Paper The following article is Open access

An Experimental Study on High Temperature Corrosion of TP347H Stainless Steel in Molten Chloride and Sulfate

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation Weixin Yu et al 2021 J. Phys.: Conf. Ser. 2101 012064 DOI 10.1088/1742-6596/2101/1/012064

1742-6596/2101/1/012064

Abstract

The corrosion resistance of TP347H stainless steel was evaluated by measuring mass loss in molten salt at 500-650°C. The corrosion mechanism was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The results show that the corrosion resistance of TP347H stainless steel increases with the increase of corrosion temperature. When the temperature is below 600°C, TP347H mainly generate low-stable FexOy, and the oxides such as Fe2O3, Fe3O4, Ni1.43Fe1.7O4 and NiFe2O4 are dissolved with the increase of temperature. NbO with higher stability is formed on the surface at 650 °C, which help Cr2O3 and NiO retain for a longer time. Mn-containing compounds on the surface further improve corrosion resistance of TP347H. The corrosion of TP347H stainless steel is mainly intergranular corrosion, and the temperature range of corrosion is consistent with the melting range of alkali metal chloride. Therefore, the molten alkali metal chloride plays a decisive role in the corrosion of TP347H stainless steel.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.