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Abstract. The structural properties of amorphous nanocarbon films fabricated by laser 
sputtering of a graphite target are investigated by means of Raman spectroscopy. Analysis of 
the spectral features in the region of 100–3600 cm-1 allowed us to determine the allotrope 
composition of the films and the degree of disorder in terms of average crystallite size. The 
results obtained are important for application of such films in the field of electrode coatings. 

1.  Introduction 
Carbon materials, due to a significant variety of their physical and chemical properties, are used in 
various fields, from metallurgy, structural materials, absorbents and filters, to use in catalysis [1], or, 
for example, as additives that modify the properties of plastics [2]. Recently, use of carbon structures 
in electric energy storage devices - lithium-ion batteries [3] – has become one of the most important 
areas of application of such structures. In this area, one of the directions is the use of fine powders of 
amorphous carbon or carbon fibers with high conductivity as additives to cathode materials, usually 
poorly conductive, to ensure the required level of electrical conductivity of electrode layers [4]. In 
another version, various carbon micro- and nanostructured materials are used as anode materials for 
lithium-ion batteries, as an alternative to traditional graphite powders [5]. In this case, the main task is 
to ensure the maximum value of the specific capacity of the anode material in relation to the 
accumulation of lithium atoms. Recently, we have found that coatings of amorphous nanocarbon 
obtained by laser sputtering of a graphite target have an extremely high specific capacity for lithium 
[6]. In this work, preliminary results of studying the properties of the resulting structures were also 
presented. The purpose of this work is to study in more detail the structural properties of amorphous 
nanocarbon obtained by laser evaporation, with the main emphasis on studies by the method of Raman 
spectroscopy. 

2.  Experimental 
Films of amorphous nanocarbon, from a few to tens of microns thick, were obtained by sputtering an 
isostatic graphite target with a Nd:YAG laser with a wavelength of 1.06 μm, a pulse duration of 25 ns, 
and a pulse energy of 200 mJ. The radiation was focused on the target surface into a spot about 1 mm 
in diameter, with the specific radiation power on the target surface being about 1013 W/m2. The 
process was carried out in a vacuum chamber at a pressure of 10-4 Pa. 

Raman spectra were obtained using a Horiba Jobin-Yvon T64000 spectrometer. The use of 
confocal optics and an objective with a magnification of 100×, a numerical aperture of 0.9 and an 
increased focal length (1 mm) made it possible to obtain information from a sample region with a 
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diameter of ~ 1 mm. The spectra of each of the samples were recorded at several points, and averaged 
spectra were used to analyze the structural characteristics. To excite the Raman spectra, a Nd:YAG 
laser with a wavelength of 532 nm was used. To exclude the heating and damage of the samples due to 
the laser radiation, the laser power during measurements was limited to 1 mW. 

3.  Raman spectroscopy of disordered carbon 
For characterization of the films, the method of Raman spectroscopy was used. This technique is 
standard for studying all types of carbon structures: from single-crystal graphite to diamond-like 
nanocrystalline films [7]. When studying nanocarbon films, it allows one to determine the average 
crystallite size [8–11], the fraction of sp3 carbon [12–14], the presence of sp1 carbon chains [15, 16], 
the content of impurities [12, 17, 18], and many other structural factors by analyzing the parameters of 
individual lines of the Raman spectrum. 

Determination of the main type of hybridization and the average crystallite size, which are the key 
parameters for the films under study, is based on the “amorphization trajectory” approach, first 
introduced in [7]. This approach allows one to distinguish the type of structure of the material under 
study (nanocrystalline graphite, sp2 or sp3 amorphous carbon) by analyzing the parameters of the D 
and G lines in the Raman spectra. In particular, the position of the G line and the intensity ratio of the 
D and G lines (I(D)/I(G)) are used for the analysis. The amorphization trajectory goes from 
monocrystalline graphite to tetragonal amorphous carbon, and includes three stages (graphite-
nanographite transition – stage 1, nanographite - amorphous sp2 carbon transition – stage 2, and stage 
3 – amorphous sp2 carbon - amorphous sp3 carbon transition). It should be noted that stage 2 is 
fundamentally different from stage 1 by the presence of topological disorder: while in stage 1 the 
crystallites still have a predominantly hexagonal crystal lattice, then in stage 2 pentagonal and 
heptagonal carbon rings, as well as a large number of dangling bonds, appear in the lattice [12]. With 
the transition from one stage to another, the character of the dependence of the line intensity ratio on 
the crystallite size changes. 

The Raman spectra of nanocarbon films studied in this work were recorded in the region of 100–
3200 cm-1. Spectrum of graphite in this range contains of two main lines: the G line (~1580 cm-1), and 
the 2D line (~2700 cm-1). The G line is associated with vibrations along the sp2 C=C bond and 
corresponds to the vibrational mode E2g in the crystal lattice of graphite; therefore, it is characteristic 
of any carbon compounds with sp2 bonds. In case of amorphous carbons, the frequency of the G line 
depends on the degree of amorphization: it experiences a blueshift from 1580 to 1600 cm-1 with 
increasing amorphization on stage 1, then the frequency gradually falls to ~1510 cm-1 during stage 2 
and rises again to 1570 cm-1 at the end of stage 3 due to the transition of the majority of the sp2 rings to 
olefinic groups, in which the bonds have slightly higher vibrational frequencies [7]. 

The D line is related to the iTO (in-plane TO) phonon at the K point of the Brillouin zone, which 
corresponds to fully symmetric “breathing” vibrations of hexagonal carbon rings. In the Raman 
spectra of an ideal crystal, the appearance of lines corresponding to phonons with a nonzero wave 
vector is prohibited by the selection rules. Violation of the selection rules can occur with the 
participation of crystal lattice defects in the scattering process, or in case of so-called double-
resonance Raman scattering [19]. Thus, the D line can appear in the presence of defects in the crystal 
lattice of hexagonal carbon, and its intensity reflects the number of defects. It is important to note that, 
within the framework of the amorphization trajectory approach, the intensity of the D line associated 
with breathing vibrations of hexagonal carbon rings will increase with increasing defect concentration 
only at the first stage of amorphization, when the crystal structure of the sample is predominantly 
formed by hexagonal rings. With the appearance of dangling bonds, non-hexagonal rings and chains in 
the crystal lattice, the intensity of the D line begins to decrease, and new lines appear in the spectra. In 
this case, the spectrum in the range of 1000–1700 cm-1 is no longer described only with 2 Lorentzian 
G and D peaks, but has a complex structure with up to 6 components [20]. Component D3 corresponds 
to the amorphous sp2 carbon fraction in soot and carbon black, and its intensity reflects the fraction of 
amorphous carbon in the crystal lattice [20]. Component D4 (~1100–1200 cm-1) corresponds to the 
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cumulene carbon sp1 chains with a predominance of carbon-carbon double bonds (C=C), and the high-
frequency part (1980–2100 cm-1) corresponds to polyyne sp1 chains with alternating triple and single 
C–C bonds [15, 16]. When considering the spectra in figure 1a, it can be seen that the intensity of the 
PC band decreases with an increase in the degree of amorphization. This indicates that the fraction of 
sp1 chains in the samples is inversely proportional to the average crystallite size. 

Analyzing the form of the spectra shown in figure 1a, it can be assumed that the studied samples 
are quite close to each other in their structural characteristics. Nevertheless, the analysis of the 
parameters of the spectral lines shows significant differences in the estimates of the crystallite sizes for 
the studied samples. In the presence of various methods for assessing the size of crystallites, the 
question arises as to the choice between them. An estimate using the ratio of the intensities of spectral 
lines can give ambiguous results for several reasons. First, there is still no consensus in the literature 
on which kind of line intensity - peak or integral - should be used for estimation. Second, as mentioned 
above, the dependence of the intensity of the D line on the crystallite size behaves differently 
depending on the stage of amorphization. As a consequence, the same value of the I(D)/I(G) ratio can 
give radically different estimates depending on the stage of amorphization to which the sample is 
assigned. The broadening mechanism of the G line is based on the localization of phonons in 
crystallites and is related to their size much more unambiguously than the I(D)/I(G) ratio. Thus, the 
estimates of the crystallite size based on the FWHM(G) analysis should be more correct. In our case, 
the estimates obtained using expression (1) from the ratio of the intensities of the spectral lines are 
twice as high as the estimates obtained using expression (2). Nevertheless, in order of magnitude, the 
particle size obtained using both expressions is in agreement with the characteristic particle sizes (1–3 
nm) of the samples studied in [26], in the spectra of which, as in our case, two broad bands were 
observed in the 300–900 cm-1 frequency region. 

5.  Conclusion 
Raman spectroscopy was used to determine the composition of amorphous nanocarbon films prepared 
by laser sputtering. It was found that the studied samples are predominantly composed of graphitic 
carbon with the presence of a significant fraction of inclusions of amorphous carbon, sp3-phase, as 
well as polyyne and cumulene chains. In addition, it was shown that the studied samples do not 
contain hydrogen. Using the parameters of spectral lines obtained by approximation of experimental 
data, the sizes of crystallites in the studied samples were estimated. 
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