Edge odd graceful of alternate snake graphs

To cite this article: M Soleha et al 2022 J. Phys.: Conf. Ser. 2157012002

View the article online for updates and enhancements.

You may also like
Graceful Labelling of Edge Amalgamation of Cycle Graph
D E Nurvazly and K A Sugeng

- Graceful Chromatic Number of Unicyclic Graphs
R. Alfarisi, Dafik, R.M. Prihandini et al.

Super total graceful labeling of some trees IN Khasanah and Purwanto

DISCOVER
how sustainability intersects with electrochemistry \& solid state science research

Edge odd graceful of alternate snake graphs

M Soleha ${ }^{1}$, Purwanto ${ }^{1}$ and D Rahmadani ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences
Universitas Negeri Malang, Indonesia
E-mail: desi.rahmadani.fmipa@um.ac.id

Abstract

Let G be a graph with vertex set $V(G)$, edge set $E(G)$, and the number of edges q. An edge odd graceful labeling of G is a bijection $f: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ so that induced mapping $f^{+}: V(G) \longrightarrow\{0,1,2, \ldots, 2 q-1\}$ given by $f^{+}(x)=\sum_{x y \in E(G)} f(x y)$ $(\bmod 2 q)$ is injective. A graph which admits an edge odd graceful labeling is called edge odd graceful. An alternate triangular snake graph $A\left(C_{3}^{m}\right)$ is a graph obtained from a path $u_{1} u_{2} u_{3} \ldots u_{2 m}$ by joining every $u_{2 i-1}$ and $u_{2 i}$ to a new vertex $v_{i}, 1 \leq i \leq m$. An alternate quadrilateral snake graph $A\left(C_{4}^{m}\right)$ is a graph obtained from vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{2 m}$ by joining every $u_{2 i-1}$ and $u_{2 i}$ to two vertices v_{i} and $w_{i}, 1 \leq i \leq m$, and joining every $u_{2 i}$ to $u_{2 i+1}$ with $1 \leq i \leq m-1$. In this paper, we show that alternate triangular snake and alternate quadrilateral snake graphs are edge odd graceful.

1. Introduction

In this paper, we follow Hartsfield and Ringel [1] for the basic notations, definitions, and terminology. Thus, if G is a graph, then $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively; $p=|V(G)|$ and $q=|E(G)|$ denote the number of vertices and the number of edges of G, respectively. We only consider finite and simple graphs, all graphs have finite number of vertices and finite number of edges, have no loops nor multiple edges.

A labeling of a graph G is an assignment of labels to the vertices or edges or both subject. If only the vertices (or the edges) of G are labeled, the resulting graph is called vertex labeled graph (or edge labeled graph). In a vertex labeling of a graph, traditionally, we label distinct vertices with distinct labels [2]. Many kinds and results of graph labeling can be found in Chartrand et.al [2] and Gallian [3]. These two books are very good resource for graph labeling.

One kind of labeling that has been studied in the literature is graceful labeling. Let G be nonempty graph of order p and size q. The graph G has a graceful labeling if there is an injective function $f: V(G) \rightarrow\{0,1,2, \ldots, p\}$ such that the induced $f^{\prime}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ given by $f^{\prime}(u v)=$ $|f(u)-f(v)|$ for every $E(G)$ is bijective [2]. In [4] it is mentioned that in 1985, Lo introduced a new graph labeling i.e. edge graceful labeling. A graph G with p vertices and q edges which admits edge graceful graph if there exists a bijection $f: E(G) \rightarrow\{0,1,2, \ldots, q\}$ that the induced function f^{+}: $V(G) \rightarrow \sum_{x y \in E(G)} f(x y)(\bmod p)$. A graph which admits an edge graceful labeling is called an edge graceful graph.

In 2009, Solaraiju and Chitra introduced edge odd graceful labeling [5]. An edge odd graceful labeling of G is a bijection $f: E(G) \longrightarrow\{1,3,5, \ldots, 2 q-1\}$ so that induced mapping $f^{+}: V(G) \longrightarrow$ $\{0,1,2, \ldots, 2 q-1\}$ given by $f^{+}(x)=\sum_{x y \in E(G)} f(x y)(\bmod 2 q)$ is injective. A graph which admits
an edge odd graceful labeling is said to be edge odd graceful. They proved that Huffman tree P_{n}^{+}for $n \geq 2$, bistar graph $B_{n, n}$ for n odd, graph $<K_{1, n}: 2>$ for n odd, and double star graph $K_{1, n, n}$ for even n, are edge odd graceful graph [5]. Since then, edge odd graceful labeling of many types of graphs were studied, see for example [4,6-9].

In this paper we study edge odd graceful labeling of alternate triangular snake and alternate quadrilateral snake graphs. The two graphs can be found in [10] and [11], respectively. An alternate triangular snake graph $A\left(C_{3}^{m}\right)$ is a graph obtained from a path $u_{1} u_{2} u_{3} \ldots u_{2 m}$ by joining every $u_{2 i-1}$ and $u_{2 i}$ to a new vertex $v_{i}, 1 \leq i \leq m$. Here we use a definition of an alternate quadrilateral snake graph as follows. An alternate quadrilateral snake graph $A\left(C_{4}^{m}\right)$ is a graph obtained from vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{2 m}$ by joining every $u_{2 i-1}$ and $u_{2 i}$ to two vertices $v_{2 i}$ and $v_{2 i-1}, 1 \leq i \leq m$, and joining every $u_{2 i}$ to $u_{2 i+1}, 1 \leq i \leq m-1$. It is known that alternate triangular snake and alternate quadrilateral snake graphs admit several labeling, see [10] and [11]. In this paper, we show that each of the two graphs admits an edge odd graceful labeling.

2. Main Results

In this section, we show that alternate triangular snake graphs and alternate quadrilateral snake graphs are edge odd graceful.

Theorem 1. Let m be a positive integer. The alternate triangular snake graph $A\left(C_{3}^{m}\right)$ is edge odd graceful.
Proof. Let graph $G=A\left(C_{3}^{m}\right)$ be a graph with a vertex set

$$
V(G)=\left\{u_{i} \mid 1 \leq i \leq 2 m\right\} \cup\left\{v_{i} \mid 1 \leq i \leq m\right\}
$$

and an edge set

$$
E(G)=\left\{u_{2 i-1} v_{i}, u_{2 i-1} u_{2 i}, v_{i} u_{2 i} \mid 1 \leq i \leq m\right\} \cup\left\{u_{2 i} u_{2 i+1} \mid 1 \leq i \leq m-1\right\}
$$

Figure 1 shows graph $A\left(C_{3}^{m}\right)$.

Figure 1. Graph $A\left(C_{3}^{m}\right)$.
The number of vertices of G is
and the number of edges of G is

$$
p=|V(G)|=3 m
$$

$$
q=|E(G)|=4 m-1
$$

and hence,

$$
2 q=8 m-2
$$

Define $f: E(G) \longrightarrow\{1,3,5, \ldots,(2 q-1)\}$ by:
For every $1 \leq i \leq 2 m-1$,
And for every $1 \leq i \leq m$,

$$
f\left(u_{i} u_{i+1}\right)=2 i-1
$$

$$
\begin{gathered}
f\left(u_{2 i-1} v_{i}\right)=8 m-4 i+1 \\
f\left(u_{2 i} v_{i}\right)=8 m-4 i-1
\end{gathered}
$$

as figure 2.

Figure 2. Edge Labeling of $A\left(C_{3}^{m}\right)$.
It is obvious that

$$
\begin{gathered}
\left\{f\left(u_{i} u_{i+1}\right) \mid 1 \leq i \leq 2 m-1\right\}=\{1,3,5, \ldots, 4 m-3\} \\
\left\{f\left(u_{2 i-1} v_{i}\right) \mid 1 \leq i \leq m\right\}=\{4 m+1,4 m+5,4 m+9, \ldots, 8 m-3\}, \\
\left\{f\left(u_{2 i} v_{i}\right) \mid 1 \leq i \leq m\right\}=\{4 m-1,4 m+3,4 m+7, \ldots, 8 m-5\}
\end{gathered}
$$

and

$$
f: E(G) \longrightarrow\{1,3,5, \ldots, 2 q-1\}
$$

is bijective, where $2 q-1=8 m-3$.
We will show that the induced function $f^{+}: V(G) \longrightarrow\{0,1,2, \ldots,(2 q-1)\}$, defined by

$$
f^{+}(x)=\sum_{x y \in E(G)} f(x y)(\bmod 8 \mathrm{~m}-2)
$$

is injective. It is obvious that

$$
\begin{gathered}
f^{+}\left(u_{1}\right)=8 m-2 \equiv 0 \bmod (8 m-2) \\
f^{+}\left(u_{2 m}\right) \equiv 8 m-4 \bmod (8 m-2)
\end{gathered}
$$

For every $1 \leq i \leq m-1$,

$$
\begin{aligned}
& \quad f^{+}\left(u_{2 i}\right)=f\left(u_{2 i-1} u_{2 i}\right)+f\left(u_{2 i} u_{2 i+1}\right)+f\left(u_{2 i} v_{i}\right) \\
& =(4 i-3)+(4 i-1)+(8 m-4 i-1) \\
& =8 m+4 i-5 \\
& \equiv 4 i-3(\bmod 8 m-2),
\end{aligned}
$$

where

$$
1 \leq 4 i-3 \leq 4 m-7
$$

Similarly,

$$
\begin{aligned}
& f^{+}\left(u_{2 i+1}\right)=f\left(u_{2 i} u_{2 i+1}\right)+f\left(u_{2 i+1} u_{2 i+2}\right)+f\left(u_{2 i+1} v_{i+1}\right) \\
& =(4 i-1)+(4 i+1)+(8 m-4 i-3) \\
& =8 m+4 i-3 \\
& \equiv 4 i-1(\bmod 8 m-2),
\end{aligned}
$$

where

$$
3 \leq 4 i-1 \leq 4 m-5
$$

For every $1 \leq i \leq m$, we have

$$
\begin{aligned}
& f^{+}\left(v_{i}\right)=f\left(u_{2 i-1} v_{i}\right)+f\left(u_{2 i} v_{i}\right) \\
& =(8 m-4 i+1)+(8 m-4 i-1) \\
& =16 m-8 i \\
& \equiv 8 m-8 i+2(\bmod 8 m-2), \\
& =4(2 m-2 i)+2(\bmod 8 m-2),
\end{aligned}
$$

where

$$
2 \leq 4(2 m-2 i)+2 \leq 8 m-6
$$

We can see that all the vertex labels are distinct and then f^{+}is injective.
This completes the proof of the theorem.
For example, Figure 3 shows an edge odd graceful labeling of $A\left(C_{3}^{8}\right)$ and $A\left(C_{3}^{7}\right)$

Figure 3. Edge Odd Graceful Graph of $A\left(C_{3}^{8}\right)$ and $A\left(C_{3}^{7}\right)$.
Our first result is on alternate quadrilateral snake graphs $A\left(C_{4}^{m}\right), m \geq 2$. When $m=1, A\left(C_{4}^{m}\right)=$ C_{4}^{1} is a cycle C_{4}. It is easy to see that the cycle C_{4} is not edge odd graceful.

Theorem 2. Let m be a positive integer, for $m \geq 2$. The alternate quadrilateral snake graph $A\left(C_{4}^{m}\right)$ is an edge odd graceful.
Proof. Let graph $G=A\left(C_{4}^{m}\right)$ be a graph with a vertex set

$$
V(G)=\left\{u_{i} \mid 1 \leq i \leq m+1\right\} \cup\left\{v_{i} \mid 1 \leq i \leq 2 m-1\right\}
$$

And an edge set

$$
E(G)=\left\{u_{2 i-1} v_{2 i}, u_{2 i} v_{2 i}, u_{2 i-1} v_{2 i-1}, u_{2 i} v_{2 i-1} \mid 1 \leq i \leq m\right\} \cup\left\{u_{2 i} v_{2 i+1} \mid 1 \leq i \leq m-1\right\}
$$

As figure 4.

Figure 4. Graph $A\left(C_{4}^{m}\right)$.
The number of vertices of G is

$$
\begin{gathered}
p=|V(G)|=4 m \\
q=|E(G)|=5 m-1
\end{gathered}
$$

and hence,

$$
2 q=10 m-2
$$

Define $f: E(G) \longrightarrow\{1,3,5, \ldots,(2 q-1)\}$ by:
For every $1 \leq i \leq m-1$,

$$
f\left(u_{2 i} u_{2 i+1}\right)=8 m+2 i-1
$$

For every $1 \leq i \leq m$,

$$
\begin{gathered}
f\left(u_{2 i-1} v_{2 i}\right)=4 i-3, \\
f\left(u_{2 i} v_{2 i}\right)=4 m+4 i-3, \\
f\left(u_{2 i-1} v_{2 i-1}\right)=4 m+4 i-1, \\
f\left(u_{2 i} v_{2 i-1}\right)=4 i-1
\end{gathered}
$$

As figure 5.

Figure 5. Edge labeling of $A\left(C_{4}^{m}\right)$.
It obvious that

$$
\begin{gathered}
\left\{f\left(u_{2 i} u_{2 i+1}\right) \mid 1 \leq i \leq m-1\right\}=\{8 m+1,8 m+3,8 m+5, \ldots, 10 m-3\}, \\
\left\{f\left(u_{2 i-1} v_{2 i}\right) \mid 1 \leq i \leq m\right\}=\{1,5,9, \ldots, 4 m-3\} \\
\left\{f\left(u_{2 i} v_{2 i}\right) \mid 1 \leq i \leq m\right\}=\{4 m+1,4 m+5,4 m+9, \ldots, 8 m-3\} \\
\left\{f\left(u_{2 i-1} v_{2 i-1}\right) \mid 1 \leq i \leq m\right\}=\{4 m+3,4 m+7,4 m+11, \ldots, 8 m-1\} \\
\left\{f\left(u_{2 i} v_{2 i-1}\right) \mid 1 \leq i \leq m\right\}=\{3,7,11, \ldots, 4 m-1\}
\end{gathered}
$$

and

$$
f: E(G) \longrightarrow\{1,3,5, \ldots, 2 q-1\}
$$

is bijective, where $2 q-1=10 m-3$.
We will show that the induced function $f^{+}: V(G) \longrightarrow\{0,1,2, \ldots,(2 q-1)\}$, defined by

$$
f^{+}(x)=\sum_{x y \in E(G)} f(x y)(\bmod 10 \mathrm{~m}-2)
$$

is injective. It is obvious that

$$
\begin{gathered}
f^{+}\left(u_{1}\right)=4 m+4(\bmod 10 m-2) \\
f^{+}\left(u_{2 m}\right)=12 m-4 \\
\equiv 2 m-2(\bmod 10 m-2)
\end{gathered}
$$

For every $1 \leq i \leq m-1$, we have

$$
\begin{aligned}
& \quad f^{+}\left(u_{2 i}\right)=f\left(u_{2 i} v_{2 i}\right)+f\left(u_{2 i} v_{2 i}\right)+f\left(u_{2 i} u_{2 i+1}\right)+ \\
& =(4 m+4 i-3)+(4 i-1)+(8 m+2 i-1) \\
& =12 m+10 i-5 \\
& \equiv 2 m+10 i-3(\bmod 10 m-2) .
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{+}\left(u_{2 i+1}\right)=f\left(u_{2 i} u_{2 i+1}\right)+f\left(u_{2 i+1} v_{2 i+2}\right)+f\left(u_{2 i+1} v_{2 i+1}\right) \\
& =(4 m+2 i-1)+(4 i+1)+(8 m+4 i+3) \\
& =12 m+10 i+3 \\
& \equiv 2 m+10 i+5(\bmod 10 m-2)
\end{aligned}
$$

For every $1 \leq i \leq m$, we have

$$
\begin{aligned}
& f^{+}\left(v_{2 i}\right)=f\left(u_{2 i-1} v_{2 i}\right)+f\left(u_{2 i} v_{2 i}\right) \\
& =(4 i-3)+(4 m+4 i-3) \\
& =4 m+8 i-6(\bmod 10 m-2),
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{+}\left(v_{2 i-1}\right)=f\left(u_{2 i-1} v_{2 i-1}\right)+f\left(u_{2 i} v_{2 i-1}\right) \\
& =(4 m+4 i-1)+(4 i-1) \\
& =4 m+8 i-2(\bmod 10 m-2)
\end{aligned}
$$

Note that the value of $f^{+}(x)$ is odd if and only if degree of x is odd. Further,

$$
\begin{gathered}
\left\{f^{+}\left(u_{2 i}\right) \mid 1 \leq i \leq m-1\right\}=\{12 m+5,12 m+15,12 m+25, \ldots, 22 m-15\}, \\
\left\{f^{+}\left(u_{2 i+1}\right) \mid 1 \leq i \leq m-1\right\}=\{12 m+13,2 m+23,12 m+33, \ldots, 12 m-7\}, \\
\left\{f^{+}\left(v_{2 i}\right) \mid 1 \leq i \leq m-1\right\}=\{4 m+2,4 m+10,4 m+18, \ldots, 12 m-6\}, \\
\left\{f^{+}\left(v_{2 i-1}\right) \mid 1 \leq i \leq m-1\right\}=\{4 m+6,4 m+14,4 m+28, \ldots, 12 m-2\}, \\
\left\{f^{+}\left(u_{1}\right), f^{+}\left(u_{1}\right)\right\}=\{4 m+4,12 m-4\} .
\end{gathered}
$$

Suppose for some integers $1 \leq i<j \leq m-1$,

$$
f^{+}\left(u_{2 i}\right) \equiv f^{+}\left(u_{2 j}\right)(\bmod 10 m-2) .
$$

Then $1 \leq j-i \leq m-2$, and

$$
\begin{gathered}
12 m+10 i-5 \equiv 12 m+10 j-5(\bmod 10 m-2) \\
10(j-i)=k(10 m-2)
\end{gathered}
$$

for some positive integer k; which is impossible since

$$
k(10 m-2)=10 k(m-1)+8 k>10(j-i)
$$

Thus $f^{+}\left(u_{2 i}\right) \not \equiv f^{+}\left(u_{2 j}\right)(\bmod 10 m-2)$ when $i \neq j$. By using the similar argument, it can be shown that all the vertex labels are distinct, f^{+}is injective.
This completes the proof of the theorem.
For example, Figure 6 shows edge odd graceful labeling of alternate quadrilateral snake graph $A\left(C_{4}^{5}\right)$ and $A\left(C_{4}^{7}\right)$

Figure 6. Edge odd graceful graph of $A\left(C_{4}^{5}\right)$ and $A\left(C_{4}^{7}\right)$.

3. Conclusions

We have shown that alternate triangular snake graph $A\left(C_{3}^{m}\right)$ and alternate quadrilateral snake graph $A\left(C_{4}^{m}\right)$, for anym ≥ 2, are edge odd graceful. However, the problems are still open for graphs $A\left(C_{n}^{m}\right)$ when m, n is a positive integer, $n>4$. We can try to find out wether this graph is edge odd gracefulor not.

Acknowledgment

This research was supported by Research Grant PNBP of Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang 2021.

References

[1] Hartsfield N and Ringel G 1994 Pearls in Graph Theory (London: Academic Press)
[2] Chartrand G, Egan C and Zhang P 2019 How to Label a Graph (Switzerland: Springer International Publishing)
[3] Gallian J A 2020 A Dynamic Survey of Graph Labeling Electron. J. Comb. 8-342
[4] Daoud S N 2017 Edge Odd Graceful Labeling of Some Path and Cycle Related Graphs $A K C E$ Int. J. Graphs Comb. 14 178-203
[5] Solairaju A and Chithra K 2009 Edge - Odd Graceful Graphs Electron. Notes Discret. Math. 33 15-20
[6] Jeba Jesintha J and Ezhilarasi Hilda K 2016 Shell Butterfly Graphs are Edge Odd Gracaeful 109 159-66
[7] Daoud S N 2019 Edge odd graceful labeling of cylinder and torus grid graphs IEEE Access 7 10568-92
[8] Seoud M and Salim M 2016 Further results on edge - odd graceful graphs Turkish J. Math. 40 647-56
[9] Solairaju A, Subbulakshmi S and Kokila R 2017 Various Labelings for Ladder, Cycle Merging with Fan, and Open Staircase Graph 13 1347-55
[10] Sunoj B S and Mathew Varkey T K 2017 Square Difference Prime Labeling for Some Snake Graphs Glob. J. Pure Appl. Math. 13 1083-9
[11] Vaghela U and Parmar D 2020 Difference Perfect Square Cordial Labeling of Snake Graphs Difference Perfect Square Cordial Labeling of Snake Graphs Zeichen J. 6 54-5

