (

2𝜋

Λ
𝑥). (8) 

This models the influence of long- and short-waves that have amplitudes determined by random 
variables 𝜉2, 𝜉3 on an undisturbed surface  𝑆1

0(𝑥). An example of such layer (the section of modulus of 
the dielectric permittivity, |휀(𝑥, 𝑦, 𝑧)|) is shown in figure 3. The blue domain shows sea water, while the 
light upper domain shows the air. 

In passive radiometry, the signal recieved by a sensor is the fraction of the sea's own radiation in the 
direction of the reception. According to the reciprocity principle, the intensity of medium’s own 
radiation in a given direction is proportional to the fraction of radiation absorbed by the medium when 
it is irradiated by a plane wave in the same direction — the energy defect [2]. According to the Etkin–
Kravtsov effect [14], the greatest sensitivity to the self-radiation of the sinusoidal surface (8) will be 
observed if the following relationship between the length of the electromagnetic wave 𝜆, the length of 
the sea wave Λ and the sensing angle 𝛼 takes place: 

 𝜆 = Λ(1 ± sin𝛼). 

In active radiometry, the surface under study is irradiated by an electromagnetic wave and the signal 
received by a sensor is the fraction of radiation reflected exactly in the opposite direction. According to 
the Bragg–Wolf resonance scattering effect [1,15], part of the energy is reflected exactly backwards 
when the following relation is fulfilled:  

 𝜆

Λ
= 2sin(𝛼). 

The results of numerous calculations on modeling the process of restoring the shape of the surface 
from the radiometry data have shown that the solution of this inverse problem is possible [3,16,17]. To 
simulate the propagation of electromagnetic radiation, approximate [18] or exact methods [19,20] can 
be used. The latter is an effective projection method that was used in high-resolution simulation in 



ISAIC-2021
Journal of Physics: Conference Series 2224 (2022) 012038

IOP Publishing
doi:10.1088/1742-6596/2224/1/012038

5

holography [21] and in the current research for modelling electromagnetic wave propagation both in 2d 
[16,17,21,22] and 3d [23] cases. Figure 4 shows an example of such calculations. Red curve shows the 
dependence of the level of the received signal 𝑅0(𝐴1) on the amplitude 𝐴1 of the sea surface wave. Gray 
curves show the signal from the surfaces disturbed by short or long waves. It is monotonous over the 
entire range of values 𝐴1 under consideration. Thus, in this interval it is possible to restore the shape of 
the surface (8) from the level of the received signal 𝑅0. 

3.2. Determination of the Source Position by The Field of Internal Waves Created by It 

While many papers have been devoted to the calculation of the field of attached internal waves, the 
inverse problem of determining the position of the source from a known wave field has not been posed. 
At the same time, methods of spatial signal processing are being widely developed in hydroacoustics 
with the subsequent solution of the problem of determining the position and parameters of the source. 
The construction of methods for locating the source by analyzing the field of internal waves will create 
additional opportunities in determining the source motion parameters, where hydroacoustic methods are 
ineffective. In the current section, it is proposed to solve the inverse problem of determining the 
properties of a source of disturbances moving in a fluid with the use of the analysis of the signal from 
sensors located directly in the ocean. When a body moves in a continuously stratified fluid with a 
constant velocity, the steady wave field moves along with the body and forms a field of so-called 
attached internal waves. In analytical studies, the flow impinging on the body is usually assumed to be 
constant. Non-stationary waves generated at the initial stage of movement are neglected. In this case, 
the body is modeled by point mass sources, and the wave field is located using the Green's function 
method, followed by using asymptotic expansions based on the stationary phase method [4]. 

 

 

Figure 5. Geometry of the motion.  

Consider the most typical horizontal movement of a body with a constant velocity. The diagram of 
the motion of the source of the attached internal waves is shown in figure 5. The coordinate systems 
(𝑥, 𝑦, 𝑧) and (𝑋, 𝑌, 𝑍) move together with the source, their axes are parallel in pairs. 𝑆 stands for source, 
(𝑋0, 𝑌0, 𝑍0) are coordinates of the source in the system (𝑋, 𝑌, 𝑍). For a source moving at a constant 
velocity, the flow field determined by the internal potential equation (3) turns out to be stationary in the 
coordinate system associated with the source. The asymptotic solution of the problem [4] at large 
distances from the source gives an expression for the vertical displacement of liquid particles in the 
coordinate system of the source 

 휁(𝒓, 𝑡)~𝐻(𝑥)
𝑁𝑚0

2𝜋𝑣0
2

𝑥𝑧

𝑟⊥
3𝑟2 √𝑥2𝑦2 + 𝑟⊥

4 𝑐𝑜𝑠 (
𝑁

𝑣0

𝑧

𝑟⊥
𝑟) ,  (9) 

where 𝑟⊥
2 = 𝑦2 + 𝑧2, 𝑟2 = 𝑥2 + 𝑟⊥

2, are the coordinates of the observation point in the reference frame 
(𝑥, 𝑦, 𝑧)  associated with the source, 𝐻(𝑥)  is the Heaviside function. The expression for vertical 
displacements 휁 of liquid particles (9) makes it possible to calculate horizontal displacement maps at 
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various vertical distances down from the moving source (see figure 6). These fields can be measured in 
the laboratory and in field experiments by traditional means of geophysical measurements. Thus, the 
problem of determining the position of the source by the field of vertical displacements is relevant. 

     

Figure 6. Horizontal maps of vertical displacements 휁 at a distance 𝑧 = −2, −3, −4. 

 

Figure 7. The scheme of measurements. 

Let it be possible to measure vertical displacements in the horizontal plane over which the source is 
moving. From the measurement data, it is required to determine the position of the source and its velocity. 
Let us place measuring devices in the form of horizontal concentric circles (see figure 7). Let the vertical 
displacement measurements be made in the center and along the concentric circles. By measuring the 
displacement in the center O (red dot 0 =  ) at the moment of time 1t , we find the positions of the 
points on the first from the center circle (distance from the center is 1l ), the displacements in which 
are equal to 0 . Then, by determining the time instant 2t at which these points converge at one point 

of the first circle, we determine the direction of movement of the source and its velocity, 𝑣0 =
𝛿𝑙1

𝑡2−𝑡1
. To 

determine the position of the source, we choose a frame of reference ( ), ,X Y Z moving with the source 

(see figure 5). In this case, the coordinates of the source and the observation point are ( )0 0 0, ,X Y Z  

and ( )0 0 0, ,+ + +x X y Y z Z . Paying attention that the zeros of the vertical displacement are 

determined by zeros of a cosine that is in the expression [4] for the first and second zeros, we get 𝑧1

𝑟⊥,1
𝑟1 =

𝑣0

𝑁

𝜋

2
 and 𝑧2

𝑟⊥,2
𝑟2 = 3

𝑣0

𝑁

𝜋

2
. That is, the points with coordinates (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2), in which 휁 

vanishes, satisfy these relations.  
Note that the relation / ⊥r r turns out to be invariant with respect to stretching transformations 

(𝑥, 𝑦, 𝑧) → 𝑝(𝑥, 𝑦, 𝑧). Then the coordinates of the first and second zeros are connected by the relations 
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𝑥2 = 3𝑥1, 𝑦2 = 3𝑦1, 𝑧2 = 3𝑧1, which makes it possible to determine the position of the source, when 
two measurement points are used:  

 𝑋0 =
1

2
(3𝑋1 − 𝑋2),    𝑌0 =

1

2
(3𝑌1 − 𝑌2),    𝑍0 =

1

2
(3𝑍1 − 𝑍2). (10) 

Thus, knowing the displacement field in a fixed reference frame (𝑋′, 𝑌′, 𝑍′), we should determine the 
positions of the zeros of  . Using the known velocity of the source, the coordinates of the zeros 
(𝑋𝑖

′ , 𝑌𝑖
′, 𝑍𝑖

′) are recalculated into the coordinates of the zeros in the moving reference frame (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖), 
from which, in turn, the position of the wave source can be determined using the relations (10). 

4. Conclusion 

The paper considers the problem of ocean tomography. The C++ program has been developed and 
verified, that simulates propagation of gravitational waves from a moving underwater mass source. Two 
approaches to solution of the inverse problem of determining the characteristics of the source are 
proposed. One is based on radiometry of the sea surface; in the other, a previously unconsidered problem 
of determining the position of the source and its velocity by the measurements of hydrophysical fields 
at a known buoyancy frequency of the medium is solved. Results of modelling the motion of the 
underwater source is in good agreement with both the analytical and experimental results from [4,12,13] 
and [11] respectively, while the developed method allows to simulate any arbitrary motion of the source 
in contrast to the uniform straight motions studied in the cited papers. Methodology of solving the 
inverse problem proposed in the current paper is new and was not previously considered. 

The computations are performed using both personal computers and supercomputer resources. 
Results shown in figure 5 are obtained in 50 min. on 10 nodes of MVS-100K cluster (20 processors, 80 
computing cores) installed at Joint Supercomputer Center of the Russian Academy of Sciences (JSCC 
RAS), Moscow, Russia. When using a computational grid of 300x300x300, the results shown in figures 
1 and 2 require 12 days of computation on one node of Govorun supercomputer installed at Information 
Technology Laboratory (LIT) of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. 
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