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Abstract. This work was trigerred by the earlier achivements of Yarman et al, aiming to bridge 
themordynamics and quantum mechanics, whence, Planck constant came to replace Boltzmann 
constant, and “average quantum level number” came to replace “temperature”. This evoked 
that the classical Maxwell energy probability distribution p(E) with respect to energy E of gas 
molecules might be taken care of, by the “energy probability distribution of the quantum 

levels” of a particle imprisoned in a given volume, assuming that in the case we have many 
particles, following Pauli exclusion principle, no pair of particles can sit at the same level. 
Thereby, the energy probability distribution of the quantum levels of a particle imprisoned in 
three dimensions, will be the subject of this essay. Such an outlook becomes interesting from 
several angles: i) It looks indeed very much like a classical Maxwellian distribution. ii) In the 
case we have as many free particles in the box as the number of levels depicted by the number 
of quantum levels in between the predetermined lower bound energy level and the upperbound 
energy level, all the while assuming that the Pauli principle holds, the distribution we disclose 
becomes the energy probability distribution of the ensemble of particles imprisoned in the 
given box. iii) It can even be guessed that, if elastic collisions between the free particles were 
allowed, and still assuming quantization and the Pauli principle, the outcome we disclose 
should be about the same as that of the energy probability distribution, molecules in a room 
would display in equilibrium. iv) The quantized energy being proportional to the sum of three 
squared integers associated with respectively, each of the spatial dimensions; the property we 
reveal certainly becomes remarkable from the point of view of mathematics of integer 
numbers.  All the more, we further disclose that, to the probability distribution outlook remains 
the same, be this qualitatively for higher dimensions than 3.  

 
1. Introduction  
This work is trigerred by the precedent work of Yarman et al, aiming to bridge thermodynamics and 
quantum mechanics [1-5].  
     This way, it is important to sketch the energy probability distribution of the quantum levels of a 
particle imprisoned, say, in a cube in the accustomed archetype of the Schrödinger equation, where the 
minimum energy Emin and the maximum energy Emax of the particle is fixed a priori. 
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2. Different quantum states, but bearing the same energy value  
The solution, i.e., the energy eigenvalue E of the Schrödinger equation written for a particle of mass m 
in a cubic box of size L, and situated at the energy level characterized by the quantum numbers 

zyx n,n,n , which are associated with, respectively, the three spatial dimensions of concern, is given via 

the familiar notation by [6]  
 

( )
2

222

8mL

nnnh
E

zyx

2 ++
= .       (1) 

 

A brief reflexion on this relationship shows that, there can be many equal values of E for different 

sets of [ zyx n,n,n ].  

Let us for the simplest case choose the quantum numbers 1 and 2, allowed in all theree directions. 
So we have 1 and 2 along each of x, y and z directions. Our setup of allowed quantized energy levels 
will thus point to N=23=8 different quantum locations, in the space represented by the coordinate 
system [Ox, Oy, Oz], bearing the quantum numbers 1 and 2 in the given directions.  

Let us write down all of them: (1,1,1), (1,1,2), (1,2,1), (2,1,1), (2,1,2), (2,2,1), (1,2,2), (2,2,2). 
Let us next, i) consider each set, ii) square all three coordinates and, iii) sum the three squared 

quantum numbers of concern to obtain: 
 
(1,1,1)   (12 + 12 + 12) = 3 

(1,1,2)   (12 + 12 + 22) = 6 

(1,2,1)  (12 + 22 + 12) = 6 

(2,1,1)   (22 + 22 + 12) = 6 

(2,1,2)  (22 + 12 + 22) = 9 

(2,2,1)   (22 + 22 + 12) = 9 

(1,2,2)   (12 + 22 + 22) = 9 

(2,2,2)  (22 + 22 + 22) = 12 

 
This mere exercise shows that, although we have different sets of three quanutm numbers, for all of 

our 8 quantum locations; we land at the same output as the sum of the squares of the given quantum 
numbers. 

Since energy E to be associated with the locations displayed above is proportional to the final 
output numbers, i.e. 3, 6, 9, and 12 (see equation (1)), we have out of 8 energy values, for 8 states,  

 
1 of them proportional to the number 3,  
1 of them proportional to the number 12,  
3 of them proportional to the number 6, and, 

3 of them proportional to the number 9, 
 

with the proportionality constant 28mLh2
/  according to Eq. (1). 

3. Energy probability distribution function  
We now define the energy probability distribution (or densıty)  function p(Ei) versus Ei, as  
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N

)f(E
)p(E i

i = ;      (2) 

 

f(Ei) is the frequency of occurrence of the energy value Ei out of N possible energy values. 

Note that, as mentioned, no any pair ][ zpypxp n,n,n and ][ zqyqxq n,n,n  associated with two different 

quantum locations p and q in the space [Ox, Oy, Oz] are, in the present approach, allowed to be 
identical. 

The outcome we frame herein, is interesting from many perspectives: 
  

i) The higher the number of states; the more the probability distribution function p(E) versus E looks 
very much like a Maxwellian distribution [7,8,9]. 

 
ii) Presuming we have as many free particles in the box as the number of energy levels depicted by the 

number of quantum levels in between the lowerbound and upperbound energies that one determines 
beforehand; all the while, supposing that the Pauli exclusion principle remains in force, insofar as 
assuring that “no pair of particles can occupy the same level represented by the corresponding set 

of quantum numbers”; the distribution we disclose becomes the energy probability distribution of 
the ensemble of particles imprisoned in the given box.  

 
iii) It can even be guessed that, if elastic collisions between the free particles were allowed, and still 

assuming quantization and relatedly the Pauli principle, the outcome we disclose should be about 
the same as that of the energy probability distribution, molecules in a room would display in 
equilibrium, i.e. Maxwellian distribution. 

 
iv) The energy of concern being proportional to the sum of three squared integers associated 

respectively with each of the three spatial dimensions, the property we reveal becomes 
exceptionally interesting from the viewpoint of mathematics of integer numbers; so much so that, 
one may further disclose that, the setup pertaining to the probability distribution output holds the 
same for higher dimensions than 3, i.e., the sum of, say, four squared integers yields qualitatively 
the same output for all intents and purposes.  

It is clear that equation (2) may lead to zero probability for energy numbers in between those 
proportional to the numbers output from the precedent exercise of summing the squares of quantum 
integers for each of the given quantum locations. Indeed, there we had the final integer numbers 3, 6, 
9, 12, and thusly no 2, 4, 5, 7, 8, 10 and 11.  While this characteristic becomes less important, in the 
case we pick very many integers along each direction, we can still improve the definition of the energy 

probability distribution function, and define p(E)dE, as the probability of finding a quantum energy 

level bearing the energy value E within the enegy interval dE, placed around E. Thereby p(E) becomes 
the probability of finding a quantum energy level bearing the energy value E, within the unit energy 
interval placed around E: 

 

 N

f(E)
p(E)= ,           (3) 

 

f(E), is then the frequency of occurrence of an energy falling within the unit interval of energy around  
E, the full energy range in question being, 

minmax
EE - . 

It is evident that we can further write the following relationships, out of Eqs. (2) and (3):  
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 .                (5) 

 

In any case, the energy probability distribution function p(E) with respect to energy E, comes out to 
look very similar to Maxwelian energy distribution. One thing is clear from our plots that we will 
present below; it is that the energy Epeak corresponding to the peak of p(E), lies at the left of the 

average energy E , i.e.  
 

dEp(E)EE
E

Eò=
max

min

 .         (6) 

4. Graphical representation of the energy probability density p(E) distribution  
We now plot p(E) with respect to E in accordance with the definition provided via equation (3), for the 
cases, where the same set of integers, were picked in all three dimensions: 100-200, 300-400, 900-
1000 (Figures 1, 2, 3 and 4, correspondingly). This means, we have already 100´100´100=106 
locations in our space of quantum numbers, defined by a set of 100 integers picked along each axis of 
our coordinate system. 
 
5. Higher and lower dimensions  

Further on, we can notice that, whereas quantum mechanically, the summation 
222

zyx nnn ++  is 

indeed special (see equation (1)); one can generalize it to the form,  
 

å
=

=++++=
I

i

m

i

m

I

m

3

m

2

m

1 nn...,nnnζ
1

,     (7) 

 

where the subscript “i”, points to the ith dimension, and the superscript “m” points to any exponent, be 
this equal to 2, greater than 2 or smaller than 2. We have done a few simulations, in 4 and 5D, along 
with an exponent m just above 2, and below 2, and, even for m=1/2, and so forth within similar ranges 
as those considered in Figures 1-4. The outputs interestingly enough turns out to be about same as 
those sketched in the mentioned Figures, though the problem remains to be thoroughly investigated. 
All the same, it falls outside of the scope of the present paper; the entire problem seeming to be rooted 
to the number theory, and in particular to Ramanujan’s work [10-15].   

The special case pops out immediately, where m = 0: 
 

In...,nnnζ
0

I

0

3

0

2

0

10I =++++= .    (8) 

 

Let us, as an example reconsider the 3D case: 
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31113 =++=0ζ .      (9) 

Then within any given range, made of N locations along each axis, pointing to a total of N3 
locations, in our quantum mechancial integers space of the coordinate system, we will just have the 
sum 3, and the probability distribution function will be same, and equal to unity, everywhere.    

6. Discussion  
First of all, we discuss the relationship between our results obtained in the basis of equation (1) and the 
framework of statistical quantum mechanics [16]. We remind that the latter theory, the momentum pn= 

nh/2L of the particle in a box of length L is also considered – where, in a stationary gas regime, it can 
be interpreted as the mean free path of molecules of the gas. At a large n, the common practice implies 

the limit òò =®S hLdpdn n
n

2 , and with L dx= ò , we have ò òò = hdxdpdn n2 .  

Furthemore, it is widely affrimed that Maxwell-Boltzmann distribution is compatible with quantum 
mechanics. But, why the energy (1) of the particle in a 3D box, more precisely, the sum of the squares 

of three integers, 2 2 2
x y zn n n+ + , in a domain of integers tending to infinity, must delienate a 

Maxwellian distribution, in conformity with Eqs. (3) and (5)? This is not trivial at all… 
This mathematical problem appears to no have been rigorously solved up to date.  
All the more, we remind that the Boltzmann transport equation in a stationary regime (where there 

is no leakage, no abosorption, and no source), leading to Maxwell distribution, i.e.  

( ) ( ) ( ) ( )
0

' ' 's sE E E E E dEf f
¥

S = S ®ò ,          (10) 

does not constitute an eigenvalue – eigenstate equation.  
Here, Σs(E) is the scattering macroscopic cross section of target entities, that scatter the striking 

objects of flux f(E), and bearing energies within a unit energy interval around the energy E, and Σs 

(E’→E) represents the scattering macroscopic cross section of target entities of energy E’, lying within 
the infinitely small energy interval dE around the energy E.  

The quantity on the lhs of equation (10) points to the number of scatterings taking place in a unit 
volume per second, for the energies of the colliding objects lying within a unit energy interval around 
the energy E.  

The rhs of the above equation, on the other hand, points to the number objects that bear originally 
all possible energies other than the energy E, and collides the targets, but come out of the collisions in 
consideration with an energy lying within the unit energy interval taking place around the energy E, 
within the same unit volume and per second. 

Thereby, in a stationary situation, within the given volume, we have at any time momen the same 
number of objects bearing  an energy within a unit energy interval around a given energy E. 

Therefore, the number of objects in the given volume within the energy interval dE depicted around 

E, which collide with the targets during a unit time interval and leaving this energy interval, is equal to 
the number of objects bearing energies comprised in any other interval dE’, around E’, which after 
collisions with the given targets present in the given volume per second, land at the energy interval dE 

of concern, depicted around E.  
Note that equation (10) has the general character, and describes, for example, neutrons’ energy 

distribution in a nuclear reactor, when we have no leakage, no absorption, no source [17]. 
Let us recall that the solution of equation (10) has the form of 

( ) ~ exp( / )E E E kTf - ;            (11) 

where k is Boltzmann Constant, and T is the average absolute temperature of the medium. We further 
recall that the flux ϕ(E) is defined as the integral of the directional flux ψ(E,Ω) over the solid angle dΩ, 
i.e.  
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( ) ( ),E E df y
W

= W Wò ,          (12) 

and the directional flux is expressed as 
 

ψ(E,Ω)=n(E,Ω)v(E),          (13) 

 

where n(E,Ω) is the number of objects per unit volume with energy lying in a unit energy interval 
around the energy E at any time t in a stationary regime, and moving in a direction comprised in a unit 
solid angle drawn around the direction represented by the unit vector Ω; v(E) stands for velocity 
directed within the direction Ω.   

Thence, in order to be able to affirm that quantum statistical mechanics will lead to a Maxwellian 
distribution of the sum of the squares of three integers  

222

zyx nnn ++  at nx, ny nz tending to infinity, one has to show based on equation (10), how this can 

be done, if not, directly based on the theory of integer numbers, which, in general, represents a non-
trivil mathematical problem.  

We would like to note that Yarman et al. have already shown that Boltzmann expression for 
entropy, written based on the binomial distribution, does not hold valid within the framework of 
quantum mechanics [5]. 

Thus, the approach undertaken in this work, does not appear to have any similarity with what is 
done within the framework of quantum statistical mechanics. It is not even sure, whether the value of 

the sum of the squares of three integers 
2 2 2

x y zn n n+ +  at nx, ny nz tending to infinity, will delineate a 

Maxwellian distribution. If so, this seems to promise to be a great challenge with respect to the 
properties of integer numbers, thus to be led to by quantum statistical mechanics. 

7. Conclusion 
This work is trigerred by the precedent work of Yarman et al, aiming to bridge thermodynamics and 
quantum mechanics [1-5], whence, Planck constant came to replace Boltzmann constant, and “average 
quantum level number” came to replace “temperature”.  
     This evoked that the classical Maxwell energy probability distribution p(E) with respect to energy 
E, of gas molecules, might be taken care of, by the “energy probability distribution of the quantum 

levels” of a particle imprisoned in a given volume, assuming that in the case no pair of particles can sit 
at the same level due to Pauli exclusion principle. 
     In the present paper, we considered energy probability distribution of the quantum levels of a 
particle imprisoned in three dimensions in the manner of Schrödinger’s common setup engenders, as 
contingent upon a fixed energy range. 
     The result we disclosed; if elastic collisions between the free particles in question, were allowed, 
just like is the case for molecules in the room, and still assuming quantization and the Pauli Principle; 
should be expected to be about the same as that of the energy probability distribution, molecules, in 
the room would display, in equilibrium.  
     All the same, it appeared mathematically appealing, to go beyond the three dimensions, we have 
adopted, thusly, along with the “sum of three squared integers”. It appeared furthermore appealing to 
play with the exponent 2, we applied to the integer numbers in consideration, as originally implied by 
quantum mechanics. 
     Thusly; we have done a few simulations, i) in 4 and 5D, as well, along with an exponent m picked 
to be 2, in the foregoing text, also ii) with an exponent m above 2, and below 2, and even iii) with an 
exponent m=1/2, and so forth, within similar ranges as those considered in Figures 1-4. The outputs, 
interestingly enough, turn out to be about nearly the same as those sketched in the mentioned Figures, 
though the problem remains to be thoroughly investigated.  
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The main reason for shape similarities we come across to, for different type of applications, we 
mentioned, is that the frequency of occurrence of a given value picked in our space of quntum numbers 

for a given combination, say in 3D, in the form of 
m

z

m

y

m

x nnn ++=z , remains the same, no matter 

what m is. Therefore, the same frequencies corresponds to lower energies, if m<2, and to higher 
energies if m < 2.   

All the same, the related quest falls totally outside of the scope of the present paper, seemingly 
being rooted to the number theory, and in particular to Ramanujan’s work [10-15]. 

 
1-100 

 

Figure 1. Energy probability distribution versus energy, where the same set of integers 1-
100, were picked in all three dimensions 
 

100-200 

 

Figure 2. Energy probability distribution versus energy, where the same set of integers 100-
200, were picked in all three dimensions 
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300-400 

 

Figure 3.  Energy probability distribution versus energy, where the same set of integers 300-
400, were picked in all three dimensions 

 

900-1000 

100000 200000 300000 400000 500000
Energy

1. 10 6

2. 10 6

3. 10 6

4. 10 6

Energy Probability Density

 

Figure 4. Energy probability distribution versus energy, where the same set of integers 900-
1000, were picked in all three dimensions 
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