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Abstract. Nowadays, cryptosystems can be applied in several areas in life. One of
them is in transaction data. In transaction data, a very strong cryptosystem is needed
so that the transaction data is safe. Cryptosystems are better with a strong keystream.
In this case, we use rainbow antimagic as a cryptosystem key to improve the robustness
of the keystream by using affine cipher. The algorithm uses the edge weights of rainbow
antimagic vertex labeling of graphs as a key for encryption and decryption. In this
paper, we found the rainbow antimagic connection number of tadpole graphs and two
algorithms to straighten affine ciphers.

1. Introduction
Nowadays, cryptosystems can be applied in several areas in life. One of them is in
transaction data. In transaction data, a very strong cryptosystem is needed so that the
transaction data is safe. Cryptosystems are better with a strong keystream. In this
case, we use rainbow antimagic as a cryptosystem key to improve the robustness of the
keystream.

Cryptosystem consists of two processes, namely the encryption process and the
description process. Each process requires a key. The process is intended to make
it difficult for others to read the secret message. We can see some of the results of other
researchers’ research in [2, 5, 6]. There are several types of encryption and decryption
processes in cryptosystems, one of them is an affine cipher. Affine cipher is a technique
that uses modulo 26 processes in encryption and decryption processes based on the
number of letters in the letter [8].

A graph labeling is an assignment of integers to the vertices or edges, or both, subject
to certain conditions [4]. Based on [4], there are many kinds of labeling. In [3], they
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introduce rainbow antimagic coloring of graphs. The rainbow antimagic coloring of
graphs is one type of labeling in which assignment of integers to the vertices of graphs
to certain conditions for every edge weights becomes a rainbow coloring path.

First of all, we have to understand about labeling of graph which have bijective
function f from vertex set V (G) to the integers number 1 until the cardinality of vertex
set |V (G)|. We can call the bijective function f as rainbow antimagic vertex labeling if
for any two vertices have different edge weights as rainbow path at least one. It means
that for every k,m ∈ V (G) have rainbow path k −m for any edges as uv and u∗v∗ in
path k −m with edge weights w(uv) = f(u) + f(v) and w(u∗v∗) = f(u∗) + f(v∗) are
different w(uv) 6= w(u∗v∗) [3].

All Proposition, Lemma and Theorem that we used to prove the theorem in this
paper are as follows.

Proposition 1. [1] Let G be a nontrivial connected graph of size m. Then

(a) src(G) = 1 if and only if G is a complete graph,

(b) rc(G) = 2 if and only if src(G) = 2,

(c) rc(G) = m if and only if G is a tree.

Proposition 2. [1] For each integer n ≥ 4, rc(Cn) = src(Cn) = dn2 e.

Lemma 1. [7] Let G be any connected graph. Let rc(G) and ∆(G) be the rainbow
connection number of G and the maximum degree of G, respectively. Then, rac(G) ≥
max{rc(G),∆(G)}.

Theorem 1. [3] For ∀n ≥ 3 where n ∈ N , then

rac(Cn) =

{
3, if n = 4,

dn2 e, if n ≡ 1, 2 (mod 4),

and ⌈n
2

⌉
≤ rac(Cn) ≤

⌈n
2

⌉
+ 1, if n ≡ 0, 3 (mod 4), n 6= 4.

2. Results
Theorem 2. Let Tα,β for α ≥ 3 and β ≥ 1 where α, β is natural number,

rac(Tα,β) =

{
3 + β, if α = 4,

dα2 e+ β, if α ≡ 1, 2 (mod 4),

and
⌈
α
2

⌉
+ β ≤ rac(Tα,β) ≤

⌈
α
2

⌉
+ β + 1, if α ≡ 0, 3 mod 4, α 6= 4.

Proof. The graph Tα,β is a tadpole graph with vertices V (Tα,β) = x1, x2, . . . , xα, z1, z2, . . . , zβ
and edges E(Tα,β) = x1x2, x2x3, . . . , xα−1xα, xαx1, xαz1, z1z2, z2z3, . . . , zβ−1zβ. We
know that the tadpole graph contains Cα and Pβ. According to Proposition 1, Proposi-
tion 2 and Lemma 1, rac(Tα,β) ≥ dα2 e+ β.
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Figure 1. A tadpole graph.

To realize the equality, let us define a vertex labeling f : V (Tα,β)→ {1, 2, 3, . . . , α+β}
such that

f(xi) =



5+i
2 , if α = 4, for i is odd

6−i
2 , if α = 4, for i is even

2i, if α ≡ 1 (mod 4), for 1 ≤ i ≤ α−3
2 , i is odd or

if α ≡ 2 (mod 4), for 1 ≤ i ≤ α
2 , i is odd or

if α ≡ 3 (mod 4), for 1 ≤ i ≤ α−1
2 , i is odd or

if α ≡ 0 (mod 4), for 1 ≤ i ≤ α−2
2 , i is odd

2i− 1, if α ≡ 1 (mod 4), for 2 ≤ i ≤ α−1
2 , i is even or

if α ≡ 2 (mod 4), for 2 ≤ i ≤ α−2
2 , i is even or

if α ≡ 3 (mod 4), for 2 ≤ i ≤ α+1
2 , i is even or

if α ≡ 0 (mod 4), for 2 ≤ i ≤ α
2 , i is even

2i− α− 2, if α ≡ 1 (mod 4), for α+3
2 ≤ i ≤ α− 1, i is even or

if α ≡ 3 (mod 4), for α+3
2 ≤ i ≤ α, i is odd

2i− α− 1, if α ≡ 1 (mod 4), for α+5
2 ≤ i ≤ α, i is odd or

if α ≡ 2 (mod 4), for α+2
2 ≤ i ≤ α, i is even or

if α ≡ 3 (mod 4), for α+5
2 ≤ i ≤ α− 1, i is even or

if α ≡ 0 (mod 4), for α+2
2 ≤ i ≤ α− 1, i is odd

2i− α, if α ≡ 2 (mod 4), for α+4
2 ≤ i ≤ α− 1, i is odd

if α ≡ 0 (mod 4), for α+4
2 ≤ i ≤ α, i is even.

f(xα+1
2

) = α, if α ≡ 1 (mod 4) f(zk) = α+ k, for 1 ≤ k ≤ β.

Then, the labeling f provides the vertex weights as follows.
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wf (xixi+1) =



4i+ 1, if α ≡ 1 (mod 4), for 1 ≤ i ≤ α−3
2 , or

if α ≡ 0, 2 (mod 4), for 1 ≤ i ≤ α−2
2 , or

if α ≡ 3 (mod 4), for 1 ≤ i ≤ α−1
2 ,

α+ 1, if α = 1 (mod 4), for i = α+1
2 , or

if α = 2 (mod 4), for i = α
2 , or

4i− 2α− 1, if α ≡ 1 (mod 4), for α+3
2 ≤ i ≤ α− 1,

if α ≡ 3 (mod 4), for α+3
2 ≤ i ≤ α− 1,

4i− 2α+ 1, if α ≡ 2 (mod 4), for α+2
2 ≤ i ≤ α− 1,

if α ≡ 0 (mod 4), for α+2
2 ≤ i ≤ α− 1,

wf (xαx1) =


α+ 1, if α ≡ 1, 2 (mod 4),

α+ 2, if α ≡ 0 (mod 4),

α, if α ≡ 3 (mod 4).

wf (xα−1
2
xα+1

2
) = 2α− 2, if α ≡ 1 (mod 4),

wf (xα
2
xα+2

2
) = α, if α ≡ 0 (mod 4),

wf (xα+1
2
xα+3

2
) = α+ 1, if α ≡ 3 (mod 4),

wf (zkzk+1) = 2α+ 2k + 1, for 1 ≤ k ≤ β − 1.

Table 1. k −m rainbow path in tadpole graph Tα,β.

Case k m rainbow path condition
1 xi zk xi, xi−1, xi−2, . . . , x1, z1, z2, . . . , zk−1, zk i = 1, 2, . . . , dα2 e
2 xi zk xi, xi+1, xi+2, . . . , xα, z1, z2, . . . , zk−1, zk i = dα2 e+ 1, dα2 e+ 2, . . . , α
3 zk zl zk, zk+1, zk+2, . . . , zl−1, zl k < l,

k, l = 1, 2, . . . , β
4 xi xj xi, xi+1, xi+2, . . . , xj−1, xj i < j, j − i ≤ dα2 e

i, j = 1, 2, . . . , α
5 xi xj xj , xj+1, xj+2, . . . , xα, x1, x2, . . . , xi−1, xi i < j, j − i ≥ dα2 e

i, j = 1, 2, . . . , α

We evaluate the tadpole graph edge coloring is a rainbow antimagic connection with
shown in Table 1 that every k,m ∈ V (G) have rainbow path k−m for any edges as uv and
u∗v∗ in path k−m with edge weights w(uv) = f(u) + f(v) and w(u∗v∗) = f(u∗) + f(v∗)
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are different w(uv) 6= w(u∗v∗). Therefore, the dα2 e + β + 1-edge coloring of Tα,β is
a rainbow antimagic connection, so we get rac(Tα,β) ≤ dα2 e + β + 1. Based on the
description above, it is found that dα2 e+ β ≤ rac(Tα,β) ≤ dα2 e+ β + 1.

3. Inculcating a affine cipher
After getting rainbow antimagic coloring, we can use it to develop an affine cipher by
inculcating it. In the affine cipher, the entire method relies on working for mod m (the
length of the alphabet used in the Affine cipher). We define the steps of the affine cipher
cryptosystem as follows.

• The key system source is collected from edge weights of rainbow antimagic vertex
labeling of graphs

• The key length regards to edge element of graphs

3.1. Role of keystream
We use the rainbow antimagic coloring algorithm for the key To develop an affine cipher.
This algorithm uses the edge weights of rainbow antimagic vertex labeling of graphs. The
sequence is used as a key for encryption and decryption. By using 26 English language
alphabets, the following algorithm gives a procedure of the construction.

Algorithm 1. Role of Keystream

1. To use the graph elements, define f

2. If f is a bijection, do 3, and bring it back to 1 otherwise

3. To use the sequence for edge weight for every edge, define zj where j = the
number of edge and 1 ≤ j ≤ |E(G)|

4. Add zj and arrange the sequence according to the smaller vertex weights
5. Set k as element of the zj sequence

3.2. Encryption and Decryption Algorithm
The keystream generated by algorithm 1 is used to determine encryption and decryption
of Affine cipher. The method of encryption and decryption are performed by using the
following algorithm.

Algorithm 2. Affine Cipher

1. Given that the plaintext P = (pi), 1 ≤ i ≤ q
2. Compute the ciphertext using Equation 1 and compute the plaintext blocks using

Equation 2.

Cn = (Pn +K) mod 26 (1)

Pn = (Cn −K) mod 26 (2)

where Pn, K, and Cn are the n-th of plaintext, key sequence, and ciphertext,
respectively.

For an illustration of how the algorithms are working, we give the following examples.
Given that a plaintext P = UNIV ERSITASJEMBER, by means of the two
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Figure 2. A tadpole graph.

algorithms above we have a ciphertext C = ZSREPCFV KRMGDNEJY . The
cryptosystem process can be described in the following tables.

Table 2. Encryption process.

P U N I V E R S I T A S J E M B E R
Pi 20 13 8 21 4 17 18 8 19 0 18 9 4 12 1 4 17
Ki 5 5 9 9 11 11 13 13 17 17 20 23 25 27 29 31 33

Pi +Ki 25 18 17 30 15 28 31 21 36 17 38 32 29 39 30 35 50
Ci 25 18 17 4 15 2 5 21 10 17 12 6 3 13 4 9 24
C Z S R E P C F V K R M G D N E J Y

Table 3. Decryption process.

C Z S R E P C F V K R M G D N E J Y
Ci 25 18 17 4 15 2 5 21 10 17 12 6 3 13 4 9 24
Ki 5 5 9 9 11 11 13 13 17 17 20 23 25 27 29 31 33

Ci −Ki 20 13 8 -5 4 -9 -8 8 -7 0 -8 -17 -22 -14 -25 -22 -9
Pi 20 13 8 21 4 17 18 8 19 0 18 9 4 12 1 4 17
P U N I V E R S I T A S J E M B E R

4. Concluding remarks
In this paper, we have presented the result of the rainbow antimagic coloring of the
tadpole graph. In addition, by using Affine cipher and inculcating affine cipher, we can
develop the key efficiently. Since the decryption process will pass the keystream, i.e. by
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using the rainbow antimagic coloring, we ensure that the key will be obviously hard to
be revealed by any intruder. However, we need more work to make those algorithms
applicable in real life, especially for the use of IOT, thus we propose the following open
problems.

Open Problem 1. Obtain programming based on the two algorithms to create a GUI
program for the purpose of handling encryption and decryption process by means of
rainbow antimagic coloring.
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