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Abstract. In this paper, generation of thermodynamic losses in the micro-channels of a Solid
Oxide Fuel Cell electrode is discussed. Diffusive-convective equation is implemented to compute
local concentrations of reagents. The model accounts for both the Fick’s, and the Knudsen’s
diffusion. For a number of cases the total losses are decomposed to isolate the contributions of
the diffusion, the current conduction, and the chemical reaction irreversibilities.

1. Introduction
Fuel cells are devices, which allow direct conversion of chemical energy of fuels into electrical
energy. The electrodes of a Solid Oxide Fuel Cell (SOFC) are composed of a porous, multiphase
ceramic-metal composite. Each phase in the composite has a specific transport function. In
an SOFC anode, the oxygen ions are conducted by an oxide phase, electrons obtained in the
half-reaction are collected by a metallic phase, and the gaseous reagents are transported in an
open network of pores. In most cases, the intricacies of SOFC microstructure are accounted for
using macroscopic parameters, such as phase volume fraction or tortuosity. These parameters
can be estimated on the basis of porosimetry or nanotomograpy. The nanotomographic analysis
of an SOFC electrode was first performed by Wilson et al. [1] in 2006. However, the digital
reconstructions of electrode samples may also be used directly to construct a computational
domain for numerically solving three-dimensional transport equations. While uncommon, this
approach has been implemented by several teams during the previous decade [2, 3, 4].

In the present research, a digital reconstruction of an SOFC electrode microstructure is used
to create a three-dimensional, non-continuous computational domain, in which the microscale
transport equations are solved. The resulting spatial distributions of electric potentials and
reagent partial pressures are used to analyze the local irreversibilities, and their direct causes.

2. Methodology
A Nickel-YSZ (Yttrium Stabilized Zirconia) porous anode, fueled with a 97 : 3 mixture of H2

and H2O, is considered. The proposed model included empirical relationships for material and
species properties. Cylindrical Pore Interpolation Model [6] with local linearization was used to
account for the gas flow in the transitional regime between the limits of the continuum, and the
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Figure 1. The electric overpotential of the anodic ion-conducting phase computed in a 3D
microscale mesh. Total overpotential: 0.05 V, Total pressure: 100 000 Pa, hydrogen partial
pressure at the anodic channel boundary: 97 000 Pa, Temperature: 1073 K.

free-molecular diffusion. The mathematical model is based on a system of Poisson differential
equations for each species included in the model: the oxygen ions, the electrons, and the gaseous
reagents, coupled with the Butler-Volmer model for fuel cell reaction rate. The model is based
around the following set of equations:
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where i (A m−3) is the volumetric charge transfer rate, i0 (A m−1) is the equilibrium exchange
current density for the reaction at the Triple Phase Boundary. η (V) is the activation
overpotential, and j (A m−2) is the current density. φel (V), and φion (V) are the electric
potentials of the electron-conducting phase, and the ion-conducting phase, while σel (Ω−1 m−1)
σion (Ω−1 m−1) are their respective conductivities. p (Pa) is the total pressure, pi (Pa) is
the partial pressure of the gas mixture component i. F (A mol−1) is the Faraday’s constant,
R (J mol−1 K−1) is the universal gas constant, Di (m2 s−1) is the specific diffusivity of i, αfwd,
and αbcw are charge transfer coefficients for the forward and the backward anodic reaction
respectively. Superscript ’bulk’ indicates the value at the channel boundary.

The computational domain was constructed using three-dimensional micro-imaging data
obtained with Focused-Ion-Beam Scanning Electron Microscopy (FIB-SEM). The problem is
discretized using Finite-Volume Method, and solved using a Successive Over-Relaxation scheme
to obtain local potential values (see Fig. 3). The numerical simulations were performed using
an in-house code developed in C++.

3. Findings
The model allowed to compute potential distributions within the microstructure (see Fig. 3) of
an SOFC’s anode. Microstructure details and model validation are provided in another paper [5].
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Figure 2. Anodic voltage losses at different electrode thicknesses and temperatures. Total
pressure: 100 000 Pa, Hydrogen partial pressure at the anodic channel boundary: 60 000 Pa.

The results were used for the purpose of a parametric analysis aimed at determining the voltage
loss η (V) occurring due to activation (subscript ’act’), current conduction (subscript ’ohm’) and
concentration (subscripts ’conc’) irreversibilities (see Fig. 2). When the thickness is increased,
the activation losses decrease. At the same time, concentration losses grow due to the increase
in diffusion pathways. Combined, these two effects result in local minima, which become more
apparent as the temperatures increase. Three-dimensional visualizations of selected cases are
presented in Figure 3. It can be seen that the thickness of the active layer is increasing at a
slower rate than the total electrode thickness. For very thin electrodes,the active layer appears
to not be fully developed, suggesting a reaction site deficiency.

4. Conclusions
The results allow for optimization of future microstructure designs, and for proper selection of
the device’s operation parameters. When the thickness is very low, the activation overpotential
is high due to poor availability of the reaction sites. However, beyond an optimal value
(20 µm − 40 µm), additional thickness results in greater losses related to the gas diffusion. An
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Figure 3. Potential of the anodic ion-conducting phase for electrodes of various thicknesses
- a 3D visualization. Simulation parameters: p = 100000 Pa pH2,b = 60000 Pa, T = 1023 K,
j = 2000 A m−2.

increase in temperature T (K) decreases total losses and causes the optima to become more
prominent. While adding thickness to the diffusive layer is often necessary due to its function
as the cell’s mechanical support, low resistance to diffusion should be ensured for the best
electrochemical performance.
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