
Journal of Physics: Conference
Series

OPEN ACCESS

Harnessing multicores: Strategies and
implementations in ATLAS
To cite this article: S Binet et al 2010 J. Phys.: Conf. Ser. 219 042002

View the article online for updates and enhancements.

You may also like
All Spectral Type LAMOST Spectra Library
(ATLAS)
Wei Ji, Chao Liu, Licai Deng et al.

-

Operation and performance of the ATLAS
semiconductor tracker
The ATLAS collaboration

-

Relative luminosity measurement with
Timepix3 in ATLAS
B. Bergmann, T. Billoud, P. Burian et al.

-

This content was downloaded from IP address 3.16.51.3 on 04/05/2024 at 08:32

https://doi.org/10.1088/1742-6596/219/4/042002
https://iopscience.iop.org/article/10.3847/1538-4365/acbf42
https://iopscience.iop.org/article/10.3847/1538-4365/acbf42
https://iopscience.iop.org/article/10.1088/1748-0221/9/08/P08009
https://iopscience.iop.org/article/10.1088/1748-0221/9/08/P08009
https://iopscience.iop.org/article/10.1088/1748-0221/15/01/C01039
https://iopscience.iop.org/article/10.1088/1748-0221/15/01/C01039
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstTigCbPJU6QRVsTQfuR6Ekpw5x1CxDNnvFDTcp9M8ucEkLZX2_yBuFXQn-xwl8tD3Ov-CqDWqVmJdw3Fg4oSCXtraU0kFZABFSmzQ4SUQ09bqmEcjxYXXw9hxITseOHZ_ZyI1eGP9hJMsJAuONEjoEsTLM4d0nEabMvtclqDO1Aig8OOOOcwLEqjSyNOF7IJyqjzCGwM82n_ZiXKtdKTr_OOowlY8gz9UMTUEwQ0CliAk8MPF59JVRiE2w9EkNcJR0ExBg84hwHnpnn9ypQgb8YkTpfp0psNtu_gfq_vUzfPtiDKOs4MTZdLvyVej2Xq8c98AS2FqKiMkBxka3-CM5M0hiKg&sig=Cg0ArKJSzBOdqfRRGVlB&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Harnessing multicores: strategies and implementations

in ATLAS

S Binet1, P Calafiura2, S Snyder3, W Wiedenmann4 and F Winklmeier5

1 LAL/IN2P3, France
2 LBNL, USA
3 BNL, USA
4 University of Wisconsin, USA
5 CERN, Switzerland

E-mail: binet@cern.ch

Abstract. Computers are no longer getting faster: instead, they are growing more and more
CPUs, each of which is no faster than the previous generation. This increase in the number of
cores evidently calls for more parallelism in HENPsoftware. If end-users’ stand-alone analysis
applications are relatively easy to modify, LHC experiments frameworks, being mostly written
with a single ’thread’ of execution in mind and consequent code bases, are on the other hand
more challenging to parallelize. Widespread and inconsiderate changes so close to data taking
are out of the equation: we need clear strategies and guidelines to reap the benefits out of the
multicore/manycore era while minimizing the code changes.

1. Introduction
The “Free Lunch” is over: Moore’s law [1] does not hold anymore, computer scientists and
software writers have now to be familiar with Amdahl’s law [2]. Indeed, computers are no
longer getting faster: instead, they are growing more and more CPUs, each of which is no faster
than the previous generation.

This increase in the number of cores evidently calls for more parallelism in HENPsoftware.
Fortunately, typical HENPapplications (event reconstruction, event selection,...) are usually
embarrassingly parallel, at least at the coarse-grained level: one “just” needs to parallelize the
event loop. However, if end-users’ stand-alone analysis applications are relatively easy to
modify, LHCexperiments frameworks, being consequent code bases and mostly written with
a single thread of execution in mind, are on the other hand more challenging to parallelize.
Widespread and inconsiderate changes so close to data taking are out of the equation: we need
clear strategies and guidelines to reap the benefits out of the multicore/manycore era while
minimizing the code changes.

Exploiting parallelism is traditionally achieved via a) multithreading or b) multiple
processes (or a combination of both) but each option has its own set of trade-offs in terms
of code changes (and code complication) and possible speed-ups.

This paper describes the different strategies the Offline and Online communities from
the ATLAS collaboration have investigated. These strategies have been implemented and
integrated into the Athena framework. A description of this integration and how well the

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

c© 2010 IOP Publishing Ltd 1

strategies perform in terms of speed-ups, memory usage, I /O and code development will be
discussed.

We first present the work integrated in AthenaMT to harness the High Level Trigger farms’
computing power via multithreading, the needed improvements and modifications applied to
Athena/Gaudi [3] in order to raise its thread awareness and the impact on common design
patterns to preserve thread safety across release cycles. Threads sharing the same address
space, AthenaMT is the most promising option in terms of speed-ups and memory usage
efficiency at the cost of an increased development load for the code writer needing to worry
about locks, data races and the like.

Section 2 then describes AthenaMP which leverages the fork() system call and the Copy On
Write (COW) mechanism through the multiprocessing python module [4], to free oneself
from the usual concurrency problems that stem from sharing state, while still retaining part
of the memory usage efficiency at the cost of a diminished flexibility (compared to threading.)
We’ll detail the AthenaMP implementation, highlighting the minimized code changes, how
they seamlessly blend into the Athena framework and their interplay with I/O and OS
resources.

2. Experience with multithreading: AthenaMT
Using threads is a well known technique to increase applications computing throughput. A
thread can be described as a set of independent instructions which can be run and scheduled
by the operating system. This independent flow of control is accomplished thanks to the ability
of threads to keep their own stack pointer, registers, signals and other specific data. threads
within a single executable share all these resources and are traditionally called lightweight
processes because of the small context switch time incurred to “jump” from one thread of
execution to the other. Sharing resources fits well efficiency but, being automatic, it introduces
subtle bugs when e.g. shared data is modified concurrently by multiple threads, leaving the
program in an inconsistent state. Thus, programmers have to explicitly identify and mark
specific portions of code as critical and carefully control their access via locks and mutexes.

In the following section we describe the modifications applied to the ATLAS software offline
framework to leverage the Trigger Data Acquisition (TDAQ) computing farms in the context
of the Trigger Level 2 Processing Unit (L2PU.)

2.1. Thread safety in Athena/Gaudi
Since the event selection software executes in multiple worker threads as shown in
Figure 1, the framework must provide a thread-safe environment. At the same time,
and in order to provide an easy-to-use framework for offline developers, the framework
must hide all technical details of thread handling and locks. Thread safety has
been implemented by using Gaudi’s name-based object and service bookkeeping system.
Copies of components that need to be thread-safe are created for each worker thread
with different labels. The labels incorporate the thread-id of the worker thread,
as obtained from the data flow software: TriggerSteering/TrigStr 0, of the form
<ComponentType>/<ComponentInstanceName> <ID>.

However, not all Athena components need to be thread-specific: entities like the
DetectorStore or the GeometrySvc serving read only data may safely be shared by all
threads. This is easily configurable via the usual Athena facilities during the job submission.
The number of threads created by the data flow software is transferred to the scheduler, which
transparently creates the number of required copies. In this scheme, the same configuration can
be used in the offline and in the L2PU environments. In single threaded environments, the
thread-id collapses to null as it is not needed.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

2

Figure 1. Basic state machine
of a L2 processing unit: the
workload is parallelized at the
event loop level after the start
step. Workers are joined at the
stop state.

0 2 4 6 8 10 12 14 16
number of processes

50

100

150

200

250

300

350

e
v
e
n
t

p
ro

ce
ss

in
g
 (

H
z)

Scaling of naive multiprocessing (on a 8-core node)

Figure 2. Computing throughput
of an unmodified Athena applica-
tion on an 8-core machine. Scaling
is quite good up to the point where
the number of spawned processes
matches the number of cores.

2.2. Deployment and performances
During the tests, it was observed that the event throughput in a L2PU didn’t scale in the
expected way with regard to the number of worker-threads. This was due to the use of
a common memory pool for container objects the default memory allocation scheme of the
Standard Template Library (STL) in production at the time (gcc-2.95.) The event processing
model of L2PU favors a scheme where every thread allocates its own memory pool. Such
an allocation scheme is available in the STL. After carefully optimizing the code with it, the
expected scaling behaviour was observed. Such an optimization poses limitations on the offline
components used and their external dependencies. For instance, external utility libraries may
not be available with this allocation scheme. To avoid frequent memory allocation during event
processing, all large containers that hold detector data were designed to allocate memory only
during initialization time and to reset their data for each new event.

The use of offline components in multiple worker threads and the requirement to avoid
Locks in the event selection code limits certain design implement choices, e.g. the use of
Singletons. These restrictions were communicated to the HLT developers at an early stage.

Nevertheless, preserving thread-safety and optimized code over release cycles and in a
large heterogeneous community are very time consuming tasks. Developers have to be familiar
with thread programming and debugging. This usually means some special and additional
training of them is required. Synchronization problems for multi-threaded code are notoriously
tedious to debug. Moreover, event selection code typically changes rapidly due to physics
needs and thus needs to be constantly re-optimized for a multi-threaded environment. To
ease the development burden, an emulator of the L2PU multi-threaded environment has been
provided for the offline software developers: AthenaMT.

3. Experience with multiprocessing: AthenaMP
3.1. Process-based parallelism
Parallelization using multiple processes is fairly easy to achieve. In its simplest and naive
incarnation, it is implemented by merely spawning n instances of the application at hand with

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

3

a priori no required code changes. We do observe a good scaling behaviour with respect to the
number of cores, as shown in Figure 2.

The obvious problem with this approach is the suboptimal usage of resources as nothing -
except for the dynamic shared objects (DSO) - is shared between all these multiple processes.
This leads to increased resource requirements, scaling with the number of concurrent process’
instances, which are bound to eventually hit hardware limits and severely hamper scaling.
Memory is a scarce resource in typical reconstruction jobs and is usually the first to be depleted
but other Operating System resources need to also be considered such as e.g. file descriptors and
network sockets whose maximal allowed number is hard-coded in the kernel.

3.2. fork and COW based multiprocessing
One way out of this memory and resources’ duplications problems is to use the fork(3)
system call to share as much memory as possible. Upon invocation, fork clones a process,
including its entire address space. This sounds as counter-productive for the problem at hand,
but modern operating systems (such as GNU/Linux) use the Copy On Write mechanism as an
efficient optimization. The memory of both the parent (which is calling fork) and the child
(which is being created) processes is actually shared up to the point of when one of these two
processes writes to it. At that point, the memory page will be copied and the affected changes
will become “unshared”. Memory-wise, the optimal strategy is of course to fork as late as
possible but before any output is written to not invalidate the file descriptors. The memory
which has been modified will become unshared but all the static configuration data will remain
shared between both processes. As processes have different address spaces, no user code needs
to be changed to serialize access to critical section of the code, only core framework code needs
to for e.g. manage the I/O related and event scheduling parts. Also, relying on fork will
ensure that as much memory as possible will be shared and automatically done so, by the
GNU/Linux kernel.

However, the main problem with this approach is that once a memory page has been
unshared, it can not be re-shared and may lead to a suboptimal memory footprint, as illustrated
in Figure 3 where 2 sub-processes may end-up with no memory for the conditions data being
shared even if they do use the same conditions data. This may not be a real issue in the context
of carefully planned reconstruction where events with alike conditions data will be scheduled
in bundles, but “chaotic analyses” mode will trigger such an inefficiency.

Figure 3. The re-sharing problem. Two sub-processes initially sharing memory for a set A of
conditions data may end-up sharing nothing as the initial set of conditions data is replaced
by a different set B. Even if the data is the same, the memory pages have been modified and
triggered the COW mechanism.

3.3. AthenaMP implementation
One of the constraints of parallelizing Athena is to avoid clients’ code changes: AthenaMP
fulfils this condition by hiding the multiprocess semantics inside the Athena/Gaudi

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

4

framework instead of publishing them as a layer atop. This has been achieved as only 3 core-
framework classes needed to be modified to perform additional operations, mainly related to
I/O subsystem (re-)initialization. The bulk of the other changes being limited to writing new
code to handle and manage the multiprocess aware event loop.

This has been implemented thanks to the python multiprocessing 1 module. This
package allows to fork sub-processes and greatly eases their management by abstracting the
fork and Inter-process communication (IPC) mechanisms away from its users. Besides the re-
sharing problem which is specific to our goal of minimizing the memory footprint of our
software (and its implementation via COW), the traditional biggest issue with multiprocess-
based parallelism is state sharing. As the different workers are located in different processes,
state is communicated between them via IPC: serializing and sending objects over the wire via
pipes or sockets. This does incur non negligible overhead.

Relying on the python multiprocessing module completely side-stepped the coding
burden of implementing the IPC layer and synchronization logic. This will probably ease the
implementation of more sophisticated event scheduling mechanisms (such as work-stealing
algorithms) in the future, even if a simple round-robin event scheduler is currently deployed.

Figure 4. Schematic view of the AthenaMP event scheduling. The main process follows the
usual Athena sequence up to the end of the initialize() stage and then forks off n sub-
processes whose results are then collected and merged together.

A new Athena event loop manager has been implemented in python, wrapping the original
one with “MP” semantics, as shown in Figure 5. The number of workers can either be
specified at the command line level or automatically inferred from the number of cores present
in the hardware. A pool of forked sub-processes is created up-front just before entering
the event loop. These sub-processes are given a bootstrap function to correctly handle I/O
reinitialization (e.g. reopen file descriptors) and finally asynchronously scheduled to process
all the input events in a round-robin fashion: they delegate the actual work of managing the
event loop to the usual manager, adequately configured for our needs.

Eventually, when no more events are to be processed and the finalize() stage is reached,
the control is given back to the main process which will take care of merging all the output
files (if any) created by the workers. This is the most problematic part of AthenaMP as POOL,
the persistency layer ATLAS is using, does not provide any API for automatically merging
files. Another issue stemming from technical details related to Athena’s persistency strategy 2

prevented us from using the hadd utility provided by ROOT[5]. The current implementation
is thus to have a complete Athena instance doing the merging by reading in all these files to
create a single one.

1 Athena is using python-2.5 so we had to back-port the module (available for 2.6) to our environment.
2 Athena makes the distinction between transient and persistent representations of objects, allowing for optimized
disk-size and I/O performances.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

5

class MpEventLoopMgr (PyAthena.Svc):
def executeRun (self, maxevt):

"""Process `maxevt` events as Run (beginRun->endRun)"""
if self ._ncpus <= 0:

return self ._evtloop_mgr.executeRun(maxevt)

import multiprocessing as mp
info ("nbr of workers: %i", self._ncpus)
info ("master workdir: %s", self._wkdir)
wrks = mp.Pool(processes=self ._ncpus,

initializer=self ._worker_bootstrap)
results = wrks.map_async(func=batch_run,

iterable=(maxevt,) * self._ncpus)

Figure 5. Excerpt of the python based multiprocessing event loop manager. The main
process first creates a pool of workers, passing them a bootstrap method to handle I/O
initialization, and then asynchronously waits for the result of the run over the events.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
nbr procs

0

50

100

150

200

250

ti
m

e
 (

s)

CPU time VS n-procs

usr
sys
real

Figure 6. Evolution of user, sys-
tem and real time for reconstruct-
ing a 50 tt̄ events file versus the
number of forked sub-processes.
The increase of user time with
the number of processes is due
to additional bootstrapping (load-
ing of I/O dictionaries) and post-
processing (file merging.)

0 1 2 3 4 5 6 7 8 9
event number

0

50

100

150

200

250

300

350

m
e
m

o
ry

 (
M

B
)

memory sharing evolution

shared
private

Figure 7. Evolution of the amount
of memory shared between sub-
processes against time, obtained
from pmap(1) for a ∼ 700 MB

VMemapplication.

3.4. Performances
Figure 6 shows the CPU timings for a reconstruction job over a 50 events file on an LXPLUS

node with 4 cores, in 5 configurations: the unmodified Athena (nprocs = 0) and AthenaMP
with 1, 2, 3 and 4 sub-processes.

While the additional work stemming from bootstrapping the sub-processes and merging
the output files into a single one is clearly shown by the increase of needed user time when the

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

6

number of sub-processes increase, real-time decreases as expected.
Figure 7 shows the evolution of the amount of memory shared between sub-processes

against time, before the event loop (event number 0) and after. The drop in memory being
shared and the increase of memory being private to each process at the first event is due to the
loading of conditions data callbacks as well as the loading of Reflex dictionaries needed to
read/write objects from/to files. Work is underway to move this late initialization out of the
main event loop.

4. Conclusions
Due to the large code basis written as single threaded applications and the data-taking phase
being so close, wide-spread and inconsiderate changes to Athena are not wise. From the
authors’ experience, it is probably best in the near future to exploit the multiprocess approach
for multi-core machines.

Indeed, even if multi-threading may offer bigger performance gains, it is more difficult
to correctly implement, especially on such a large code basis written over a long time. The
multiprocess approach, coupled with fork(3) and COW seems the less error-prone option -
thanks to separated address spaces preventing implicit sharing of data and enforcing explicit
sharing via IPC - while minimizing the impact on clients’ code. Moreover, error handling and
error recovery is easier as one failing worker process won’t tear all the others down or - worst
- silently corrupt the memory of the others.

Subtle issues such as random numbers and seeds’ reproducibility are still open and would
need a more detailed treatment. Another interesting problem to solve will be the efficient
submission of multiprocess jobs on the GRID whose current working model is to allocate one
job to one computing node. Indeed, chaotically harvesting the computing power of the GRID

nodes would result in counter-productive overbooking of resources. A possible solution would
be to leverage the already existing MPI [6] job submission infrastructure to prevent such a
catastrophic scenario. However, the first issue to be solved for multiprocess-based applications
to use the GRID, will be the GRID virtual memory monitoring tools which double-count the
memory shared by forked sub-processes.

In the course of implementing AthenaMT and AthenaMP, the authors have felt the need for
more general support libraries for typical recurring code in HENPapplications on multi-core
machines:

• accessing and managing “logical” file descriptors shared or split among different processes
and/or threads,

• high level “functions” to manage shared memory,

• support for parallel I/O.

Having such a toolkit ready for general usage will help to address the I/O bottleneck we are
bound to face with the current simple-minded strategy, in the upcoming many-core era.

References
[1] Moore E, ”Cramming more components onto integrated circuits”, Electronics Magazine, 1965
[2] Amdahl G, ”Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”,

AFIPS Conference Proceedings, (30), pp. 483-485, 1967
[3] Mato P 1998 Gaudi-architecture design document Tech. Rep. LHCb-98-064 Geneva
[4] The multiprocessing module, http://docs.python.org/library/multiprocessing.html
[5] The ROOTframework, http://root.cern.ch
[6] MPI: A Message Passing Interface Standard, http://www.mpi-forum.org

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042002 doi:10.1088/1742-6596/219/4/042002

7

