## **PAPER • OPEN ACCESS**

# On r-dynamic coloring of central vertex join of path, cycle with certain graphs

To cite this article: N Mohanapriya et al 2022 J. Phys.: Conf. Ser. 2157 012007

View the article online for updates and enhancements.

# You may also like

- On r-dynamic chromatic number of coronation of order two of any graphs with <u>path graph</u> B J Septory, Dafik, A I Kristiana et al.

- Corrigendum: Detection of nosemosis in European honeybees (Apis mellifera) on honeybees farm at Kanchanaburi, Thailand (2019 IOP Conf. Ser.: Mater Sci Eng. 639 012048) Samrit Maksong, Tanawat Yemor and Surasuk Yanmanee

Sigma chromatic number of graph coronas involving complete graphs A D Garciano, M C T Lagura and R M Marcelo





**DISCOVER** how sustainability intersects with electrochemistry & solid state science research



This content was downloaded from IP address 3.147.66.178 on 07/05/2024 at 15:25

# On *r*-dynamic coloring of central vertex join of path, cycle with certain graphs

N Mohanapriya<sup>1</sup>, K Kalaiselvi<sup>2</sup>, V Aparna<sup>1</sup>, Dafik<sup>3,4</sup> and I H Agustin<sup>3,5</sup>

2157 (2022) 012007

<sup>1</sup>PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641029

 $^2$  Department of Mathematics, Dr. Mahalingam College of Engineering and Technology Pollachi-642 003, Tamil Nadu, India

<sup>3</sup>CGANT-University of Jember, Indonesia

<sup>4</sup>Department of Mathematics Education, University of Jember, Jember, Indonesia

<sup>5</sup>Department of Mathematics, University of Jember, Jember, Indonesia

E-mail: kkalaiselvi@drmcet.ac.in

**Abstract.** Let G = (V, E) be a simple finite connected and undirected graph with n vertices and m edges. The n vertices are assigned the colors through mapping  $c: V[G] \longrightarrow I^+$ . An r-dynamic coloring is a proper k-coloring of a graph G such that each vertex of G receive colors in at least  $\min\{deg(v), r\}$  different color classes. The minimum k such that the graph G has r-dynamic k coloring is called the r-dynamic chromatic number of graph G denoted as  $\chi_r(G)$ . Let  $G_1$  and  $G_2$  be a graphs with  $n_1$  and  $n_2$  vertices and  $m_1$  and  $m_2$  edges. The central vertex join of  $G_1$  and  $G_2$  is the graph  $G_1 \dot{V} G_2$  is obtained from  $C(G_1)$  and  $G_2$  joining each vertex of  $G_1$  with every vertex of  $G_2$ . The aim of this paper is to obtain the lower bound for r-dynamic chromatic number of central vertex join of path with a graph G, central vertex join of cycle with a graph G and r-dynamic chromatic number of  $P_m \dot{V} P_n$ ,  $P_m \dot{V} K_n$ ,  $P_m \dot{V} C_n$ ,  $C_m \dot{V} P_n$ ,  $C_m \dot{V} K_n$ and  $C_m V C_n$  respectively.

#### 1. Introduction

In this research, we use simple, finite, connected, and undirected graphs. Let V(G) and E(G)be the graph's vertex and edge sets, respectively and the maximum and minimum degree of the graph G is denoted as  $\Delta(G)$  and  $\delta(G)$  [6]. The neighborhood of a vertex in a graph G is denoted as  $N_G(v)$ . An r-dynamic coloring of a graph is assigning colors to the vertex such that (i) The coloring should be a proper coloring and (ii) for each vertex v,  $|c(N_G(v))| \ge \min\{r, deg(v)\},\$ where  $N_G(v)$  denotes the set of all vertices adjacent to v and deg(v) its degree and r is a positive integer. The r-dynamic chromatic number [7] of a graph G is denoted by  $\chi_r(G)$ , is the minimum k such that G admits proper k-coloring. The 1-dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic chromatic number of a graph G is studied by the name dynamic chromatic number in [1] - [5], [9]. Montgomery first demonstrated the r-dynamic coloring in [10]. Taherkhani et al. in [12] obtained the upper bound of regular graph. In [8] Jahfar T K et al introduced the new graph operation based on central graphs.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

### 2. Preliminaries

The central graph of a graph G is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G. The central graph of G is denoted by C(G) [11], [13]. Let  $G_1$  and  $G_2$  be a graphs with  $n_1$  and  $n_2$  vertices and  $m_1$  and  $m_2$  edges. The central vertex join of  $G_1$  and  $G_2$  is the graph  $G_1\dot{V}G_2$  is obtained from  $C(G_1)$  and  $G_2$  joining each vertex of  $G_1$  with every vertex of  $G_2$ . The central vertex join  $G_1\dot{V}G_2$  has  $(m_1 + n_1 + n_2)$  vertices and  $(m_1 + m_2 + n_1n_2 + \frac{n_1(n_1-1)}{2})$  edges [8]. A path graph  $P_n$  is a sequence of vertices with the property that each vertex in the sequence is adjacent to the vertex next to it.

#### 3. Central Vertex Join of Path with some Graphs

In this section we obtain the lower bound for r-dynamic chromatic number of central vertex join of path with a graph G, r-dynamic chromatic number of central vertex join of path with path  $P_m \dot{V} P_n$ , path with complete graph  $P_m \dot{V} K_n$  and path with cycle graph  $P_m \dot{V} C_n$ .

**Lemma 1.** [9]  $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1.$ 

**Lemma 2.** Let  $P_m$  be a path on m vertices where  $m \ge 4$  and G be a any finite, simple and connected graph with at least n vertices where  $n \ge 2$  then the lower bound for the r-dynamic chromatic number of central vertex join of path  $P_m$  with G is given by

$$\chi_r \left[ P_m \dot{V}G \right] \ge \begin{cases} \left\lfloor \frac{m+7}{2} \right\rfloor - 1, & r = 1\\ m+2, & 2 \le r \le m\\ r+2, & m+1 \le r \le m+n-2\\ m+n+2, & r \ge m+n-1 \end{cases}$$

*Proof.* Let  $\{v_1, v_2, \dots, v_m\}$  be the vertices of the path  $P_m$  and by the definition of central vertex join we are subdividing each edge  $\{e_1, e_2, \dots, e_{m-1}\}$  to produce a new set of m-1 vertices  $\{w_1, w_2, \dots, w_{m-1}\}$ . Also let  $\{u_1, u_2, \dots, u_n\}$  be the *n* vertices of the graph *G*. The degree of each vertex  $v_i$  of  $P_m$  in  $P_m \dot{V}G$  is m+n-1 and degree of  $w_i$  is 2.

Case: 1 When r = 1.

First color the vertices  $v_1, v_2, w_1, w_2$  with the colors 1, 1, 2, 2 respectively. Now, the vertex  $v_3$  cannot be colored with the colors 1 and 2 due to proper coloring criteria hence color it with a new color 3. Now color  $w_3, w_4$  with color 2 and  $v_4$  with color 3. Now  $v_5$  cannot be provided with colors 1, 2 and 3 so we require a new color 4. Proceeding in a similar manner we require  $\lfloor \frac{m+7}{2} \rfloor - 2$  colors for coloring the vertices of  $P_m$  and subdivided vertices. Thus the vertices of  $P_m$  are colored with sequence of colors 1, 1, 3, 3, 4, 4,  $\cdots$ ,  $\lfloor \frac{m+7}{2} \rfloor - 2$ ,  $\lfloor \frac{m+7}{2} \rfloor - 2$  and  $w'_i s$  with color 2. Now moving forward onto G which is a finite, simple and connected graph there must be at least an edge between any two vertices u and v of G. Now color u with 2 and by proper coloring criteria v has to be colored with a new color  $\lfloor \frac{m+7}{2} \rfloor - 1$ .

Case: 2 When  $2 \le r \le m$ .

For r = 2, color the vertices  $v_1, w_1$  with 1 and 2. Now, each  $w_i$  has degree 2 hence for satisfying the 2-adjacency of  $w_1$  we need to provide a new color 3 to the vertex  $v_2$ . Now provide the color 1 to  $w_2$  and to satisfy its 2-adjacency provide the color 2 to  $v_3$ . Color  $w_3$ with 3 and it is evident that we require a new color 4 for the  $v_4$  for meeting its adjacency criteria. Proceeding in a similar manner we can see evidently that we require m different colors for this process. Now, none of the m colors can be provide to the vertices u, v of graph G, since proper coloring criteria will be violated hence provide them with two new colors m+1 and m+2 respectively. Now to put it into a simpler manner color  $v_i$  with i and assigning the colors  $m, 1, 2, \dots, m-2$  to the vertices  $w_1, w_2, \dots, w_{m-1}$ . By this

2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

coloring we can see the the r-adjacencies of  $v_i$  from r = 2 till r = m will be fulfilled. Thus  $\chi_r \left| P_m \dot{V} G \right| \ge m + 2.$ 

## **Case:** 3 When $m + 1 \le r \le m + n - 2$ .

Primarily provide the coloring mentioned in Case 2 to the vertices of  $P_m$  and subdivided vertices. Now when r = m + 1 provide the colors m + 1, m + 2, m + 3 = r + 2 to any of the 3 vertices of G (for this G should necessarily have at least 3 vertices else r=m+1 will be dealt in Case 4) for satisfying r = m + 1-adjacency of  $v'_i s$ ; when r = m + 2 provide the colors m + 1, m + 2, m + 3, m + 4 = r + 2 to any of the 4 vertices of G (for this G should neccesarily have at least 4 vertices else r=m+2 will be dealt in Case 4) proceeding in the same way when r = m + n - 2 provide the colors m + 1, m + 2, m + 3, m + n = r + 2 to the n vertices of G for satisfying the r = m + n - 2-adjacency of  $v'_i s$ . Hence  $\chi_r \left[ P_m \dot{V} G \right] \ge r + 2$ .

# Case: 4 When $r \ge m + n - 1$ .

By Case 3 the vertices  $v_i$  will have m + n - 2 differently colored neighbors. Now for satisfying the r = m + n - 1-adjacency of  $v_1$  provide the new color m+n+1 to the vertex  $w_1$  and r = m + n - 1-adjacency of  $v_2$  provide the new color m+n+2 to the vertex  $w_2$ as the color m+n+1 cannot be provided here. Now provide the colors m+n+1, m+n+2alternatively to the remaining vertices  $w_3, \dots, w_{m-1}$ . Hence  $\chi_r \left| P_m \dot{V} G \right| \ge m + n + 2$ .

**Theorem 3.** Let  $m \ge 4$ ,  $n \ge 3$  the r-dynamic chromatic number of central vertex join of path with path is

$$\chi_r \left[ P_m \dot{V} P_n \right] = \begin{cases} \left\lfloor \frac{m+i}{2} \right\rfloor - 1, & r = 1\\ m+2, & 2 \le r \le m\\ r+2, & m+1 \le r \le m+n-2\\ m+n+2, & r = \Delta \end{cases}$$

*Proof.* The vertex set of central vertex join of path graph  $P_m$  with path graph  $P_n$  is given by  $V\left[P_m\dot{V}P_n\right] = \{v_i, 1 \le i \le m\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le m-1\}$ and the edge set is  $E\left[P_{m}\dot{V}P_{n}\right] = \{v_{i}w_{i}, 1 \leq i \leq m-1\} \cup \{w_{i}v_{i+1}, 1 \leq i \leq m-1\} \cup \{v_{i}v_{j}, 1 \leq i \leq m-2, 1+2 \leq j \leq m\} \cup \{v_{i}u_{j}, 1 \leq i \leq m, 1 \leq j \leq n\}$ . The maximum and minimum degrees of  $(P_m \dot{V} P_n)$  are  $\Delta \left[ P_m \dot{V} P_n \right] = m + n - 1$  and  $\delta \left[ P_m \dot{V} P_n \right] = 2$ . We prove the theorem in the following cases.

# **Case:** 1 When r = 1 the *r*-dynamic coloring are as follows, consider the mapping $c: V\left[(P_m \dot{V} P_n)\right] \rightarrow \left\{1, 2, \cdots, \lfloor \frac{m+7}{2} \rfloor - 1\right\}$

- $c(v_i) = \{3, 3, 4, 4, \cdots, \lfloor \frac{m+7}{2} \rfloor 1, \lfloor \frac{m+7}{2} \rfloor 1\}$ ,  $1 \le i \le m$ , when m is even  $c(v_i) = \{3, 3, 4, 4, \cdots, \lfloor \frac{m+7}{2} \rfloor 1\}$ ,  $1 \le i \le m$ , when m is odd  $c(u_i) = \{1, 2, 1, 2, \cdots, 1, 2\}$ ,  $1 \le i \le n$   $c(w_i) = 2$ ,  $1 \le i \le m 1$

This coloring provides the upper bound  $\chi_r \left[ P_m \dot{V} P_n \right] \leq \left\lfloor \frac{m+7}{2} \right\rfloor - 1$ . By Lemma 3.2 we have the lower bound as  $\chi_r \left[ P_m \dot{V} P_n \right] \geq \left\lfloor \frac{m+7}{2} \right\rfloor - 1$ . Hence the *r*- adjacency condition fulfilled and therefore  $\chi_r \left[ P_m \dot{V} P_n \right] = \left\lfloor \frac{m+7}{2} \right\rfloor - 1$ , when r = 1.

**Case: 2** When  $2 \leq r \leq m$ , define the mapping  $c: V\left[P_m \dot{V} P_n\right] \rightarrow \{1, 2, 3 \cdots, m+2\}$ , the following coloring gives the upper bound of  $P_m \dot{V} P_n$ 

2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

- $c(v_i) = i$ ,  $1 \le i \le m$
- $c(u_i) = \{m+1, m+2, \cdots, m+1, m+2\}, 1 \le i \le n$   $c(w_i) = \{m, 1, 2, \cdots m-2\}, 1 \le i \le m-1$

By Lemma 3.2 we have the lower bound  $\chi_r \left[ P_m \dot{V} P_n \right] \geq m + 2$ . Hence we have  $\chi_r \left[ P_m \dot{V} P_n \right] = m + 2$ , when  $2 \le r \le m$ .

**Case:** 3 When  $m + 1 \leq r \leq m + n - 2$ . Consider the mapping  $c : V\left[\left(P_m \dot{V} P_n\right)\right] \rightarrow$  $\{1, 2, \cdots, r+2\}$ . The *r*-dynamic coloring are as follows,

- $c(v_i) = i$ ,  $1 \le i \le m$   $c(u_i) = \{m+1, \cdots, r+2, m+1, \cdots, r+2, \cdots\}$ ,  $1 \le i \le n$   $c(w_i) = \{m, 1, 2, \cdots m-2\}$ ,  $1 \le i \le m-1$

Hence the upper bound is  $\chi_r \left[ P_m \dot{V} P_n \right] \leq r+2$  and Lemma 3.2 provides the lower bound as  $\chi_r \left[ P_m \dot{V} P_n \right] \ge r+2$ . Therefore  $\chi_r \left[ P_m \dot{V} P_n \right] = r+2$  when  $m+1 \le r \le m+n-2$ .

**Case:** 4 When  $r = \Delta$  define the mapping  $c : V\left[P_m \dot{V} P_n\right] \rightarrow \{1, 2, 3 \cdots, n + m + 2\}$ , the following coloring gives the upper bound of  $P_m \dot{V} P_n$ 

- $c(u_i) = i, 1 \le i \le n$
- $c(v_i) = \{n+1, n+2\cdots, n+m\}, 1 \le i \le m$   $c(w_i) = \{n+m+1, n+m+2, n+m+1, n+m+2, \cdots, n+m+1, n+m+2\},\$  $1 \le i \le m - 1$

Lemma 3.2 provides the lower bound as  $\chi_r \left[ P_m \dot{V} P_n \right] \ge n + m + 2$ . Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ P_m \dot{V} P_n \right] = n + m + 2$ , when  $r = \Delta$ .

**Theorem 4.** Let  $m \ge 3$ ,  $n \ge 2$  the r-dynamic chromatic number of central vertex join of path graph  $P_m$  with complete graph  $K_n$  is

$$\chi_r[P_m \dot{V} K_n] = \begin{cases} \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3, & r = 1\\ m+n, & 2 \le r \le \Delta - 1\\ m+n+2, & r = \Delta \end{cases}$$

*Proof.* The vertex set of central vertex join of path graph  $P_m$  with complete graph  $K_n$  is given by  $V[P_m \dot{V} K_n] = \{v_i, 1 \le i \le m\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le m-1\}$ and the edge set is  $E\left[P_m\dot{V}K_n\right] = \{v_iw_i, 1 \le i \le m-1\} \cup \{w_iv_{i+1}, 1 \le m-1\} \cup \{w_iv_{i+1}, \dots, w_iv_{i+1}, \dots, w_iv_{$  $\{v_i v_j, 1 \le i \le m-2, 1+2 \le j \le m\} \cup \{v_i u_j, 1 \le i \le m, 1 \le j \le n\}.$  The maximum and minimum degrees of  $(P_m \dot{V} K_n)$  are  $\Delta \left[ P_m \dot{V} K_n \right] = m + n - 1$  and  $\delta \left[ P_m \dot{V} K_n \right] = 2$ . We divide the proof into three cases

**Case:** 1 When r = 1. By Lemma 3.2 we have the lower bound  $\chi_r \left[ P_m \dot{V} K_n \right] \geq \left\lfloor \frac{m+7}{2} \right\rfloor - 1$  but since we have complete graph in the place of G we require additional n-2 colors hence the lower bound transforms as  $\chi_r \left[ P_m \dot{V} K_n \right] \geq \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3$ . Now define the mapping  $c: V \left| P_m \dot{V} K_n \right| \rightarrow \left\{ 1, 2, 3, \cdots, \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3 \right\}.$ 

We use the following colorings to show the upper bound,

2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

- $c(u_i) = i, 1 \le i \le n$
- $c(v_i) = \{n+1, n+1, n+2, n+2, \cdots, \lfloor \frac{m+7}{2} \rfloor + n 3\}, 1 \le i \le m$ , when m is odd  $c(v_i) = \{n+1, n+1, n+2, n+2, \cdots, \lfloor \frac{m+7}{2} \rfloor + n 3, \lfloor \frac{m+7}{2} \rfloor + n 3\}, 1 \le i \le m$ , when m is even

• 
$$c(w_i) = 1, 1 \le i \le m - 1$$

Hence the r- adjacency condition is fulfilled and therefore  $\chi_r[P_m \dot{V} K_n] = \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3.$ 

**Case: 2** When  $2 \le r \le \Delta - 1$ , define the mapping  $c: V\left[P_m \dot{V} K_n\right] \to \{1, 2, 3, \cdots m + n\}$  the upper bound is given by the following colorings

- $c(u_i) = i, \ 1 \le i \le n$
- $c(v_i) = n + i, \ 1 \le i \le m$   $c(w_i) = i, \ 1 \le i \le m 1$

By the above coloring we have the upper bound as  $\chi_r[P_m \dot{V} K_n] \leq m + n$ . Again since we have  $K_n$  in the place of G by Lemma 3.2 doesn't provide an efficient bound we are in requirement of more colors than in any other graph. We can easily see that we require at least m + n in this case. Thus we have  $\chi_r[P_m V K_n] \ge m + n$ . Hence the r- adjacency condition is fulfilled and

 $\chi_r[P_m \dot{V} K_n] = m + n$ , when  $2 \leq r \leq \Delta - 1$ .

Case :3 Proof same as Case 4 of Theorem 3.3.

**Remark 5.** Let m = 2,  $n \ge 2$  the r-dynamic chromatic number of central vertex join of path graph  $P_m$  with complete graph  $K_n$  is

$$\chi_r[P_2 \dot{V} K_n] = \begin{cases} n+1, & r=1\\ n+2, & 2 \le r \le \Delta - 1\\ n+3, & r=\Delta \end{cases}$$

*Proof.* The vertex set of central vertex join of path graph  $P_2$  with complete graph  $K_n$  is given by  $V\left[P_2\dot{V}K_n\right] = \{v_i, 1 \le i \le 2\} \cup \{u_i, 1 \le i \le n\} \cup \{w_1\}$  and the edge set is

 $E\left[P_2\dot{V}K_n\right] = \{v_1w_1, w_1v_2\} \cup \{v_iu_j, 1 \le i \le 2, 1 \le j \le n\}.$  The maximum and minimum degrees of  $\left[P_2\dot{V}K_n\right]$  are  $\Delta\left[P_2\dot{V}K_n\right] = n+1$  and  $\delta\left[P_2\dot{V}K_n\right] = 2$ . We divide the proof into three cases **Case:** 1 When r = 1, define the mapping  $c : V \left[ P_2 \dot{V} K_n \right] \to \{1, 2, \cdots, n+1\}.$ 

- $c(u_i) = i, 1 \le i \le n$   $c(v_1, v_2) = \{n + 1, n + 1\}$   $c(w_1) = 1$

Hence the r- adjacency condition is fulfilled and therefore  $\chi_r[P_2 \dot{V} K_n] = n + 1$ , when r = 1. **Case:** 2 When  $2 \le r \le \Delta - 1$ , define the mapping  $c: V\left[\left(P_2\dot{V}K_n\right)\right] \to \{1, 2, 3, \cdots, n+2\}$  and we define the following colorings

• 
$$c(u_i) = i, \ 1 \le i \le n$$

- $c(v_1, v_2) = \{n+1, n+2\}$
- $c(w_1) = 1$

2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

Hence  $\chi_r[P_m \dot{V} K_n] = n+2$ , when  $2 \leq r \leq \Delta - 1$ . **Case:** 3 When  $r = \Delta$ , define the mapping  $c: V\left[P_2\dot{V}K_n\right] \to \{1, 2, \cdots, n+3\}$  and the following

colorings

•  $c(u_i) = i, \ 1 \le i \le n$ •  $c(v_i) = \{n+1, n+2\}$ •  $c(w_1) = n+3$ Hence  $\chi_r \left[ P_m \dot{V} K_n \right] = n + 3$ , for  $r = \Delta$ .

**Theorem 6.** Let  $m, n \ge 3$  the r-dynamic chromatic number of central vertex join of path graph  $P_m$  with cycle graph  $C_n$  is

$$\chi_r \left[ P_m \dot{V} C_n \right] = \begin{cases} \left[ \frac{m+7}{2} \right] - 1, & r = 1 \ n \ is \ even \\ \left[ \frac{m+7}{2} \right], & r = 1 \ n \ is \ odd \\ m+2, & 2 \le r \le m, \ n \ is \ even \\ m+3, & 2 \le r \le m+1, \ n \ is \ odd \\ r+3, & r = m+2, \ n = 5 \\ r+2, & \begin{cases} m+1 \le r \le \Delta - 1, & n \ is \ even \\ m+2 \le r \le \Delta - 1, & n \ is \ odd \ and \ n \ne 5 \\ m+3 \le r \le \Delta - 1, & n = 5 \end{cases} \\ m+n+2, & r = \Delta \end{cases}$$

Proof. The vertex set of central vertex join of path graph  $P_m$  with cycle graph  $C_n$  is given by  $V | P_m \dot{V} C_n | = \{v_i, 1 \le i \le m\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le m-1\}$ and the edge set is  $E\left[P_{m}\dot{V}C_{n}\right] = \{v_{i}w_{i}, 1 \leq i \leq m-1\} \cup \{w_{i}v_{i+1}, 1 \leq i \leq m-1\} \cup \{v_{i}v_{j}, 1 \leq i \leq m-2, 1+2 \leq j \leq m\} \cup \{v_{i}u_{j}, 1 \leq i \leq m, 1 \leq j \leq n\}.$  The maximum and minimun degrees of  $(P_m \dot{V} C_n)$  are

 $\Delta \left[ P_m \dot{V} C_n \right] = m + n - 1$  and  $\delta \left[ P_m \dot{V} C_n \right] = 2$ . We prove the theorem in the following cases.

Case: 1 Proof same as Case of Theorem 3.3.

**Case:** 2 When r = 1 and n is odd, define the mapping  $c: V\left[P_m \dot{V} C_n\right] \rightarrow \left\{1, 2, 3 \cdots, \left\lfloor \frac{m+7}{2} \right\rfloor\right\}$ , the following coloring gives the upper bound of  $P_m \dot{V} C_n$ 

- $c(u_i) = \{1, 2, 1, 2, \cdots, 1, 2, 3\}$ ,  $1 \le i \le n$   $c(v_i) = \{4, 4, 5, 5, \cdots, \lfloor \frac{m+7}{2} \rfloor\}$ ,  $1 \le i \le m$   $c(w_i) = 2$ ,  $1 \le i \le m-1$

By Lemma 3.2 we have the lower bound  $\chi_r \left[ P_m \dot{V} C_n \right] \geq \left\lfloor \frac{m+7}{2} \right\rfloor - 1$  but since we have an odd cycle in G we require an additional color as odd cycle always requires 3 colors for proper coloring thus  $\chi_r \left[ P_m \dot{V} C_n \right] \ge \left\lfloor \frac{m+7}{2} \right\rfloor$ . Hence  $\chi_r \left[ P_m \dot{V} C_n \right] = \left\lfloor \frac{m+7}{2} \right\rfloor$ , when *n* is odd.

Case: 3 Proof same as Case 2 of Theorem 3.3.

**Case:** 4 When  $2 \leq r \leq m+1$  , n is odd , define the mapping  $c : V\left[P_m\dot{V}C_n\right] \rightarrow$  $\{1, 2, 3, \dots, m+3\}$ , the following coloring gives the upper bound of  $P_m \dot{V} C_n$ 

- $c(u_i) = \{1, 2, 1, 2, \cdots, 1, 2, 3\}$ ,  $1 \le i \le n$   $c(v_i) = \{4, 5 \cdots, m+3\}$ ,  $1 \le i \le m$

#### 2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

•  $c(w_i) = \{2, 3, 4, \cdots, m\}, 1 \le i \le m - 1$ 

Thus we have the upper bound  $\chi_r \left[ P_m \dot{V} C_n \right] \leq m+3$  for  $2 \leq r \leq m+1$ . By Lemma 3.2 we have the lower bound  $\chi_r \left[ P_m \dot{V} C_n \right] \geq m+2$  but since we have an odd cycle in G we require an additional color as odd cycle always requires 3 colors for proper coloring thus  $\chi_r \left| P_m \dot{V} C_n \right| \ge m+3$  for  $2 \le r \le m$  and by the same Lemma for r = m+1,  $\chi_r \left[ P_m \dot{V} C_n \right] \geq r+2 = m+3$ . Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ P_m \dot{V} C_n \right] = m + 3$ , when *n* is odd.

**Case: 5** When r = m + 2 and n = 5, define the mapping  $c : V \left[ P_m \dot{V} C_n \right] \rightarrow$  $\{1, 2, 3\cdots, r+3 = m+5\}$ , the following coloring gives the upper bound of  $P_m \dot{V}C_n$ 

- $c(u_i) = i, 1 \le i \le 5$
- $c(v_i) = \{5+1, 5+2\cdots, 5+m\}, 1 \le i \le m$   $c(w_i) = i, 1 \le i \le m-1$

The Lemma provides the bound  $\chi_r \left[ P_m \dot{V} C_n \right] \ge m + 4$  but since  $C_5$  require 5 different colors we have  $\chi_r \left[ P_m \dot{V} C_n \right] \ge m + 5$ . Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left| P_m \dot{V} C_n \right| = r+3$ , when r = m+2 and n = 5.

**Case:** 6 When  $m + 1 \le r \le \Delta - 1$ , n is even;  $m + 2 \le r \le \Delta - 1$ , n is odd and  $m+3 \leq r \leq \Delta - 1, n = 5$ , define the mapping  $c: V\left[P_m \dot{V} C_n\right] \rightarrow \{1, 2, 3 \cdots r + 2\}$ , the following coloring gives the upper bound of  $P_m \dot{V} C_n$ 

Subcase: 1 When  $m + 3 \le r \le \Delta - 1$ , n = 5Same as Case 5 of this theorem.

**Subcase:** 2 When  $m + 2 \le r \le \Delta - 1$ , *n* is odd and  $n \ne 5$ 

- $c(v_i) = i, 1 \leq i \leq m$
- $c(w_i) = \{m, 1, 2, 3, \cdots, m-2\}, 1 \le i \le m-1$
- For the vertices  $u_i$  first provide the vertices with colors  $\{m+1, m+2, \cdots, r+2\}$ in order and for the remaining vertices of  $u_i$  provide them with colors from the set  $\{m+1, m+2, \cdots, r+2\}$  so that it is proper coloring and has 2- adjacency condition satisfied with  $u_i$ 's.

**Subcase:** 3 when  $m + 1 \le r \le \Delta - 1$ , *n* is even

- $c(v_i) = i, 1 \le i \le m$
- $c(w_i) = \{m, \overline{1}, 2, \overline{3}, \cdots, m-1\}, 1 \le i \le m-1$   $c(u_i) = \{m+1, m+2, \cdots, r+2, m+1, m+2, \cdots, r+2\}, 1 \le i \le n$

By Lemma 3.2 we have the lower bound  $\chi_r \left[ P_m \dot{V} C_n \right] \geq r+2$ . Hence we conclude that  $\chi_r \left| P_m \dot{V} C_n \right| = r + 2$  for all the subcases in Case 6.

Case: 7 Proof same as Case 4 of Theorem 3.3.

### 4. Central Vertex Join of Cycle with some Graphs

In this section we obtain the lower bound for r-dynamic chromatic number of central vertex join of cycle graph with a graph G, r-dynamic chromatic number of central vertex join of cycle graph with path graph  $C_m \dot{V} P_n$ , cycle graph with complete graph  $C_m \dot{V} K_n$  and cycle graph with cycle graph  $C_m \dot{V} C_n$ .

**Lemma 7.** Let  $C_m$  be a cycle on m vertices where  $m \ge 4$  and G be a any finite, simple and connected graph with at least n vertices where  $n \ge 2$  then the lower bound for the r-dynamic chromatic number of central vertex join of cycle  $C_m$  with G is given by

$$\chi_r \left[ C_m \dot{V}G \right] \ge \begin{cases} \left\lfloor \frac{m+7}{2} \right\rfloor - 1, & r = 1\\ m+2, & 2 \le r \le m\\ r+2, & m+1 \le r \le m+n-2\\ m+n+2, & r \ge m+n-1 \text{ and } m \text{ is even}\\ m+n+3, & r \ge m+n-1 \text{ and } m \text{ is odd} \end{cases}$$

*Proof.* Let  $\{v_1, v_2, \dots, v_m\}$  be the vertices of the cycle  $C_m$  and by the definition of central vertex join we are subdividing each edge  $\{e_1, e_2, \dots, e_m\}$  to produce a new set of m vertices  $\{w_1, w_2, \dots, w_m\}$  where  $e_i : 1 \le i \le m-1$  is the edge between the vertices  $v_i$  and  $v_{i+1}$  and  $e_m$  is edge between  $e_m$  and  $e_1$ . Also let  $\{u_1, u_2, \dots, u_n\}$  be the n vertices of the graph G. The degree of each vertex  $v_i$  of  $C_m$  in  $(C_m \dot{V}G)$  is m + n - 1 and degree of  $w_i$  is 2.

The proofs of Case 1, Case 2, Case 3 and Case 4 are similar to the ones of Lemma in Section 3. Case: 5 When  $r \ge m + n - 1$  and m is odd.

As in Case 4 if we provide the pattern of assigning the colors m+n+1, m+n+2 alternatively to the vertices  $w_i$  it will end up with giving the color m+n+1 to the vertex  $w_m$  but by this the *r*-adjacency of the vertex  $v_1$  will not be satisfied and the color m+n+2 cannot be assigned due to similar reason hence we require a new color m+n+3 for coloring. Hence  $\chi_r \left[ C_m \dot{V}G \right] \ge m+n+3$ .

**Theorem 8.** Let  $m \ge 4$  and  $n \ge 2$  the r - dynamic chromatic number of central vertex join of

cycle graph  $C_m$  with path graph  $P_n$  is

$$\chi_r \left[ C_m \dot{V} P_n \right] = \begin{cases} \left\lfloor \frac{m+7}{2} \right\rfloor - 1, & r = 1, \\ m+2, & 2 \le r \le m \\ r+2, & m+1 \le r \le \Delta - 1 \\ m+n+2, & r = \Delta, m \text{ is even} \\ m+n+3, & r = \Delta, m \text{ is odd} \end{cases}$$

Proof. The vertex set of central vertex join of cycle graph  $C_m$  with path graph  $P_n$  is given by  $V\left[C_m\dot{V}P_n\right] = \{v_i, 1 \le i \le m\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le m\}$  and the edge set is  $E\left[C_m\dot{V}P_n\right] = \{v_iw_i, 1 \le i \le m\} \cup \{w_iv_{i+1}, 1 \le i \le m-1\} \cup \{w_mv_1\} \cup \{v_iv_j, 1 \le i \le m-2, i+2 \le j \le m\} \cup \{v_iu_j, 1 \le i \le m, 1 \le j \le n\}$ . The maximum and minimum degrees of  $(C_m\dot{V}P_n)$  are  $\Delta\left[C_m\dot{V}P_n\right] = m+n-1$  and  $\delta\left[C_m\dot{V}P_n\right] = 2$ . We prove the

theorem in the following cases.

- **Case:** 1 When r = 1, the *r* dynamic coloring are as follows, consider the mapping  $c : V\left[C_m \dot{V} P_n\right] \rightarrow \{1, 2, 3 \cdots, \lfloor \frac{m+7}{2} \rfloor 1\}$ , the following coloring gives the upper bound of  $C_m \dot{V} P_n$ 
  - $c(u_i) = \{1, 2, 1, 2, \cdots, 1, 2\}$ ,  $1 \le i \le n$

#### 2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

- $c(v_i) = \{3, 3, 4, 4, \cdots, \lfloor \frac{m+7}{2} \rfloor 1\}$ ,  $1 \le i \le m$ , when m is odd  $c(v_i) = \{3, 3, 4, 4, \cdots, \lfloor \frac{m+7}{2} \rfloor 1, \lfloor \frac{m+7}{2} \rfloor 1\}$ ,  $1 \le i \le m$ , when m is even  $c(w_i) = 2$ ,  $1 \le i \le m$

By Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} P_n \right] \geq \left\lfloor \frac{m+7}{2} \right\rfloor - 1.$ Therefore  $\chi_r \left[ C_m \dot{V} P_n \right] = \left\lfloor \frac{m+7}{2} \right\rfloor - 1$ , when r = 1.

**Case:** 2 When  $2 \leq r \leq m$ , define the mapping  $c: V\left[C_m \dot{V} P_n\right] \rightarrow \{1, 2, 3, \dots, m+2\}$ , the following coloring gives the upper bound of  $C_m \dot{V} P_n$ 

- $c(v_i) = i$ ,  $1 \le i \le m$
- $c(u_i) = \{m+1, m+2, \cdots, m+1, m+2\}, 1 \le i \le n$   $c(w_i) = \{m, 1, 2, \cdots m-1\}, 1 \le i \le m$

The lower bound follows from Lemma 4.1. Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left| C_m \dot{V} P_n \right| = m + 2$ , when  $2 \le r \le m$ .

**Case:** 3 When  $m + 1 \le r \le \Delta - 1$ , define the mapping  $c : V \left[ C_m \dot{V} P_n \right] \to \{1, 2, 3 \cdots, r + 2\},\$ the following coloring gives the upper bound of  $C_m \dot{V} P_n$ 

- $c(v_i) = i$ ,  $1 \le i \le m$
- $c(u_i) = \{m + 1, m + 2, \dots, r + 2, m + 1, m + 2, \dots, r + 2, \dots\}, 1 \le i \le n$   $c(w_i) = \{m, 1, 2, \dots, m 1\}, 1 \le i \le m$

From Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} P_n \right] \ge r+2$ . Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ C_m \dot{V} P_n \right] = r + 2$ , when  $m + 1 \le r \le \Delta - 1$ .

**Case:** 4 When  $r = \Delta$ , *m* is even, define the mapping  $c : V \left[ C_m \dot{V} P_n \right] \rightarrow \{1, 2, 3, \cdots, m + n + 2\},\$ the following coloring gives the upper bound of  $C_m \dot{V} P_n$ 

- $c(v_i) = i, 1 \leq i \leq m$
- $c(u_i) = m + i$ ,  $1 \le i \le n$   $c(w_i) = \{m + n + 1, m + n + 2, \cdots, m + n + 1, m + n + 2\}$ ,  $1 \le i \le m$

By Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} P_n \right] \ge m + n + 2$ . Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ C_m \dot{V} P_n \right] = m + n + 2$ , when  $r = \Delta$ , m is even.

**Case:** 5 When  $r = \Delta$ , *m* is odd, define the mapping  $c: V\left[C_m \dot{V} P_n\right] \to \{1, 2, 3, \dots, m+n+3\}$ , the following coloring gives the upper bound of  $C_m \dot{V} P_n$ 

- $c(v_i) = i, 1 \le i \le m$
- $c(u_i) = m + i$ ,  $1 \le i \le n$
- $c(w_i) = \{m+n+1, m+n+2, \cdots, m+n+1, m+n+2, m+n+3\}, 1 \le i \le m$

By Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} P_n \right] \ge m + n + 3$ . Hence the *r*- adjacency condition fulfilled and therefore  $\chi_r \left[ C_m \dot{V} P_n \right] = m + n + 3$ , when  $r = \Delta$ , m is odd.

**Remark 9.** Let m = 3,  $n \ge 2$  the r-dynamic chromatic number of central vertex join of cycle graph  $C_3$  with path graph  $P_n$  is

$$\chi_r \left[ C_3 \dot{V} P_n \right] = \begin{cases} 3, & r = 1\\ 5, & 2 \le r \le 4\\ r+1, & 5 \le r \le \Delta \end{cases}$$

*Proof.* The vertex set of central vertex join of cycle graph  $C_3$  with path graph  $P_n$  is given by  $V\left[C_3\dot{V}P_n\right] = \{v_i, 1 \le i \le 3\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le 3\}$  and the edge set is  $E\left[C_3\dot{V}P_n\right] = \{v_iwi, 1 \le i \le 3\} \cup \{w_iv_{i+1}, 1 \le i \le 2\} \cup \{w_3v_1\} \cup \{v_iu_j, 1 \le i \le 3, 1 \le j \le n\}$ . The maximum and minimum degrees of  $(C_m \dot{V} P_n)$  are  $\Delta \left[ C_m \dot{V} P_n \right] = n + 2$  and  $\delta \left[ C_m \dot{V} P_n \right] = 2$ . We prove the theorem in the following cases.

**Case:** 1 When r = 1, define the mapping  $c: V\left[C_3 \dot{V} P_n\right] \to \{1, 2, 3\}$ . The assignment of colors are as follows

•  $c(v_i) = 1$ , i = 1, 2, 3•  $c(w_i) = 2$ , i = 1, 2, 3•  $c(u_i) = \begin{cases} 2, 3, 2, 3, \dots, 2, \text{ when n is even} \\ 2, 3, 2, 3, \dots, 2, 3 \text{ when n is odd} \end{cases}$ 

Thus we require 3 colors that is  $\chi_r \left[ C_3 \dot{V} P_n \right] = 3$ , when r = 1.

Case: 2 When  $2 \le r \le 4$ , the r- dynamic coloring are as follows, consider the mapping  $c: V \left| C_3 \dot{V} P_n \right| \rightarrow \{1, 2, 3, 4, 5\}.$  The assignment of colors are as follows

•  $c(v_i) = i$ , i = 1, 2, 3

• 
$$c(w_i) = \{3, 1, 2\}, i = 1, 2, 3$$

•  $c(u_i) = \begin{cases} 4.5.4.5, \cdots, 4, \text{ when n is odd} \\ 4.5, 4, 5, \cdots, 4, 5, \text{ when n is even} \end{cases}$ 

Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ C_3 \dot{V} P_n \right] = 5$ , when  $2 \le r \le 4$ .

**Case:** 3 When  $5 \leq r \leq \Delta$ , define the mapping  $c : V \left[ C_3 \dot{V} P_n \right] \rightarrow \{1, 2, 3 \cdots, r+1\}$ . The assignment of colors are as follows

- $c(v_i) = i , 1 \le i \le 3$
- $c(u_i) = \{m+1, m+2, \cdots, r+1, m+1, m+2, \cdots, r+1, \cdots\}, 1 \le i \le n$   $c(w_i) = \{3, 1, 2\}, 1 \le i \le 3$

Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ C_3 \dot{V} P_n \right] = r + 1$ , when  $5 \leq r \leq \Delta$ .

**Theorem 10.** Let  $m \ge 4$ ,  $n \ge 2$  the r-dynamic chromatic number of central vertex join of cycle graph  $C_m$  with complete graph  $K_n$  is

$$\chi_r \left[ C_m \dot{V} K_n \right] = \begin{cases} \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3, & r = 1\\ m+n, & 2 \le r \le \Delta - 1\\ m+n+2, & r = \Delta, m \text{ is even}\\ m+n+3, & r = \Delta, m \text{ is odd} \end{cases}$$

**2157** (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

Proof. The vertex set of central vertex join of cycle graph  $C_m$  with complete graph  $K_n$  is given by  $V\left[C_m\dot{V}K_n\right] = \{v_i, 1 \le i \le m\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le m\}$  and the edge set is  $E\left[C_m\dot{V}K_n\right] = \{v_iw_i, 1 \le i \le m\} \cup \{w_iv_{i+1}, 1 \le i \le m-1\} \cup \{w_mv_1\} \cup \{v_iv_j, 1 \le i \le m-2, i+2 \le j \le m\} \cup \{v_iu_j, 1 \le i \le m, 1 \le j \le n\}$ . The maximum and minimum degrees of  $(C_m\dot{V}K_n)$  are  $\Delta\left[C_m\dot{V}K_n\right] = m+n-1$  and  $\delta\left[C_m\dot{V}K_n\right] = 2$ . We divide the proof in the following two cases.

**Case:** 1 When r = 1. By Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} K_n \right] \ge \left\lfloor \frac{m+7}{2} \right\rfloor - 1$  but since we have complete graph in the place of G we require additional n-2 colors hence the lower bound transforms as  $\chi_r \left[ C_m \dot{V} K_n \right] \ge \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3$ . Now define the mapping  $c: V \left[ C_m \dot{V} K_n \right] \to \{1, 2, 3, \cdots, \lfloor \frac{m+7}{2} \rfloor + n - 3\}.$ 

We use the following colorings to show the upper bound,

- $c(u_i) = i, 1 \le i \le n$
- $c(v_i) = \{n+1, n+1, n+2, n+2, \cdots, \lfloor \frac{m+7}{2} \rfloor + n 3\}, 1 \le i \le m$ , when m is odd •  $c(v_i) = \{n+1, n+1, n+2, n+2, \cdots, \lfloor \frac{m+7}{2} \rfloor + n - 3, \lfloor \frac{m+7}{2} \rfloor + n - 3\}, 1 \le i \le m,$
- $c(v_i) = \{n+1, n+1, n+2, n+2, \cdots, \lfloor \frac{m+7}{2} \rfloor + n-3, \lfloor \frac{m+7}{2} \rfloor + n-3\}, 1 \le i \le m,$ when *m* is even
- $c(w_i) = 1, 1 \le i \le m$

Hence the *r*-adjacency condition fulfilled,  $\chi_r \left[ C_m \dot{V} K_n \right] = \left\lfloor \frac{m+7}{2} \right\rfloor + n - 3$ , when r = 1.

**Case:** 2 When  $2 \le r \le \Delta - 1$ . Consider the mapping  $c: V\left[C_m \dot{V} K_n\right] \to \{1, 2, \cdots, m+n\}$  the following coloring gives the upper bound of  $C_m \dot{V} K_n$ 

- $c(v_i) = i, 1 \le i \le m$
- $c(w_i) = \{m, 1, 2, \cdots, m-1\}, 1 \le i \le m$
- $c(u_i) = m + i, 1 \le i \le n$

By the above coloring we have the upper bound as  $\chi_r[C_m \dot{V} K_n] \leq m + n$ . Again since we have  $K_n$  in the place of G by Lemma 3.2 doesn't provide an efficient bound we are in requirement of more colors than in any other graph. We can easily see that we require at least m + n in this case. Thus we have  $\chi_r[C_m \dot{V} K_n] \geq m + n$ . Hence the *r*- adjacency condition is fulfilled and

- $\chi_r[C_m V K_n] = m + n$ , when  $2 \le r \le \Delta 1$ .
- Case: 3 Proof same as Case 4 of Theorem 4.2.

Case: 4 Proof same as Case 5 of Theorem 4.2.

**Remark 11.** Let m = 3,  $n \ge 2$  the r-dynamic chromatic number of central vertex join of cycle graph  $C_3$  with complete graph  $K_n$  is

$$\chi_r[C_3 \dot{V} K_n] = \begin{cases} m+n-2, & r=1\\ m+n, & 2 \le r \le \Delta \end{cases}$$

Proof. The vertex set of central vertex join of cycle graph  $C_3$  with complete graph  $K_n$  is given by  $V\left[C_3\dot{V}K_n\right] = \{v_i, 1 \le i \le 3\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le 3\}$  and the edge set is  $E\left[C_3\dot{V}K_n\right] = \{v_iw_i, 1 \le i \le m\} \cup \{w_iv_{i+1}, 1 \le i \le 2\} \cup \{w_3v_1\} \cup \{v_iu_j, 1 \le i \le 3, 1 \le j \le n\}.$ The maximum and minimum degrees of  $(C_3\dot{V}K_n)$  are  $\Delta\left[C_3\dot{V}K_n\right] = m+n-1$  and  $\delta\left[C_3\dot{V}K_n\right] = 2$ . We divide the proof in the following two cases.

2157 (2022) 012007 doi:10.1088/1742-6596/2157/1/012007

**Case:** 1 When r = 1. Define the mapping  $c: V \left[ C_3 \dot{V} K_n \right] \rightarrow \{1, 2, 3, \cdots, m + n - 2\}.$ 

- $c(v_i) = 1$ ,  $1 \le i \le 3$
- $c(w_i) = 2, 1 \le i \le 3$
- $c(u_i) = \{2, 3, 4, \cdots, m+n-2\}, 1 \le i \le n$

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_3 \dot{V} K_n \right] = n + m - 2$ , when r = 1.

**Case: 2** When  $2 \leq r \leq \Delta$ . Consider the mapping  $c : V \left[ C_3 \dot{V} K_n \right] \rightarrow \{1, 2, \cdots, m+n\}$  as follows

- $c(v_i) = i, 1 \le i \le 3$
- $c(w_i) = \{3, 1, 2\}, 1 \le i \le 3$
- $c(u_i) = m + i, 1 \le i \le n$

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_3 \dot{V} K_n \right] \le m + n$ , when  $2 \le r \le \Delta$ .

**Theorem 12.** Let  $m \geq 5$ ,  $n \geq 3$  the r-dynamic chromatic number of central vertex join of cycle graph  $C_m$  with cycle graph  $C_n$  is

$$\chi_r \left[ C_m \dot{V} C_n \right] = \begin{cases} \left\lfloor \frac{m+7}{2} \right\rfloor - 1, & r = 1, n \text{ is even} \\ \left\lfloor \frac{m+7}{2} \right\rfloor, & r = 1, n \text{ is odd} \\ m+2, & 2 \le r \le m, n \text{ is even} \\ m+3, & 2 \le r \le m+1, n \text{ is odd} \\ r+3, & r = m+2, n \text{ is odd} \\ r+2, & \begin{cases} m+1 \le r \le \Delta - 1, n \text{ is even} \\ m+3 \le r \le \Delta - 1, n \text{ is odd} \\ m+n+2, & r = \Delta, m \text{ is even} \\ m+n+3, & r = \Delta, m \text{ is odd} \end{cases}$$

*Proof.* The vertex set of central vertex join of cycle graph  $C_m$  with complete graph  $C_n$  is given by  $V\left[C_m\dot{V}C_n\right] = \{v_i, 1 \le i \le 3\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le m\}$  and the edge set is  $E\left[C_{m}\dot{V}C_{n}\right] = \{v_{i}w_{i}, 1 \le i \le m\} \cup \{w_{i}v_{i+1}, 1 \le i \le m-1\} \cup \{w_{m}v_{1}\} \cup \{$  $\{v_iv_j, 1\leq i\leq m-2, i+2\leq j\leq m\}\cup\{v_iu_j, 1\leq i\leq m, 1\leq j\leq n\}.$ The maximum and minimum degrees of  $\left(C_m \dot{V} C_n\right)$  are  $\Delta \left[C_m \dot{V} C_n\right] = m + n - 1$  and  $\delta \left[ C_m \dot{V} C_n \right] = 2$ . We divide the proof in the following two cases.

**Case: 1** Proof same as Case 1 of Theorem 4.2.

**Case: 2** When r = 1 and n is odd, define the mapping  $c: V\left[C_m \dot{V} C_n\right] \rightarrow \left\{1, 2, 3 \cdots, \left\lfloor \frac{m+7}{2} \right\rfloor\right\}$ . To show the upper bound we assign colors as follows.

- $c(u_i) = \{1, 2, 1, 2, \cdots, 1, 2, 3\}$ ,  $1 \le i \le n$   $c(v_i) = \{4, 4, 5, 5, \cdots, \lfloor \frac{m+7}{2} \rfloor\}$ ,  $1 \le i \le m$ , when m is odd  $c(v_i) = \{4, 4, 5, 5, \cdots, \lfloor \frac{m+7}{2} \rfloor, \lfloor \frac{m+7}{2} \rfloor\}$ ,  $1 \le i \le m$ , when m is even  $c(w_i) = 2$ ,  $1 \le i \le m 1$

By Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} C_n \right] \geq \left\lfloor \frac{m+7}{2} \right\rfloor - 1$  but since we have an odd cycle in G we require an additional color as odd cycle always requires 3 colors for proper coloring thus  $\chi_r \left[ C_m \dot{V} C_n \right] \ge \left\lfloor \frac{m+7}{2} \right\rfloor$ . Hence  $\chi_r \left[ C_m \dot{V} C_n \right] = \left\lfloor \frac{m+7}{2} \right\rfloor$ , when *n* is odd.

**Case: 3** Proof same as Case 2 of Theorem 4.2.

**Case:** 4 When  $2 \leq r \leq m+1$  and n is odd. Define the mapping  $c : V\left[C_m\dot{V}C_n\right] \rightarrow C_m\dot{V}C_n$  $\{1, 2, 3, \dots, m+3\}$ . To show the upper bound we assign colors as follows.

- $\begin{array}{l} \bullet \ c(v_i) = i \ , \ \ 1 \leq i \leq m \\ \bullet \ c(w_i) = \{m, 1, 2, \cdots, m-1\}, \ \ 1 \leq i \leq m \\ \bullet \ c(u_i) = \{m+1, m+2, m+1, m+2, \cdots, m+3\}, \ 1 \leq i \leq n \end{array}$

Thus we have the upper bound  $\chi_r \left[ C_m \dot{V} C_n \right] \leq m+3$  for  $2 \leq r \leq m+1$ . By Lemma 4.1 we have the lower bound  $\chi_r \left[ C_m \dot{V} C_n \right] \geq m+2$  but since we have an odd cycle in G we require an additional color as odd cycle always requires 3 colors for proper coloring thus  $\chi_r \left[ C_m \dot{V} C_n \right] \ge m+3$  for  $2 \le r \le m$  and by the same Lemma for r = m+1,  $\chi_r \left[ C_m \dot{V} C_n \right] \ge r+2 = m+3$ . Hence the r- adjacency condition fulfilled and therefore  $\chi_r \left[ C_m \dot{V} C_n \right] = m + 3$ , when *n* is odd.

**Case: 5** When r = m + 2 and n is odd. Define the mapping  $c : V \left[ C_m \dot{V} C_n \right] \rightarrow$  $\{1, 2, 3, \dots, r+3\}$ . To show the upper bound we assign colors as follows.

- $c(v_i) = i$ ,  $1 \le i \le m$
- $c(w_i) = \{m, 1, 2, \cdots, m-1\}, \ 1 \le i \le m$
- For the vertices of  $u_i$  first provide them with colors  $\{m+1, m+2, \cdots, r+3\}$  in order and then for the remaining vertices in  $u_i$  provide them with colors from the set  $\{m+1, m+2, \cdots, r+3\}$  so that the coloring is proper and 2- adjacency condition satisfied within  $u_i$ 's.

By Lemma 4.1 for r = m + 2 we have the lower bound  $\chi_r \left[ C_m \dot{V} C_n \right] \ge r + 2$  but since n is odd we are in requirement of an additional color thus  $\chi_r \left[ C_m \dot{V} C_n \right] \ge r+3$ . Hence the *r*-adjacency condition fulfilled  $\chi_r \left[ C_m \dot{V} C_n \right] = r + 3$ , when *n* is odd.

- **Case:** 6 When  $m + 1 \le r \le \Delta 1$ , n is even and  $m + 3 \le r \le \Delta 1$ , n is odd. Define the mapping  $c: V\left[C_m \dot{V} C_n\right] \to \{1, 2, 3, \cdots, r+2\}$ . To show the upper bound we assign colors as follows.
  - $c(v_i) = i$ ,  $1 \le i \le m$
  - $c(w_i) = \{m, 1, 2, \cdots, m-1\}, \ 1 \le i \le m$
  - For the vertices of  $u_i$  first provide them with colors  $\{m+1, m+2, \cdots, r+2\}$  in order and then for the remaining vertices in  $u_i$  provide them with colors from the set  $\{m+1, m+2, \cdots, r+2\}$  so that the coloring is proper and 2- adjacency condition satisfied within  $u_i$ 's.

The lower bound follows directly by Lemma 4.1 for the two subcases i.e.,  $\chi_r \left| C_m \dot{V} C_n \right| \geq$ r+2 when  $m+1 \leq r \leq \Delta - 1$ , n is even and  $m+3 \leq r \leq \Delta - 1$ , n is odd. Hence  $\chi_r \left[ C_m \dot{V} C_n \right] = r+2$ ,  $m+1 \leq r \leq \Delta - 1$ , n is even and  $m+3 \leq r \leq \Delta - 1$ , n is odd.

- **Case: 7** Proof same as Case 4 of Theorem 4.2.
- Case: 8 Proof same as Case 5 of Theorem 4.2.

**Remark 13.** Let m = 4,  $n \ge 3$  the r-dynamic chromatic number of central vertex join of cycle graph  $C_4$  with cycle graph  $C_n$  is

$$\chi_r \left[ C_4 \dot{V} C_n \right] = \begin{cases} 5, & r = 1, n \text{ is even} \\ 4, & r = 1, n \text{ is odd} \\ m+3, & 2 \le r \le m+1, n \text{ is odd} \\ m+2, & 2 \le r \le m, n \text{ is even} \\ r+3, & m+1 \le r \le \Delta-1, n \text{ is even} \\ r+2, & m+2 \le r \le \Delta-1, n \text{ is odd} \\ m+n+2, & r=\Delta \end{cases}$$

*Proof.* The vertex set of central vertex join of cycle graph  $C_4$  with complete graph  $C_n$  is given by  $V\left[C_4\dot{V}C_n\right] = \{v_i, 1 \le i \le 4\} \cup \{u_i, 1 \le i \le n\} \cup \{w_i, 1 \le i \le 4\}$  and the edge set is  $E\left[C_{4}\dot{V}C_{n}\right] = \{v_{i}w_{i}, 1 \leq i \leq 4\} \cup \{w_{i}v_{i+1}, 1 \leq i \leq 3\} \cup \{w_{4}v_{1}\} \cup \{v_{1}v_{3}\} \cup \{v_{2}v_{4}\}$  $\bigcup \{v_i u_j, 1 \leq i \leq 4, 1 \leq j \leq n\}$ . The maximum and minimum degrees of  $(C_4 \dot{V} C_n)$  are  $\Delta \left[ C_4 \dot{V} C_n \right] = n + 3$  and  $\delta \left[ C_4 \dot{V} C_n \right] = 2$ . We prove the remark in the following cases.

**Case:** 1 When r = 1, n is even. Define the mapping  $c: V\left[C_4 \dot{V} C_n\right] \rightarrow \{1, 2, 3, 4, 5\}$  and the following coloring

- $c(v_1, v_2, v_3, v_4) = 1, 1, 2, 2$
- $c(w_i) = 3, \ 1 \le i \le 4$   $c(u_i) = \{3, 4, 3, 4, \cdots\}, \ 1 \le i \le n-1$
- $c(u_n) = 5$

Hence the r-adjacency condition fulfilled and  $\chi_r \left| C_4 \dot{V} C_n \right| = 5$ , when r = 1 and n is even.

**Case: 2** When r = 1, n is odd. Define the mapping  $c : V \left[ C_4 \dot{V} C_n \right] \to \{1, 2, 3, 4\}$  and the coloring are as follows

- $c(v_1, v_2, v_3, v_4) = 1, 1, 2, 2$   $c(w_i) = 3, \ 1 \le i \le m$   $c(u_i) = \{3, 4, 3, 4, \cdots\}, \ 1 \le i \le n$

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_4 \dot{V} C_n \right] = 4$ , when r = 1 and n is odd.

**Case:** 3 When m = 4,  $2 \le r \le m+1$ , n is odd. Define the mapping  $c : V \left[ C_4 \dot{V} C_n \right] \rightarrow$  $\{1, 2, 3, \cdots, m+3\}$  and the coloring are as follows

- $\begin{array}{l} \bullet \ c(v_i) = i, \ 1 \leq r \leq m \\ \bullet \ c(w_i) = \{m, 1, 2, 3, \cdots, m-1\}, \ 1 \leq i \leq m \\ \bullet \ c(u_i) = \{m+1, m+2, m+3 \cdots m+1, m+2, m+3\}, \ 1 \leq i \leq n \end{array}$

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_4 \dot{V} C_n \right] \leq m+3$ , when  $2 \leq r \leq m+1$ , n is odd.

**Case: 4** When  $2 \leq r \leq m$ , *n* is even. Define the mapping  $c : V \left[ C_4 \dot{V} C_n \right] \rightarrow$  $\{1, 2, 3, \cdots, m+2\}$  and the coloring are as follows

- $c(v_i) = i, 1 \le r \le m$
- $c(w_i) = \{m, 1, 2, 3, \cdots, m-1\}, 1 \le i \le m$

•  $c(u_i) = \{m+1, m+2, \cdots m+1, m+2\}, 1 \le i \le n$ 

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_4 \dot{V} C_n \right] = m + 2$  , when  $2 \le r \le m$  , n is even.

**Case: 5** When  $m + 1 \leq r \leq \Delta - 1$ , n is even. Define the mapping  $c : V \left[ C_4 \dot{V} C_n \right] \rightarrow C_4 \dot{V} C_n$ 

- $\{1, 2, 3, \cdots, r+3\}$  and the coloring are as follows
  - $c(v_i) = i$ ,  $1 \le i \le m$
  - $c(w_i) = m + i, 1 \le i \le m$
  - For the vertices of  $u_i$  first provide them with colors  $\{m+1, m+2, \cdots, r+3\}$  in order and then for the remaining vertices in  $u_i$  provide them with colors from the set  $\{m+1, m+2, \cdots, r+3\}$  so that the coloring is proper and 2- adjacency condition satisfied within  $u_i$ 's.

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_4 \dot{V} C_n \right] = r+3$ , when  $m+1 \leq r \leq \Delta -1$ , n is even.

**Case:** 6 When  $m + 2 \leq r \leq \Delta - 1$ , *n* is odd. Define the mapping  $c : V \left[ C_4 \dot{V} C_n \right] \rightarrow C_4 \dot{V} C_1$  $\{1, 2, 3, \cdots, r+2\}$  and the coloring are as follows

- $c(v_i) = i$ ,  $1 \le i \le m$
- $c(w_i) = m + i, 1 \le i \le m$
- For the vertices of  $u_i$  first provide them with colors  $\{m+1, m+2, \cdots, r+2\}$  in order and then for the remaining vertices in  $u_i$  provide them with colors from the set  $\{m+1, m+2, \cdots, r+2\}$  so that the coloring is proper and 2- adjacency condition satisfied within  $u_i$ 's.

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_4 \dot{V} C_n \right] = r + 2$ , when n is odd.

**Case:** 7 When  $r = \Delta$ . Define the mapping  $c: V\left[C_4 \dot{V} C_n\right] \to \{1, 2, 3, \cdots, m+n+2\}$  and the coloring are as follows

- $\begin{array}{l} \bullet \ c(v_i) = i \ , \ 1 \leq i \leq m \\ \bullet \ c(u_i) = m + i, \ 1 \leq i \leq n \\ \bullet \ c(w_i) = \{m + n + 1, m + n + 2, m + n + 1, m + n + 2\}, \ 1 \leq i \leq m \end{array}$

Hence the r-adjacency condition fulfilled and  $\chi_r \left[ C_4 \dot{V} C_n \right] = m + n + 2$ , When  $r = \Delta$ .

#### 5. Conclusion

In this paper we have attained the r- dynamic chromatic number of central vertex join of path graph with path graph, complete graph and cycle graph. Also cycle graph with path graph, complete graph and cycle graph. We can extend this work for central edge join for the same graphs.

#### Acknowledgments

The authors express their gratitude to the anonymous reviewers for their thorough reading, insightful remarks, and helpful suggestions that improved the content of this manuscript.

#### References

- Ahadi A, Akbari S, Dehghana A, Ghanbari M 2012 On the difference between chromatic number and dynamic chromatic number of graphs *Discrete Math.* **312** 2579–2583
- [2] Akbari S, Ghanbari M, Jahanbakam S 2010 On the dynamic chromatic number of graphs Contemp. Math. (Amer. Math. Soc.) 531 11–18
- [3] Akbari S, Ghanbari M, Jahanbekam S 2009 On the list dynamic coloring of graphs Discrete Appl. Math. 157 3005–3007
- [4] Alishahi M 2012 Dynamic chromatic number of regular graphs Discrete Appl. Math. 160 2098–2103
- [5] Dehghan A and Ahadi A 2012 Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number *Discrete Appl.Math.* 160(15) 2142–2146
- [6] Harary F 1969 Graph theory (New Delhi, Narosa Publishing home)
- [7] Jahanbekam S, Kim J, Suil O, and West D B 2016 On r-dynamic coloring of graphs Disc. Appl. Math. 206 65-72
- [8] Jahfar T K, Chithra A V 2020 Central vertex join and central edge join of two graphs AIMS Mathematics 5(6) 7214-7233
- [9] Lai H J, Montgomery B, Poon H 2003 Upper bounds of dynamic chromatic number Ars Combin. 68 193–201
- [10] Montgomery B 2001 Dynamic Coloring of Graphs, ProQuest LLC, Ann Arbor, MI (West Virginia University: Ph.D Thesis)
- [11] Sudha S, Manikandan K 2017 Total coloring of central graphs of a path, a cycle and a star International Journal of Scientific and Innovative Mathematical Research 5(10) 15-22
- [12] Taherkhani A 2016 r-Dynamic chromatic number of graphs Discrete Appl. Math. 201 222–227
- [13] Vernold Vivin J 2007 Harmonious coloring of total graphs, n-leaf, central graphs and circumdetic graphs (Bharathiar University, india: Ph.D Thesis)