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Abstract. Let G = (V,E) be a simple finite connected and undirected graph with n vertices
and m edges. The n vertices are assigned the colors through mapping c : V [G] −→ I+. An
r-dynamic coloring is a proper k-coloring of a graph G such that each vertex of G receive colors
in at least min{deg(v), r} different color classes. The minimum k such that the graph G has
r-dynamic k coloring is called the r-dynamic chromatic number of graph G denoted as χr(G).
Let G1 and G2 be a graphs with n1 and n2 vertices and m1 and m2 edges. The central vertex
join of G1 and G2 is the graph G1V̇ G2 is obtained from C(G1) and G2 joining each vertex of
G1 with every vertex of G2. The aim of this paper is to obtain the lower bound for r-dynamic
chromatic number of central vertex join of path with a graph G, central vertex join of cycle with
a graph G and r-dynamic chromatic number of PmV̇ Pn, PmV̇ Kn, PmV̇ Cn, CmV̇ Pn, CmV̇ Kn

and CmV̇ Cn respectively.

1. Introduction
In this research, we use simple, finite, connected, and undirected graphs. Let V (G) and E(G)
be the graph’s vertex and edge sets, respectively and the maximum and minimum degree of the
graph G is denoted as ∆(G) and δ(G) [6]. The neighborhood of a vertex in a graph G is denoted
as NG(v). An r-dynamic coloring of a graph is assigning colors to the vertex such that (i) The
coloring should be a proper coloring and (ii) for each vertex v , |c(NG(v))| ≥ min {r, deg(v)},
where NG(v) denotes the set of all vertices adjacent to v and deg(v) its degree and r is a positive
integer. The r-dynamic chromatic number [7] of a graph G is denoted by χr(G), is the minimum
k such that G admits proper k-coloring. The 1-dynamic chromatic number of a graph G is equal
to its chromatic number. The 2-dynamic chromatic number of a graph G is studied by the
name dynamic chromatic number in [1] - [5], [9]. Montgomery first demonstrated the r-dynamic
coloring in [10]. Taherkhani et al. in [12] obtained the upper bound of regular graph. In [8]
Jahfar T K et al introduced the new graph operation based on central graphs.
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2. Preliminaries
The central graph of a graph G is obtained by subdividing each edge of G exactly once and
joining all the non-adjacent vertices of G. The central graph of G is denoted by C(G) [11], [13].
Let G1 and G2 be a graphs with n1 and n2 vertices and m1 and m2 edges. The central vertex
join of G1 and G2 is the graph G1V̇ G2 is obtained from C(G1) and G2 joining each vertex of
G1 with every vertex of G2 . The central vertex join G1V̇ G2 has (m1 + n1 + n2) vertices and(
m1 +m2 + n1n2 +

n1(n1−1)
2

)
edges [8]. A path graph Pn is a sequence of vertices with the

property that each vertex in the sequence is adjacent to the vertex next to it.

3. Central Vertex Join of Path with some Graphs
In this section we obtain the lower bound for r-dynamic chromatic number of central vertex join
of path with a graph G, r-dynamic chromatic number of central vertex join of path with path
PmV̇ Pn, path with complete graph PmV̇ Kn and path with cycle graph PmV̇ Cn.

Lemma 1. [9] χr(G) ≥ min{r,∆(G)}+ 1.

Lemma 2. Let Pm be a path on m vertices where m ≥ 4 and G be a any finite, simple and
connected graph with at least n vertices where n ≥ 2 then the lower bound for the r-dynamic
chromatic number of central vertex join of path Pm with G is given by

χr

[
PmV̇ G

]
≥


⌊
m+7
2

⌋
− 1, r = 1

m+ 2, 2 ≤ r ≤ m
r + 2, m+ 1 ≤ r ≤ m+ n− 2
m+ n+ 2, r ≥ m+ n− 1

Proof. Let {v1, v2, · · · , vm} be the vertices of the path Pm and by the definition of central vertex
join we are subdividing each edge {e1, e2, · · · , em−1} to produce a new set of m − 1 vertices
{w1, w2, · · · , wm−1}. Also let {u1, u2, · · · , un} be the n vertices of the graph G. The degree of
each vertex vi of Pm in PmV̇ G is m+ n− 1 and degree of wi is 2.

Case: 1 When r = 1.
First color the vertices v1, v2, w1, w2 with the colors 1, 1, 2, 2 respectively. Now, the vertex
v3 cannot be colored with the colors 1 and 2 due to proper coloring criteria hence color it
with a new color 3. Now color w3, w4 with color 2 and v4 with color 3. Now v5 cannot be
provided with colors 1, 2 and 3 so we require a new color 4. Proceeding in a similar manner
we require

⌊
m+7
2

⌋
− 2 colors for coloring the vertices of Pm and subdivided vertices. Thus

the vertices of Pm are colored with sequence of colors 1, 1, 3, 3, 4, 4, · · · ,
⌊
m+7
2

⌋
−2,

⌊
m+7
2

⌋
−2

and w′
is with color 2. Now moving forward onto G which is a finite, simple and connected

graph there must be at least an edge between any two vertices u and v of G. Now color
u with 2 and by proper coloring criteria v has to be colored with a new color

⌊
m+7
2

⌋
− 1.

Hence we require a minimum of
⌊
m+7
2

⌋
− 1 colors i.e., χr

[
PmV̇ G

]
≥

⌊
m+7
2

⌋
− 1.

Case: 2 When 2 ≤ r ≤ m.
For r = 2, color the vertices v1, w1 with 1 and 2. Now, each wi has degree 2 hence for
satisfying the 2-adjacency of w1 we need to provide a new color 3 to the vertex v2. Now
provide the color 1 to w2 and to satisfy its 2-adjacency provide the color 2 to v3. Color w3

with 3 and it is evident that we require a new color 4 for the v4 for meeting its adjacency
criteria. Proceeding in a similar manner we can see evidently that we require m different
colors for this process. Now, none of the m colors can be provide to the vertices u, v of
graph G, since proper coloring criteria will be violated hence provide them with two new
colors m+1 and m+2 respectively. Now to put it into a simpler manner color vi with
i and assigning the colors m, 1, 2, · · · ,m − 2 to the vertices w1, w2, · · · , wm−1. By this
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coloring we can see the the r-adjacencies of vi from r = 2 till r = m will be fulfilled. Thus

χr

[
PmV̇ G

]
≥ m+ 2.

Case: 3 When m+ 1 ≤ r ≤ m+ n− 2.
Primarily provide the coloring mentioned in Case 2 to the vertices of Pm and subdivided
vertices. Now when r = m + 1 provide the colors m + 1,m + 2,m + 3 = r + 2 to any of
the 3 vertices of G (for this G should neccesarily have at least 3 vertices else r=m+1 will
be dealt in Case 4) for satisfying r = m+ 1-adjacency of v′is; when r = m+ 2 provide the
colors m + 1,m + 2,m + 3,m + 4 = r + 2 to any of the 4 vertices of G (for this G should
neccesarily have at least 4 vertices else r=m+2 will be dealt in Case 4) proceeding in the
same way when r = m+n−2 provide the colors m+1,m+2,m+3,m+n = r+2 to the n

vertices of G for satisfying the r = m+ n− 2-adjacency of v′is. Hence χr

[
PmV̇ G

]
≥ r+ 2.

Case: 4 When r ≥ m+ n− 1.
By Case 3 the vertices vi will have m + n − 2 differently colored neighbors. Now for
satisfying the r = m + n − 1-adjacency of v1 provide the new color m+n+1 to the vertex
w1 and r = m + n − 1-adjacency of v2 provide the new color m+n+2 to the vertex w2

as the color m+n+1 cannot be provided here. Now provide the colors m+n+1, m+n+2

alternatively to the remaining vertices w3, · · · , wm−1. Hence χr

[
PmV̇ G

]
≥ m+ n+ 2.

Theorem 3. Let m ≥ 4 ,n ≥ 3 the r-dynamic chromatic number of central vertex join of path
with path is

χr

[
PmV̇ Pn

]
=


⌊
m+7
2

⌋
− 1, r = 1

m+ 2, 2 ≤ r ≤ m
r + 2, m+ 1 ≤ r ≤ m+ n− 2
m+ n+ 2, r = ∆

Proof. The vertex set of central vertex join of path graph Pm with path graph

Pn is given by V
[
PmV̇ Pn

]
= {vi, 1 ≤ i ≤ m} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ m− 1}

and the edge set is E
[
PmV̇ Pn

]
= {viwi, 1 ≤ i ≤ m− 1} ∪ {wivi+1, 1 ≤ i ≤ m− 1} ∪

{vivj , 1 ≤ i ≤ m− 2, 1 + 2 ≤ j ≤ m} ∪ {viuj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}.The maximum and mini-

mum degrees of (PmV̇ Pn) are ∆
[
PmV̇ Pn

]
= m + n − 1 and δ

[
PmV̇ Pn

]
= 2. We prove the

theorem in the following cases.

Case: 1 When r = 1 the r-dynamic coloring are as follows,

consider the mapping c : V
[
(PmV̇ Pn)

]
→

{
1, 2, · · · ,

⌊
m+7
2

⌋
− 1

}
• c(vi) = {3, 3, 4, 4, · · · ,

⌊
m+7
2

⌋
− 1,

⌊
m+7
2

⌋
− 1} , 1 ≤ i ≤ m, when m is even

• c(vi) = {3, 3, 4, 4, · · · ,
⌊
m+7
2

⌋
− 1} , 1 ≤ i ≤ m, when m is odd

• c(ui) = {1, 2, 1, 2, · · · , 1, 2} , 1 ≤ i ≤ n
• c(wi) = 2 , 1 ≤ i ≤ m− 1

This coloring provides the upper bound χr

[
PmV̇ Pn

]
≤

⌊
m+7
2

⌋
− 1. By Lemma 3.2 we have

the lower bound as χr

[
PmV̇ Pn

]
≥

⌊
m+7
2

⌋
− 1. Hence the r- adjacency condition fulfilled

and therefore χr

[
PmV̇ Pn

]
=

⌊
m+7
2

⌋
− 1, when r = 1.

Case: 2 When 2 ≤ r ≤ m , define the mapping c : V
[
PmV̇ Pn

]
→ {1, 2, 3 · · · ,m+ 2}, the

following coloring gives the upper bound of PmV̇ Pn
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• c(vi) = i , 1 ≤ i ≤ m
• c(ui) = {m+ 1,m+ 2, · · · ,m+ 1,m+ 2} , 1 ≤ i ≤ n
• c(wi) = {m, 1, 2, · · ·m− 2} , 1 ≤ i ≤ m− 1

By Lemma 3.2 we have the lower bound χr

[
PmV̇ Pn

]
≥ m + 2. Hence we have

χr

[
PmV̇ Pn

]
= m+ 2, when 2 ≤ r ≤ m.

Case: 3 When m + 1 ≤ r ≤ m + n − 2. Consider the mapping c : V
[(

PmV̇ Pn

)]
→

{1, 2, · · · , r + 2}. The r-dynamic coloring are as follows,

• c(vi) = i , 1 ≤ i ≤ m
• c(ui) = {m+ 1, · · · , r + 2,m+ 1, · · · , r + 2, · · · } , 1 ≤ i ≤ n
• c(wi) = {m, 1, 2, · · ·m− 2} , 1 ≤ i ≤ m− 1

Hence the upper bound is χr

[
PmV̇ Pn

]
≤ r + 2 and Lemma 3.2 provides the lower bound

as χr

[
PmV̇ Pn

]
≥ r + 2. Therefore χr

[
PmV̇ Pn

]
= r + 2 when m+ 1 ≤ r ≤ m+ n− 2.

Case: 4 When r = ∆ define the mapping c : V
[
PmV̇ Pn

]
→ {1, 2, 3 · · · , n+m+ 2}, the

following coloring gives the upper bound of PmV̇ Pn

• c(ui) = i, 1 ≤ i ≤ n
• c(vi) = {n+ 1, n+ 2 · · · , n+m} , 1 ≤ i ≤ m
• c(wi) = {n + m + 1, n + m + 2, n + m + 1, n + m + 2, · · · , n + m + 1, n + m + 2},

1 ≤ i ≤ m− 1

Lemma 3.2 provides the lower bound as χr

[
PmV̇ Pn

]
≥ n+m+2. Hence the r- adjacency

condition fulfilled and therefore χr

[
PmV̇ Pn

]
= n+m+ 2, when r = ∆.

Theorem 4. Let m ≥ 3, n ≥ 2 the r-dynamic chromatic number of central vertex join of path
graph Pm with complete graph Kn is

χr[PmV̇ Kn] =


⌊
m+7
2

⌋
+ n− 3, r = 1

m+ n, 2 ≤ r ≤ ∆− 1
m+ n+ 2, r = ∆

Proof. The vertex set of central vertex join of path graph Pm with complete graph

Kn is given by V
[
PmV̇ Kn

]
= {vi, 1 ≤ i ≤ m} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ m− 1}

and the edge set is E
[
PmV̇ Kn

]
= {viwi, 1 ≤ i ≤ m− 1} ∪ {wivi+1, 1 ≤ i ≤ m− 1} ∪

{vivj , 1 ≤ i ≤ m− 2, 1 + 2 ≤ j ≤ m} ∪ {viuj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The maximum and

minimum degrees of (PmV̇ Kn) are ∆
[
PmV̇ Kn

]
= m + n − 1 and δ

[
PmV̇ Kn

]
= 2. We divide

the proof into three cases

Case: 1 When r = 1. By Lemma 3.2 we have the lower bound χr

[
PmV̇ Kn

]
≥

⌊
m+7
2

⌋
− 1 but

since we have complete graph in the place of G we require additional n − 2 colors hence

the lower bound transforms as χr

[
PmV̇ Kn

]
≥

⌊
m+7
2

⌋
+ n − 3. Now define the mapping

c : V
[
PmV̇ Kn

]
→

{
1, 2, 3, · · · ,

⌊
m+7
2

⌋
+ n− 3

}
.

We use the following colorings to show the upper bound,
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• c(ui) = i, 1 ≤ i ≤ n
• c(vi) =

{
n+ 1, n+ 1, n+ 2, n+ 2, · · · ,

⌊
m+7
2

⌋
+ n− 3

}
, 1 ≤ i ≤ m, when m is odd

• c(vi) =
{
n+ 1, n+ 1, n+ 2, n+ 2, · · · ,

⌊
m+7
2

⌋
+ n− 3,

⌊
m+7
2

⌋
+ n− 3

}
, 1 ≤ i ≤ m,

when m is even
• c(wi) = 1, 1 ≤ i ≤ m− 1

Hence the r- adjacency condition is fulfilled and therefore
χr[PmV̇ Kn] =

⌊
m+7
2

⌋
+ n− 3.

Case: 2 When 2 ≤ r ≤ ∆ − 1, define the mapping c : V
[
PmV̇ Kn

]
→ {1, 2, 3, · · ·m+ n} the

upper bound is given by the following colorings

• c(ui) = i, 1 ≤ i ≤ n
• c(vi) = n+ i, 1 ≤ i ≤ m
• c(wi) = i, 1 ≤ i ≤ m− 1

By the above coloring we have the upper bound as χr[PmV̇ Kn] ≤ m + n. Again since
we have Kn in the place of G by Lemma 3.2 doesn’t provide an efficient bound we are in
requirement of more colors than in any other graph. We can easily see that we require
at least m + n in this case. Thus we have χr[PmV̇ Kn] ≥ m + n. Hence the r- adjacency
condition is fulfilled and
χr[PmV̇ Kn] = m+ n, when 2 ≤ r ≤ ∆− 1.

Case :3 Proof same as Case 4 of Theorem 3.3.

Remark 5. Let m = 2, n ≥ 2 the r-dynamic chromatic number of central vertex join of path
graph Pm with complete graph Kn is

χr[P2V̇ Kn] =

 n+ 1, r = 1
n+ 2, 2 ≤ r ≤ ∆− 1
n+ 3, r = ∆

Proof. The vertex set of central vertex join of path graph P2 with complete graph Kn is given

by V
[
P2V̇ Kn

]
= {vi, 1 ≤ i ≤ 2} ∪ {ui, 1 ≤ i ≤ n} ∪ {w1} and the edge set is

E
[
P2V̇ Kn

]
= {v1w1, w1v2}∪{viuj , 1 ≤ i ≤ 2, 1 ≤ j ≤ n}. The maximum and minimun degrees

of
[
P2V̇ Kn

]
are ∆

[
P2V̇ Kn

]
= n+ 1 and δ

[
P2V̇ Kn

]
= 2. We divide the proof into three cases

Case: 1 When r = 1, define the mapping c : V
[
P2V̇ Kn

]
→ {1, 2, · · · , n+ 1}.

• c(ui) = i, 1 ≤ i ≤ n
• c(v1, v2) = {n+ 1, n+ 1}
• c(w1) = 1

Hence the r- adjacency condition is fulfilled and therefore χr[P2V̇ Kn] = n+1, when r = 1.

Case: 2 When 2 ≤ r ≤ ∆−1, define the mapping c : V
[(

P2V̇ Kn

)]
→ {1, 2, 3, · · · , n+ 2} and

we define the following colorings

• c(ui) = i, 1 ≤ i ≤ n
• c(v1, v2) = {n+ 1, n+ 2}
• c(w1) = 1



ICCGANT 2021
Journal of Physics: Conference Series 2157 (2022) 012007

IOP Publishing
doi:10.1088/1742-6596/2157/1/012007

6

Hence χr[PmV̇ Kn] = n+ 2, when 2 ≤ r ≤ ∆− 1.

Case: 3 When r = ∆, define the mapping c : V
[
P2V̇ Kn

]
→ {1, 2, · · · , n+ 3} and the following

colorings

• c(ui) = i, 1 ≤ i ≤ n
• c(vi) = {n+ 1, n+ 2}
• c(w1) = n+ 3

Hence χr

[
PmV̇ Kn

]
= n+ 3 , for r = ∆.

Theorem 6. Let m,n ≥ 3 the r-dynamic chromatic number of central vertex join of path graph
Pm with cycle graph Cn is

χr

[
PmV̇ Cn

]
=



⌊
m+7
2

⌋
− 1, r = 1 n is even⌊

m+7
2

⌋
, r = 1 n is odd

m+ 2, 2 ≤ r ≤ m, n is even
m+ 3, 2 ≤ r ≤ m+ 1, n is odd
r + 3, r = m+ 2, n = 5

r + 2,

 m+ 1 ≤ r ≤ ∆− 1, n is even
m+ 2 ≤ r ≤ ∆− 1, n is odd and n̸= 5
m+ 3 ≤ r ≤ ∆− 1, n = 5

m+ n+ 2, r = ∆

Proof. The vertex set of central vertex join of path graph Pm with cycle graph

Cn is given by V
[
PmV̇ Cn

]
= {vi, 1 ≤ i ≤ m} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ m− 1}

and the edge set is E
[
PmV̇ Cn

]
= {viwi, 1 ≤ i ≤ m− 1} ∪ {wivi+1, 1 ≤ i ≤ m− 1} ∪

{vivj , 1 ≤ i ≤ m− 2, 1 + 2 ≤ j ≤ m} ∪ {viuj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The maximum and min-

imun degrees of (PmV̇ Cn) are

∆
[
PmV̇ Cn

]
= m+ n− 1 and δ

[
PmV̇ Cn

]
= 2. We prove the theorem in the following cases.

Case: 1 Proof same as Case of Theorem 3.3.

Case: 2 When r = 1 and n is odd , define the mapping c : V
[
PmV̇ Cn

]
→

{
1, 2, 3 · · · ,

⌊
m+7
2

⌋}
,

the following coloring gives the upper bound of PmV̇ Cn

• c(ui) = {1, 2, 1, 2, · · · , 1, 2, 3} , 1 ≤ i ≤ n
• c(vi) = {4, 4, 5, 5, · · · ,

⌊
m+7
2

⌋
} , 1 ≤ i ≤ m

• c(wi) = 2 , 1 ≤ i ≤ m− 1

By Lemma 3.2 we have the lower bound χr

[
PmV̇ Cn

]
≥

⌊
m+7
2

⌋
−1 but since we have an odd

cycle in G we require an additional color as odd cycle always requires 3 colors for proper

coloring thus χr

[
PmV̇ Cn

]
≥

⌊
m+7
2

⌋
. Hence χr

[
PmV̇ Cn

]
=

⌊
m+7
2

⌋
, when n is odd.

Case: 3 Proof same as Case 2 of Theorem 3.3.

Case: 4 When 2 ≤ r ≤ m + 1 , n is odd , define the mapping c : V
[
PmV̇ Cn

]
→

{1, 2, 3 · · · ,m+ 3}, the following coloring gives the upper bound of PmV̇ Cn

• c(ui) = {1, 2, 1, 2, · · · , 1, 2, 3} , 1 ≤ i ≤ n
• c(vi) = {4, 5 · · · ,m+ 3} , 1 ≤ i ≤ m
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• c(wi) = {2, 3, 4, · · · ,m} , 1 ≤ i ≤ m− 1

Thus we have the upper bound χr

[
PmV̇ Cn

]
≤ m + 3 for 2 ≤ r ≤ m + 1. By Lemma

3.2 we have the lower bound χr

[
PmV̇ Cn

]
≥ m + 2 but since we have an odd cycle in

G we require an additional color as odd cycle always requires 3 colors for proper coloring

thus χr

[
PmV̇ Cn

]
≥ m + 3 for 2 ≤ r ≤ m and by the same Lemma for r = m + 1,

χr

[
PmV̇ Cn

]
≥ r + 2 = m + 3. Hence the r- adjacency condition fulfilled and therefore

χr

[
PmV̇ Cn

]
= m+ 3, when n is odd.

Case: 5 When r = m + 2 and n = 5, define the mapping c : V
[
PmV̇ Cn

]
→

{1, 2, 3 · · · , r + 3 = m+ 5}, the following coloring gives the upper bound of PmV̇ Cn

• c(ui) = i, 1 ≤ i ≤ 5
• c(vi) = {5 + 1, 5 + 2 · · · , 5 +m} , 1 ≤ i ≤ m
• c(wi) = i , 1 ≤ i ≤ m− 1

The Lemma provides the bound χr

[
PmV̇ Cn

]
≥ m+4 but since C5 require 5 different colors

we have χr

[
PmV̇ Cn

]
≥ m + 5. Hence the r- adjacency condition fulfilled and therefore

χr

[
PmV̇ Cn

]
= r + 3, when r = m+ 2 and n = 5 .

Case: 6 When m+ 1 ≤ r ≤ ∆− 1, n is even; m+ 2 ≤ r ≤ ∆− 1, n is odd and

m + 3 ≤ r ≤ ∆ − 1, n = 5, define the mapping c : V
[
PmV̇ Cn

]
→ {1, 2, 3 · · · r + 2}, the

following coloring gives the upper bound of PmV̇ Cn

Subcase: 1 When m+ 3 ≤ r ≤ ∆− 1, n = 5
Same as Case 5 of this theorem.

Subcase: 2 When m+ 2 ≤ r ≤ ∆− 1, n is odd and n ̸= 5

• c(vi) = i, 1 ≤ i ≤ m
• c(wi) = {m, 1, 2, 3, · · · ,m− 2} , 1 ≤ i ≤ m− 1
• For the vertices ui first provide the vertices with colors {m+ 1,m+ 2, · · · , r + 2}

in order and for the remaining vertices of ui provide them with colors from the set
{m+ 1,m+ 2, · · · , r + 2} so that it is proper coloring and has 2- adjacency condition
satisfied with ui’s.

Subcase: 3 when m+ 1 ≤ r ≤ ∆− 1, n is even

• c(vi) = i, 1 ≤ i ≤ m
• c(wi) = {m, 1, 2, 3, · · · ,m− 1} , 1 ≤ i ≤ m− 1
• c(ui) = {m+ 1,m+ 2, · · · , r + 2,m+ 1,m+ 2, · · · , r + 2}, 1 ≤ i ≤ n

By Lemma 3.2 we have the lower bound χr

[
PmV̇ Cn

]
≥ r + 2. Hence we conclude that

χr

[
PmV̇ Cn

]
= r + 2 for all the subcases in Case 6.

Case: 7 Proof same as Case 4 of Theorem 3.3.
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4. Central Vertex Join of Cycle with some Graphs
In this section we obtain the lower bound for r-dynamic chromatic number of central vertex
join of cycle graph with a graph G, r-dynamic chromatic number of central vertex join of cycle
graph with path graph CmV̇ Pn, cycle graph with complete graph CmV̇ Kn and cycle graph with
cycle graph CmV̇ Cn .

Lemma 7. Let Cm be a cycle on m vertices where m ≥ 4 and G be a any finite, simple and
connected graph with at least n vertices where n ≥ 2 then the lower bound for the r-dynamic
chromatic number of central vertex join of cycle Cm with G is given by

χr

[
CmV̇ G

]
≥



⌊
m+7
2

⌋
− 1, r = 1

m+ 2, 2 ≤ r ≤ m
r + 2, m+ 1 ≤ r ≤ m+ n− 2
m+ n+ 2, r ≥ m+ n− 1 and m is even
m+ n+ 3, r ≥ m+ n− 1 and m is odd

Proof. Let {v1, v2, · · · , vm} be the vertices of the cycle Cm and by the definition of central
vertex join we are subdividing each edge {e1, e2, · · · , em} to produce a new set of m vertices
{w1, w2, · · · , wm} where ei : 1 ≤ i ≤ m−1 is the edge between the vertices vi and vi+1 and em is
edge between em and e1. Also let {u1, u2, · · · , un} be the n vertices of the graph G. The degree
of each vertex vi of Cm in (CmV̇ G) is m+ n− 1 and degree of wi is 2.
The proofs of Case 1, Case 2, Case 3 and Case 4 are similar to the ones of Lemma in Section 3.
Case: 5 When r ≥ m+ n− 1 and m is odd .
As in Case 4 if we provide the pattern of assigning the colors m+n+1, m+n+2 alternatively to
the vertices wi it will end up with giving the color m+n+1 to the vertex wm but by this the
r-adjacency of the vertex v1 will not be satisfied and the color m+n+2 cannot be assigned due to

similar reason hence we require a new color m+n+3 for coloring. Hence χr

[
CmV̇ G

]
≥ m+n+3.

Theorem 8. Let m ≥ 4 and n ≥ 2 the r - dynamic chromatic number of central vertex join of
cycle graph Cm with path graph Pn is

χr

[
CmV̇ Pn

]
=



⌊
m+7
2

⌋
− 1, r = 1,

m+ 2, 2 ≤ r ≤ m
r + 2, m+ 1 ≤ r ≤ ∆− 1
m+ n+ 2, r = ∆,m is even
m+ n+ 3, r = ∆,m is odd

Proof. The vertex set of central vertex join of cycle graph Cm with path graph Pn is given by

V
[
CmV̇ Pn

]
= {vi, 1 ≤ i ≤ m} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ m} and the edge set is

E
[
CmV̇ Pn

]
= {viwi, 1 ≤ i ≤ m} ∪ {wivi+1, 1 ≤ i ≤ m− 1} ∪ {wmv1} ∪

{vivj , 1 ≤ i ≤ m− 2, i+ 2 ≤ j ≤ m} ∪ {viuj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The maximum and

minimun degrees of (CmV̇ Pn) are ∆
[
CmV̇ Pn

]
= m+ n− 1 and δ

[
CmV̇ Pn

]
= 2. We prove the

theorem in the following cases.

Case: 1 When r = 1, the r- dynamic coloring are as follows, consider the mapping c :

V
[
CmV̇ Pn

]
→

{
1, 2, 3 · · · ,

⌊
m+7
2

⌋
− 1

}
, the following coloring gives the upper bound of

CmV̇ Pn

• c(ui) = {1, 2, 1, 2, · · · , 1, 2} , 1 ≤ i ≤ n
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• c(vi) = {3, 3, 4, 4, · · · ,
⌊
m+7
2

⌋
− 1} , 1 ≤ i ≤ m , when m is odd

• c(vi) = {3, 3, 4, 4, · · · ,
⌊
m+7
2

⌋
− 1,

⌊
m+7
2

⌋
− 1} , 1 ≤ i ≤ m , when m is even

• c(wi) = 2 , 1 ≤ i ≤ m

By Lemma 4.1 we have the lower bound χr

[
CmV̇ Pn

]
≥

⌊
m+7
2

⌋
− 1. Therefore

χr

[
CmV̇ Pn

]
=

⌊
m+7
2

⌋
− 1, when r = 1 .

Case: 2 When 2 ≤ r ≤ m , define the mapping c : V
[
CmV̇ Pn

]
→ {1, 2, 3 · · · ,m+ 2}, the

following coloring gives the upper bound of CmV̇ Pn

• c(vi) = i , 1 ≤ i ≤ m
• c(ui) = {m+ 1,m+ 2, · · · ,m+ 1,m+ 2} , 1 ≤ i ≤ n
• c(wi) = {m, 1, 2, · · ·m− 1} , 1 ≤ i ≤ m

The lower bound follows from Lemma 4.1. Hence the r- adjacency condition fulfilled and

therefore χr

[
CmV̇ Pn

]
= m+ 2, when 2 ≤ r ≤ m.

Case: 3 When m + 1 ≤ r ≤ ∆ − 1, define the mapping c : V
[
CmV̇ Pn

]
→ {1, 2, 3 · · · , r + 2},

the following coloring gives the upper bound of CmV̇ Pn

• c(vi) = i , 1 ≤ i ≤ m
• c(ui) = {m+ 1,m+ 2, · · · , r + 2,m+ 1,m+ 2, · · · , r + 2, · · · } , 1 ≤ i ≤ n
• c(wi) = {m, 1, 2, · · · ,m− 1} , 1 ≤ i ≤ m

From Lemma 4.1 we have the lower bound χr

[
CmV̇ Pn

]
≥ r + 2. Hence the r- adjacency

condition fulfilled and therefore χr

[
CmV̇ Pn

]
= r + 2, when m+ 1 ≤ r ≤ ∆− 1.

Case: 4 When r = ∆, m is even, define the mapping c : V
[
CmV̇ Pn

]
→ {1, 2, 3 · · · ,m+ n+ 2},

the following coloring gives the upper bound of CmV̇ Pn

• c(vi) = i, 1 ≤ i ≤ m
• c(ui) = m+ i , 1 ≤ i ≤ n
• c(wi) = {m+ n+ 1,m+ n+ 2, · · · ,m+ n+ 1,m+ n+ 2} , 1 ≤ i ≤ m

By Lemma 4.1 we have the lower bound χr

[
CmV̇ Pn

]
≥ m+n+2. Hence the r- adjacency

condition fulfilled and therefore χr

[
CmV̇ Pn

]
= m+ n+ 2, when r = ∆, m is even .

Case: 5 When r = ∆, m is odd, define the mapping c : V
[
CmV̇ Pn

]
→ {1, 2, 3 · · · ,m+ n+ 3},

the following coloring gives the upper bound of CmV̇ Pn

• c(vi) = i, 1 ≤ i ≤ m
• c(ui) = m+ i , 1 ≤ i ≤ n
• c(wi) = {m+ n+ 1,m+ n+ 2, · · · ,m+ n+ 1,m+ n+ 2,m+ n+ 3} , 1 ≤ i ≤ m

By Lemma 4.1 we have the lower bound χr

[
CmV̇ Pn

]
≥ m+n+3. Hence the r- adjacency

condition fulfilled and therefore χr

[
CmV̇ Pn

]
= m+ n+ 3, when r = ∆, m is odd.
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Remark 9. Let m = 3, n ≥ 2 the r-dynamic chromatic number of central vertex join of cycle
graph C3 with path graph Pn is

χr

[
C3V̇ Pn

]
=

 3, r = 1
5, 2 ≤ r ≤ 4
r + 1, 5 ≤ r ≤ ∆

Proof. The vertex set of central vertex join of cycle graph C3 with path graph Pn is given by

V
[
C3V̇ Pn

]
= {vi, 1 ≤ i ≤ 3}∪{ui, 1 ≤ i ≤ n}∪{wi, 1 ≤ i ≤ 3} and the edge set is E

[
C3V̇ Pn

]
=

{viwi, 1 ≤ i ≤ 3} ∪ {wivi+1, 1 ≤ i ≤ 2} ∪ {w3v1} ∪ {viuj , 1 ≤ i ≤ 3, 1 ≤ j ≤ n}. The maximum

and minimun degrees of (CmV̇ Pn) are ∆
[
CmV̇ Pn

]
= n+ 2 and δ

[
CmV̇ Pn

]
= 2. We prove the

theorem in the following cases.

Case: 1 When r = 1 , define the mapping c : V
[
C3V̇ Pn

]
→ {1, 2, 3}. The assignment of colors

are as follows

• c(vi) = 1 , i = 1, 2, 3
• c(wi) = 2 , i = 1, 2, 3

• c(ui) =

{
2, 3, 2, 3, · · · , 2, when n is even
2, 3, 2, 3, · · · , 2, 3 when n is odd

Thus we require 3 colors that is χr

[
C3V̇ Pn

]
= 3, when r = 1.

Case: 2 When 2 ≤ r ≤ 4, the r- dynamic coloring are as follows, consider the mapping

c : V
[
C3V̇ Pn

]
→ {1, 2, 3, 4, 5}. The assignment of colors are as follows

• c(vi) = i , i = 1, 2, 3
• c(wi) = {3, 1, 2} , i = 1, 2, 3

• c(ui) =

{
4.5.4.5, · · · , 4, when n is odd
4, 5, 4, 5, · · · , 4, 5, when n is even

Hence the r- adjacency condition fulfilled and therefore χr

[
C3V̇ Pn

]
= 5, when 2 ≤ r ≤ 4.

Case: 3 When 5 ≤ r ≤ ∆ , define the mapping c : V
[
C3V̇ Pn

]
→ {1, 2, 3 · · · , r + 1}. The

assignment of colors are as follows

• c(vi) = i , 1 ≤ i ≤ 3
• c(ui) = {m+ 1,m+ 2, · · · , r + 1,m+ 1,m+ 2, · · · , r + 1, · · · } , 1 ≤ i ≤ n
• c(wi) = {3, 1, 2} , 1 ≤ i ≤ 3

Hence the r- adjacency condition fulfilled and therefore χr

[
C3V̇ Pn

]
= r + 1, when

5 ≤ r ≤ ∆.

Theorem 10. Let m ≥ 4 ,n ≥ 2 the r-dynamic chromatic number of cenntral vertex join of
cycle graph Cm with complete graph Kn is

χr

[
CmV̇ Kn

]
=


⌊
m+7
2

⌋
+ n− 3, r = 1

m+ n, 2 ≤ r ≤ ∆− 1
m+ n+ 2, r = ∆, m is even
m+ n+ 3, r = ∆, m is odd
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Proof. The vertex set of central vertex join of cycle graph Cm with complete graph Kn is given

by V
[
CmV̇ Kn

]
= {vi, 1 ≤ i ≤ m} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ m} and the edge set is

E
[
CmV̇ Kn

]
= {viwi, 1 ≤ i ≤ m} ∪ {wivi+1, 1 ≤ i ≤ m− 1} ∪ {wmv1} ∪

{vivj , 1 ≤ i ≤ m− 2, i+ 2 ≤ j ≤ m} ∪ {viuj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The maximum and

minimun degrees of (CmV̇ Kn) are ∆
[
CmV̇ Kn

]
= m + n − 1 and δ

[
CmV̇ Kn

]
= 2. We divide

the proof in the following two cases.

Case: 1 When r = 1. By Lemma 4.1 we have the lower bound χr

[
CmV̇ Kn

]
≥

⌊
m+7
2

⌋
− 1 but

since we have complete graph in the place of G we require additional n − 2 colors hence

the lower bound transforms as χr

[
CmV̇ Kn

]
≥

⌊
m+7
2

⌋
+ n − 3. Now define the mapping

c : V
[
CmV̇ Kn

]
→

{
1, 2, 3, · · · ,

⌊
m+7
2

⌋
+ n− 3

}
.

We use the following colorings to show the upper bound,

• c(ui) = i, 1 ≤ i ≤ n
• c(vi) =

{
n+ 1, n+ 1, n+ 2, n+ 2, · · · ,

⌊
m+7
2

⌋
+ n− 3

}
, 1 ≤ i ≤ m , when m is odd

• c(vi) =
{
n+ 1, n+ 1, n+ 2, n+ 2, · · · ,

⌊
m+7
2

⌋
+ n− 3,

⌊
m+7
2

⌋
+ n− 3

}
, 1 ≤ i ≤ m,

when m is even
• c(wi) = 1, 1 ≤ i ≤ m

Hence the r-adjacency condition fulfilled, χr

[
CmV̇ Kn

]
=

⌊
m+7
2

⌋
+ n− 3, when r = 1.

Case: 2 When 2 ≤ r ≤ ∆− 1. Consider the mapping c : V
[
CmV̇ Kn

]
→ {1, 2, · · · ,m+ n} the

following coloring gives the upper bound of CmV̇ Kn

• c(vi) = i,1 ≤ i ≤ m
• c(wi) = {m, 1, 2, · · · ,m− 1}, 1 ≤ i ≤ m
• c(ui) = m+ i, 1 ≤ i ≤ n

By the above coloring we have the upper bound as χr[CmV̇ Kn] ≤ m + n. Again since
we have Kn in the place of G by Lemma 3.2 doesn’t provide an efficient bound we are in
requirement of more colors than in any other graph. We can easily see that we require at
least m + n in this case. Thus we have χr[CmV̇ Kn] ≥ m + n. Hence the r- adjacency
condition is fulfilled and
χr[CmV̇ Kn] = m+ n, when 2 ≤ r ≤ ∆− 1.

Case: 3 Proof same as Case 4 of Theorem 4.2.

Case: 4 Proof same as Case 5 of Theorem 4.2.

Remark 11. Let m = 3, n ≥ 2 the r-dynamic chromatic number of central vertex join of cycle
graph C3 with complete graph Kn is

χr[C3V̇ Kn] =

{
m+ n− 2, r = 1
m+ n, 2 ≤ r ≤ ∆

Proof. The vertex set of central vertex join of cycle graph C3 with complete graph Kn is given

by V
[
C3V̇ Kn

]
= {vi, 1 ≤ i ≤ 3} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ 3} and the edge set is

E
[
C3V̇ Kn

]
= {viwi, 1 ≤ i ≤ m} ∪ {wivi+1, 1 ≤ i ≤ 2} ∪ {w3v1} ∪ {viuj , 1 ≤ i ≤ 3, 1 ≤ j ≤ n}.

The maximum and minimun degrees of (C3V̇ Kn) are ∆
[
C3V̇ Kn

]
= m+n−1 and δ

[
C3V̇ Kn

]
=

2.We divide the proof in the following two cases.
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Case: 1 When r = 1. Define the mapping c : V
[
C3V̇ Kn

]
→ {1, 2, 3, · · · ,m+ n− 2}.

• c(vi) = 1 , 1 ≤ i ≤ 3
• c(wi) = 2, 1 ≤ i ≤ 3
• c(ui) = {2, 3, 4, · · · ,m+ n− 2},1 ≤ i ≤ n

Hence the r-adjacency condition fulfilled and χr

[
C3V̇ Kn

]
= n+m− 2, when r = 1.

Case: 2 When 2 ≤ r ≤ ∆. Consider the mapping c : V
[
C3V̇ Kn

]
→ {1, 2, · · · ,m+ n}as

follows

• c(vi) = i,1 ≤ i ≤ 3
• c(wi) = {3, 1, 2}, 1 ≤ i ≤ 3
• c(ui) = m+ i, 1 ≤ i ≤ n

Hence the r-adjacency condition fulfilled and χr

[
C3V̇ Kn

]
≤ m+ n, when 2 ≤ r ≤ ∆.

Theorem 12. Let m ≥ 5 , n ≥ 3 the r-dynamic chromatic number of cenntral vertex join of
cycle graph Cm with cycle graph Cn is

χr

[
CmV̇ Cn

]
=



⌊
m+7
2

⌋
− 1, r = 1, n is even⌊

m+7
2

⌋
, r = 1, n is odd

m+ 2, 2 ≤ r ≤ m,n is even
m+ 3, 2 ≤ r ≤ m+ 1, n is odd
r + 3, r = m+ 2, n is odd

r + 2,

{
m+ 1 ≤ r ≤ ∆− 1, n is even
m+ 3 ≤ r ≤ ∆− 1, n is odd

m+ n+ 2, r = ∆, m is even
m+ n+ 3, r = ∆, m is odd

Proof. The vertex set of central vertex join of cycle graph Cm with complete graph Cn is given

by V
[
CmV̇ Cn)

]
= {vi, 1 ≤ i ≤ 3} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ m} and the edge set is

E
[
CmV̇ Cn

]
= {viwi, 1 ≤ i ≤ m} ∪ {wivi+1, 1 ≤ i ≤ m− 1} ∪ {wmv1} ∪

{vivj , 1 ≤ i ≤ m− 2, i+ 2 ≤ j ≤ m} ∪ {viuj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
The maximum and minimun degrees of

(
CmV̇ Cn

)
are ∆

[
CmV̇ Cn

]
= m + n − 1 and

δ
[
CmV̇ Cn

]
= 2. We divide the proof in the following two cases.

Case: 1 Proof same as Case 1 of Theorem 4.2.

Case: 2 When r = 1 and n is odd , define the mapping c : V
[
CmV̇ Cn

]
→

{
1, 2, 3 · · · ,

⌊
m+7
2

⌋}
.

To show the upper bound we assign colors as follows.

• c(ui) = {1, 2, 1, 2, · · · , 1, 2, 3} , 1 ≤ i ≤ n
• c(vi) = {4, 4, 5, 5, · · · ,

⌊
m+7
2

⌋
} , 1 ≤ i ≤ m, when m is odd

• c(vi) = {4, 4, 5, 5, · · · ,
⌊
m+7
2

⌋
,
⌊
m+7
2

⌋
} , 1 ≤ i ≤ m, when m is even

• c(wi) = 2 , 1 ≤ i ≤ m− 1

By Lemma 4.1 we have the lower bound χr

[
CmV̇ Cn

]
≥

⌊
m+7
2

⌋
− 1 but since we have an

odd cycle in G we require an additional color as odd cycle always requires 3 colors for proper

coloring thus χr

[
CmV̇ Cn

]
≥

⌊
m+7
2

⌋
. Hence χr

[
CmV̇ Cn

]
=

⌊
m+7
2

⌋
, when n is odd.
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Case: 3 Proof same as Case 2 of Theorem 4.2.

Case: 4 When 2 ≤ r ≤ m + 1 and n is odd. Define the mapping c : V
[
CmV̇ Cn

]
→

{1, 2, 3, · · · ,m+ 3}. To show the upper bound we assign colors as follows.

• c(vi) = i , 1 ≤ i ≤ m
• c(wi) = {m, 1, 2, · · · ,m− 1}, 1 ≤ i ≤ m
• c(ui) = {m+ 1,m+ 2,m+ 1,m+ 2, · · · ,m+ 3}, 1 ≤ i ≤ n

Thus we have the upper bound χr

[
CmV̇ Cn

]
≤ m + 3 for 2 ≤ r ≤ m + 1. By Lemma

4.1 we have the lower bound χr

[
CmV̇ Cn

]
≥ m + 2 but since we have an odd cycle in

G we require an additional color as odd cycle always requires 3 colors for proper coloring

thus χr

[
CmV̇ Cn

]
≥ m + 3 for 2 ≤ r ≤ m and by the same Lemma for r = m + 1,

χr

[
CmV̇ Cn

]
≥ r + 2 = m + 3. Hence the r- adjacency condition fulfilled and therefore

χr

[
CmV̇ Cn

]
= m+ 3, when n is odd.

Case: 5 When r = m + 2 and n is odd. Define the mapping c : V
[
CmV̇ Cn

]
→

{1, 2, 3, · · · , r + 3}. To show the upper bound we assign colors as follows.

• c(vi) = i , 1 ≤ i ≤ m
• c(wi) = {m, 1, 2, · · · ,m− 1}, 1 ≤ i ≤ m
• For the vertices of ui first provide them with colors {m+ 1,m+ 2, · · · , r + 3} in order

and then for the remaining vertices in ui provide them with colors from the set
{m+ 1,m+ 2, · · · , r + 3} so that the coloring is proper and 2- adjacency condition
satisfied within ui’s.

By Lemma 4.1 for r = m + 2 we have the lower bound χr

[
CmV̇ Cn

]
≥ r + 2 but since n

is odd we are in requirement of an additional color thus χr

[
CmV̇ Cn

]
≥ r + 3. Hence the

r-adjacency condition fulfilled χr

[
CmV̇ Cn

]
= r + 3 ,when n is odd.

Case: 6 When m + 1 ≤ r ≤ ∆ − 1, n is even and m + 3 ≤ r ≤ ∆ − 1, n is odd. Define the

mapping c : V
[
CmV̇ Cn

]
→ {1, 2, 3, · · · , r + 2}. To show the upper bound we assign colors

as follows.

• c(vi) = i , 1 ≤ i ≤ m
• c(wi) = {m, 1, 2, · · · ,m− 1}, 1 ≤ i ≤ m
• For the vertices of ui first provide them with colors {m+ 1,m+ 2, · · · , r + 2} in order

and then for the remaining vertices in ui provide them with colors from the set
{m+ 1,m+ 2, · · · , r + 2} so that the coloring is proper and 2- adjacency condition
satisfied within ui’s.

The lower bound follows directly by Lemma 4.1 for the two subcases i.e., χr

[
CmV̇ Cn

]
≥

r + 2 when m + 1 ≤ r ≤ ∆ − 1, n is even and m + 3 ≤ r ≤ ∆ − 1, n is odd. Hence

χr

[
CmV̇ Cn

]
= r + 2 , m+ 1 ≤ r ≤ ∆− 1, n is even and m+ 3 ≤ r ≤ ∆− 1, n is odd.

Case: 7 Proof same as Case 4 of Theorem 4.2.

Case: 8 Proof same as Case 5 of Theorem 4.2.
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Remark 13. Let m = 4 ,n ≥ 3 the r-dynamic chromatic number of central vertex join of cycle
graph C4 with cycle graph Cn is

χr

[
C4V̇ Cn

]
=



5, r = 1, n is even
4, r = 1, n is odd
m+ 3, 2 ≤ r ≤ m+ 1, n is odd
m+ 2, 2 ≤ r ≤ m,n is even
r + 3, m+ 1 ≤ r ≤ ∆− 1, n is even
r + 2, m+ 2 ≤ r ≤ ∆− 1, n is odd
m+ n+ 2, r = ∆

Proof. The vertex set of central vertex join of cycle graph C4 with complete graph Cn is

given by V
[
C4V̇ Cn

]
= {vi, 1 ≤ i ≤ 4} ∪ {ui, 1 ≤ i ≤ n} ∪ {wi, 1 ≤ i ≤ 4} and the edge set is

E
[
C4V̇ Cn

]
= {viwi, 1 ≤ i ≤ 4} ∪ {wivi+1, 1 ≤ i ≤ 3} ∪ {w4v1} ∪ {v1v3} ∪ {v2v4}

∪ {viuj , 1 ≤ i ≤ 4, 1 ≤ j ≤ n}. The maximum and minimun degrees of (C4V̇ Cn) are

∆
[
C4V̇ Cn

]
= n+ 3 and δ

[
C4V̇ Cn

]
= 2.We prove the remark in the following cases.

Case: 1 When r = 1, n is even. Define the mapping c : V
[
C4V̇ Cn

]
→ {1, 2, 3, 4, 5} and the

following coloring

• c(v1, v2, v3, v4) = 1, 1, 2, 2
• c(wi) = 3, 1 ≤ i ≤ 4
• c(ui) = {3, 4, 3, 4, · · · }, 1 ≤ i ≤ n− 1
• c(un) = 5

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
= 5 ,when r = 1 and n is even.

Case: 2 When r = 1, n is odd. Define the mapping c : V
[
C4V̇ Cn

]
→ {1, 2, 3, 4} and the

coloring are as follows

• c(v1, v2, v3, v4) = 1, 1, 2, 2
• c(wi) = 3, 1 ≤ i ≤ m
• c(ui) = {3, 4, 3, 4, · · · }, 1 ≤ i ≤ n

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
= 4, when r = 1 and n is odd.

Case: 3 When m = 4, 2 ≤ r ≤ m + 1, n is odd. Define the mapping c : V
[
C4V̇ Cn

]
→

{1, 2, 3, · · · ,m+ 3} and the coloring are as follows

• c(vi) = i, 1 ≤ r ≤ m
• c(wi) = {m, 1, 2, 3, · · · ,m− 1}, 1 ≤ i ≤ m
• c(ui) = {m+ 1,m+ 2,m+ 3 · · ·m+ 1,m+ 2,m+ 3}, 1 ≤ i ≤ n

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
≤ m + 3, when 2 ≤ r ≤ m + 1,

n is odd.

Case: 4 When 2 ≤ r ≤ m , n is even. Define the mapping c : V
[
C4V̇ Cn

]
→

{1, 2, 3, · · · ,m+ 2} and the coloring are as follows

• c(vi) = i, 1 ≤ r ≤ m
• c(wi) = {m, 1, 2, 3, · · · ,m− 1}, 1 ≤ i ≤ m
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• c(ui) = {m+ 1,m+ 2, · · ·m+ 1,m+ 2}, 1 ≤ i ≤ n

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
= m+ 2 ,when 2 ≤ r ≤ m , n is

even.

Case: 5 When m + 1 ≤ r ≤ ∆ − 1, n is even. Define the mapping c : V
[
C4V̇ Cn

]
→

{1, 2, 3, · · · , r + 3} and the coloring are as follows

• c(vi) = i , 1 ≤ i ≤ m
• c(wi) = m+ i, 1 ≤ i ≤ m
• For the vertices of ui first provide them with colors {m+ 1,m+ 2, · · · , r + 3} in order

and then for the remaining vertices in ui provide them with colors from the set
{m+ 1,m+ 2, · · · , r + 3} so that the coloring is proper and 2- adjacency condition
satisfied within ui’s.

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
= r+3 ,when m+1 ≤ r ≤ ∆−1,

n is even.

Case: 6 When m + 2 ≤ r ≤ ∆ − 1, n is odd. Define the mapping c : V
[
C4V̇ Cn

]
→

{1, 2, 3, · · · , r + 2} and the coloring are as follows

• c(vi) = i , 1 ≤ i ≤ m
• c(wi) = m+ i, 1 ≤ i ≤ m
• For the vertices of uifirst provide them with colors {m+ 1,m+ 2, · · · , r + 2} in order
and then for the remaining vertices in ui provide them with colors from the set
{m+ 1,m+ 2, · · · , r + 2} so that the coloring is proper and 2- adjacency condition
satisfied within ui’s.

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
= r + 2 ,when n is odd.

Case: 7 When r = ∆. Define the mapping c : V
[
C4V̇ Cn

]
→ {1, 2, 3, · · · ,m+ n+ 2} and the

coloring are as follows

• c(vi) = i , 1 ≤ i ≤ m
• c(ui) = m+ i, 1 ≤ i ≤ n
• c(wi) = {m+ n+ 1,m+ n+ 2,m+ n+ 1,m+ n+ 2}, 1 ≤ i ≤ m

Hence the r-adjacency condition fulfilled and χr

[
C4V̇ Cn

]
= m+ n+ 2,When r = ∆.

5. Conclusion
In this paper we have attained the r- dynamic chromatic number of central vertex join of path
graph with path graph, complete graph and cycle graph. Also cycle graph with path graph,
complete graph and cycle graph. We can extend this work for central edge join for the same
graphs.
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