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Abstract. Small integration timesteps for a small fraction of the particles become a bottleneck
for future galaxy simulations with a higher resolution, especially for massively parallel
computing. As we increase the resolution, we must resolve physics on a smaller timescale while
the total integration time is fixed as the universe age. The small timesteps for a small fraction
of the particles worsen the scalability. More specifically, the regions affected by supernovae
(SN) have the smallest timestep in the whole galaxy. Using a Hamiltonian splitting method, we
calculate the SN regions with small timesteps using a few thousand CPU cores but integrate
the entire galaxy using a shared timestep. For this approach, we need to pick up particles
in regions, which will be affected by SN (the target particles) by the next global step (the
integration timestep for the entire galaxy) in advance. In this work, we developed the deep
learning model to predict the region where the shell due to a supernova explosion expands
during one global step. In addition, we identify the target particles using image processing of
the density distribution predicted by our deep learning model. Our algorithm could identify the
target particles better than the method based on the analytical solution. This particle selection
method using deep learning and the Hamiltonian splitting method will improve the performance
of galaxy simulations with extremely high resolution.

1. Introduction
Since the timescale of the universe is much longer than that of human beings, numerical
simulations are one of the ways to understand the formation history of the universe. Galaxies
are a system consisting of billions of stars embedded in a dark matter halo, and the sun is a star
in the Milky-Way galaxy, which has been evolved for ∼ 10Gyr. To simulate galaxy formation,
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we need to treat multiple complex phenomena such as gravitational and hydrodynamic forces,
radiative cooling and heating, star formation, supernova explosions, and chemical evolution.

One commonly used method for the hydrodynamics of galaxy formation is smoothed particle
hydrodynamics (SPH) [1, 2], a particle-based method using gas particles smoothed with a kernel
size depending on the local density. Stars in galaxies are also modeled using particles (N -body
simulations).

The resolution of N -body/SPH simulations depends on the number of star and gas particles.
The number of stars in the Milky-Way galaxy exceeds 1010. We need more than 1010 particles
to simulate galaxies resolving individual stars (star-by-star simulation). In addition, we need
the mass resolution for gas particles similar to that of stars.

Thanks to the development of supercomputers, a higher mass resolution has been achieved.
IllustrisTNG [3, 4] is one of the simulations with the highest resolution. The mass resolution
is 8 × 104M⊙ (about 1010 particles), and the simulation was performed using 25,000 CPU
cores. However, the number of particles is three order-of-magnitude smaller than the number of
particles necessary to resolve individual stars, even for Milky-Way-sized galaxies.

The communication overhead is a crucial problem of galaxy simulations using massively
parallel computers. In parallel computing with more than thousands of CPU cores, the
communication takes longer than the calculations (see Figure 63. in [5]). As we increase the
resolution, we have to resolve physics on a smaller timescale, although the total integration time
(the universe’s age) does not change. The smaller timesteps for a small fraction of the particles
worsen the scalability. Thus, we cannot reach star-by-star galaxy simulations without solving
this problem.

The regions affected by supernovae (SN) have the smallest timestep in the whole galaxy.
Using a Hamiltonian splitting method (e.g., Fujii et al. [6] and Saitoh and Makino [7]), we
calculate the SN regions with small timesteps using a few thousand CPU cores but integrate the
entire galaxy using a shared timestep.

For this approach, we need to pick up particles in regions, which will be affected by the
subsequent global step (the integration timestep for the entire galaxy), in advance. We use a
deep learning method to predict the region in which the shell due to a supernova explosion
expands during one global step.

In this study, we propose a method of deep learning to identify the particles whose future
timesteps will be small by using the density distribution just before a supernova explosion as
the input data.

2. Methods
2.1. Extended Memory In Memory Network
We employ the Memory In Memory network (MIM) [8], which utilizes differential signals
effectively to learn the non-stationary spatiotemporal changes of the video. MIM is composed of
two main sequential sectors: the Convolutional Neural Network (CNN) and MIM block. CNNs
have been widely used to learn correlations in images [9]. The CNN sector extracts spatial
features of the image. MIM block is an extension of Recurrent Neural Network (RNN), in which
hidden states are propagated recurrently to lean changes in sequential data. The MIM block
makes use of a module that efficiently captures non-stationary changes as well as stationary
changes.

We make two improvements to the vanilla MIM to apply for our simulation data. First,
we expand the internal dimension of MIM by one dimension so that our model can deal
with the three-dimensional physical quantity distribution represented by voxel. We extend
the convolutional layer from two dimensions to three. Second, we improve the length of the
prediction sequence. While the original MIM [8] performs a many-to-many prediction, in
particular, the last ten frames from the initial ten frames, we build a one-to-many prediction
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model that is commonly used for, for example, the generation of music and video. Our model
predicts all the subsequent gas distribution only from the initial one. The schematic diagram of
our model is shown in Figure We call our model Extended-MIM.1.

3D-CNN
[Kernel: 5x5x5]

MIM
Blocks

Input x(t)
(3D Density Map)

Output x(t+1)
(3D Density Map)

[1x128]
Hidden State

h(t)
[32x32x32]

[32x32x32][32x32x32]

[32x32x32]
[32x32x32]

Memory Cells

Figure 1. The architecture of our deep learning
model.

Figure 2. Domain decomposition using
icosahedron. Red particle represents the
center of the explosion. Darkgreen particles
represent SPH particles.

2.2. Data Preparation
As training data, we employ the outputs of simulations of SN explosions in non-uniform gas
distributions. We set a density typical for the galactic disc, where the SN explosions occur.
Each supernova explosion is simulated using SPH code, ASURA-FDPS (Saitoh et al. in press).
By converting the particle data using the SPH kernel (like the Gaussian kernel), we obtain a
time series of voxel data composed of 32x32x32 grids. A single training data is composed of time
series of 3D density distribution. We generate 14,400 training data with 20 frames by taking 48
different viewing angles for 300 simulations.

2.3. Image Processing
We predict the area affected by a supernova explosion by processing the predicted future density
distribution. First, we compute the ratio of the predicted density of each voxel divided by the
initial density of the same voxel and collect voxels where the ratio exceeds a certain threshold.
Among the regions where four or more of those voxels are connected, we pick up the one whose
center of gravity is closest to the voxel where the SN explodes. We assigned a “1” to the voxels
in this blob and a “0” to the others.

Another three types of image processing are performed: “Dilate”, “Erode”, and “Gradient”.
Dilate assigns 1 to a pixel if at least one of its neighbors has a value of 1. Conversely, Erode
assigns 0 to the pixel if it is surrounded by at least one pixel with a value of 0. “Gradient”
compares the results of “Dilate” and “Erode” on an image and assigns 1 if the pixel has different
values.

2.4. Defining Particles with Domain Decomposition Using Icosahedron
To evaluate our new method to predict the regions affected by SN explosion, we also test a
method to determine the region using an analytic solution for the evolution of SN shells. The
expansion of the supernova shell is described as a self-similar solution. It approximates the SN
as a spherical point explosion in a uniform medium. Here, we derive the radius R of a SN’s
shell with the released energy E in the uniform density ρ at some time t. Introducing the
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Figure 3. This figure shows an example of predicted density distributions after a SN using our
deep learning model. One side of each panel corresponds to 60 pc. Color maps show the density
distribution. The color bar and scale are the same in all panels. Panel (a) shows the initial
condition just before the supernova explosion in the center. Panel (b) shows the result of the
SPH simulation up to a hundred thousand years after the supernova explosion. Panel (c) shows
the results predicted using our deep learning model until the same time as panel (b).

dimensionless similarity variable ξ into which the parameters of E and ρ, and the valuables of
R and t are combined, the radius R is written as the following;

R(t) = ξ

(
E

ρ

)4/5

t2/5. (1)

This is known as the Sedov-Taylor solution [10].
Since SN explosions rarely occur in situations under the assumption of uniform density and

isotropy, we considered the anisotropy of the density distribution by dividing the region using
an icosahedron. First, we align the center of the icosahedron with the center of the explosion.
Next, we calculate the average density of the 20 tetrahedral regions formed by connecting each
vertex of the icosahedron to the center and calculate the radius of the shell at a specific time
in each direction using the 20 average densities and Equation 1. The particle inside each shell
radius is identified as a particle with a small timestep in the future and is acquired.

3. Result
3.1. Predicting the shell of the Supernova Explosion
Figure 3 shows the density distributions of the input (panel (a)), simulated using the SPH code
until 0.1Myr (panel (b)), and the predicted using deep learning (panel (c)). We evaluate the
performance of the trained model using Mean Structural SIMilarity (MSSIM) [11] and Mean
Absolute Percentage Error (MAPE). MSSIM is the index for quality assessment based on the
degradation of structural information. MAPE is the index for forecasting accuracy in statistics.
When we increased training epochs, these indices converged on a good value. Our model can
predict the density distribution sufficiently well based on these indices.

3.2. Identification of Target Particles and Comparison with Analytic Method
We use image processing to determine the voxels in which we expect particles with small
timesteps to be included. The table 1 shows the list of parameters we used.

In Fig. 4, we present the relation between the identification rate and the ratio of the number
of ’target particles’ to the number of ’non-target particles’. The identification rate is defined as
detected particles divided by the particles with small timesteps, which is given from the results
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Table 1. The list of parameters used for image processing. After binarization, images are
processed using three types of morphological operators: “Dilate”, “Erode”, and “Gradient”.
Dilate assigns 1 to the pixel if it is surrounded by at least one pixel with a value of 1. Conversely,
Erode assigns 0 to the pixel if it is surrounded by at least one pixel with a value of 0. “Gradient”
compares the results of “Dilate” and “Erode” on an image, and assigns 1 if the pixel has different
values. In the column of iterations, Dx and E mean the number of iterations.

Morphological Operators kernel or threshold iterations
Dilate (3,3) 1
Gradient (3,3) -
Dilate (3,3) D3 (e.g. 1)
Dilate (5,5) D5 (e.g. 3)
Majority ≥ 2 -
Erode (3,3) E (e.g.1)
Dilate (3,3) E + 1 (e.g.2)
Majority ≥ 2 -
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Figure 4. Identification rate of target particles versus non-target-to-target particle rate in the
selected region. Circles and triangles indicate the methods using deep learning and analytical
solution, respectively. The colors indicate the individual simulation data. The vertical axis
shows the ratio of the number of non-target particles to the number of target particles in the
enclosed region. The horizontal axis shows the ratio of non-target particles to the target particles
in the enclosed region. Here, target particles have a smaller timestep than global timestep and
are hotter than 100 K.

of the SPH simulations. Hereafter, ‘target’ particles mean the particles that will have the small
timestep due to a SN by the subsequent global step, whereas ’non-target’ particles mean the
particles incorrectly identified as target particles. This figure shows that we detected 95% of the
target particles.

For comparison, we also show the results using the icosahedron method. If we set the non-
target-to-target similar to that of the deep learning method, the identification rate is a maximum
of 95%. In addition, the identification rate of the icosahedron method has a large scatter. The
identification rate distributes between 80% and 95%. This is probably because the analytic
solution fails when the gas density distribution is highly inhomogeneous. Thus, we conclude
that our deep learning method is better and more stable compared to an analytic solution.
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4. Conclusion
To improve the resolution of galaxy formation simulations using SPH code, we are developing
a Hamiltonian splitting scheme, in which only SN regions are integrated with timesteps smaller
than that for the entire region (global step). For this method, we developed a new algorithm
with a deep learning model to select particles that will have timesteps smaller than the global
timestep. Our new deep learning model successfully predicted the region which is affected by a
SN explosion in 0.1Myr. By performing image processing of the predicted density distributions,
our new algorithm can identify particles that will have small timesteps. We confirmed that
our method could select particles with small timesteps better than that based on a self-similar
analytic solution.

We in the future will include this method in our N -body/SPH code, ASURA-FDPS [12, 13],
and perform a star-by-star galaxy formation simulation using a massively parallel computer such
as Fugaku.
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