Brought to you by:
Paper The following article is Open access

Temperature-based Collision Detection in Extreme Low Light Condition with Bio-inspired LGMD Neural Network

, , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Yicheng Zhang et al 2022 J. Phys.: Conf. Ser. 2224 012004 DOI 10.1088/1742-6596/2224/1/012004

1742-6596/2224/1/012004

Abstract

It is an enormous challenge for intelligent vehicles to avoid collision accidents at night because of the extremely poor light conditions. Thermal cameras can capture temperature map at night, even with no light sources and are ideal for collision detection in darkness. However, how to extract collision cues efficiently and effectively from the captured temperature map with limited computing resources is still a key issue to be solved. Recently, a bio-inspired neural network LGMD has been proposed for collision detection successfully, but for daytime and visible light. Whether it can be used for temperature-based collision detection or not remains unknown. In this study, we proposed an improved LGMD-based visual neural network for temperature-based collision detection at extreme light conditions. We show in this study that the insect inspired visual neural network can pick up the expanding temperature differences of approaching objects as long as the temperature difference against its background can be captured by a thermal sensor. Our results demonstrated that the proposed LGMD neural network can detect collisions swiftly based on the thermal modality in darkness; therefore, it can be a critical collision detection algorithm for autonomous vehicles driving at night to avoid fatal collisions with humans, animals, or other vehicles.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2224/1/012004