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Abstract. This paper presents the results of a series of laboratory tests of CLT end-grain
moisture uptake and dry-out. We put CLT test details (TDs) in direct water contact from the
end-grain edge and then left the TDs to dry for two weeks in the laboratory and in an outside
shelter. Half of the TDs had their wet sides attached to another CLT detail. Fibre saturation
point was quickly reached in the bottom part of the TDs during the seven-day water contact.
A tendency of increasing moisture content (MC) was up to 90 mm from the wet edges, but
we did not record MC levels above the critical level at that height. However, MC exceeded
critical levels at 60 mm from the water level. The measured water absorption coefficient Aw

was 3.51×10-3 kg/m2·s0.5. Drying was negligible for the TDs which were in contact with another
CLT detail. Thus, moisture dry-out is very complicated in joints where the CLT end-grain is
covered, such as the exterior wall to foundation or intermediate ceiling connection. The dry-out
of CLT is not expected in a cold and humid outdoor environment once the CLT end-grain has
absorbed moisture even with wet edges exposed to air.

1. Introduction
Wetting of timber structures can have a harmful effect on their durability [1–3] and could lead
to adverse health effects due to microbial growth [4–7]. Pasanen et al. [8] brought out that
capillary absorption of water in wood-based materials results in rapid fungal contamination
and that mould growth is abundant when the moisture content (MC) is above 20%. Olsson [9]
reported that the probability of mould growth is very high when timber is exposed to free water.
In a more recent study, Olsson indicated that it is very probable that cross-laminated timber
(CLT) will get wet and develop mould growth if constructed without weather protection [10].
Olsson observed that ”water does not easily absorb into the perpendicular fibres or through glued
layers” thus indicating that the wetting of end-grain is more critical. Kalbe, Kukk and Kalamees
observed the construction of a CLT building in Estonia and identified that the most critical areas
of CLT regarding wetting are the joints where the end-grain portion is exposed [11]. Niklewski
et al. [12] studied the moisture conditions of rain-exposed glue-laminated timber members and
measured the highest MC in exposed end-grain details. It is thus evident that the end-grain
parts of timber details are the most vulnerable due to moisture. However, CLT panel cut
edges differ from the end-grain sides of typical glue-laminated timber members due to there
being both end-grain and tangential wood faces which could have cracks and gaps between
them. This could affect the moisture uptake and dry-out characteristics of wetted CLT panels.
Previous studies have described the hygrothermal characteristics of CLT, but have concentrated
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on moisture transport perpendicular to grain [13–15]. Öberg and Wiege discuss that end-grain
water uptake is crucial for wood and CLT panels, but state that end-grain water intrusion was
not part of their calculations [16].

This paper presents the laboratory measurements of water uptake in the end-grain of CLT
panels and subsequent drying under laboratory and outdoor conditions considering dry-out
limiting factors which may occur in intermediate ceiling or foundation joints. Knowledge about
these characteristics help to design better solutions for moisture-safe CLT construction.

2. Methods
2.1. Test details
Twelve test details (TDs) were prepared from a five-layer CLT panel obtained from a local
producer in Estonia. The panel was produced in a controlled environment and had an initial
MC of ≈ 12% upon delivery. The TDs had a width and height of 400 mm and a thickness
of 100 mm. Three edges of the TDs were covered with a liquid-applied membrane coating to
prevent moisture transfer through these edges. The side surfaces were left untreated. Thereby,
one TD corresponds to one 400 mm by 400 mm portion of a larger uninsulated CLT wall panel
where the three end grain edges would be in contact with timber (i.e., with surrounding parts of
the larger panel, rather than air) and the side surfaces would not yet be covered. The bottom
end grain edge was left untreated (Figure 1). This mimics a scenario where the CLT panel is
installed on site and is open to water contact from the bottom connection (e.g., exterior wall
to foundation connection) and insulation or any other layers are not yet installed providing a
possibility of moisture dry-out through the sides. The TDs were left to stabilise for two weeks
in a controlled environment before the wetting started.

2.2. Test setup for moisture uptake and subsequent drying
A moisture uptake test was prepared where the untreated bottom end-grain edges of the TDs
were held in constant water contact throughout seven days (Figure 2). A similar situation could
occur on the construction site if the CLT panels had been installed without weather protection
and rainwater had accumulated under the CLT edge. Such occurrences have been documented
by Kalbe, Kukk, and Kalamees [11].

Figure 1. Dimensions of a test detail (TD).
Location of the moisture measurement points
(red dots) shown on a diagram of the TD.

Figure 2. Test detail suspended above water
with ≈ 2 mm in water contact.
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Water level was kept constant at about 1 mm to 2 mm above the bottom level of the
TDs (Figure 2) by regularly adding small amounts of water to the container. Special care
was taken to ensure that the water contact remained constant and that the TDs would be level
regarding the water surface. Blunt pins were used under the TDs to maximise the water contact
and eliminate possible surface effects. Blue dye was added to the water to better illustrate the
moisture transport in the CLT structure. The TDs were cut in half after the drying sequence
and the moisture ingress was further inspected visually.

The TDs were held in water contact for 168 h at indoor conditions and thereafter numbered
(TD13–TD24) and divided into four groups for the drying sequence: 1) TDs in indoor air with
the wet surface exposed, 2) TDs in outdoor air with the wet surface exposed, 3) TDs in indoor
air with wet surface against another CLT detail that inhibits moisture dry-out and 4) TDs in
outdoor air with the wet surface against another CLT detail.

The TDs, which were connected to other CLT details, describe a situation where the wetted
area exhibits moisture trapping conditions. This is similar to exterior wall to foundation or
exterior wall to intermediate ceiling connection where the end grain edge is on the foundation
construction or intermediate ceiling slab [11]. If there is a hydro-insulation layer on top of the
foundation structure or a moisture barrier on top of the intermediate ceiling slab and water
had gotten between this layer and the CLT panel on top, the moisture dry-out would be rather
limited. In this sense, the CLT detail that was connected to the TDs in this study is a rather
modest moisture barrier, because timber absorbs some water and thus pulls away moisture
from the TD. However, the timber still exhibits vapour retarding properties (compared to freely
drying surfaces that are open to ambient air). This approach was chosen because it will establish
a base value and if more vapour retarding materials are used on the connection, the moisture
dry-out would be even slower than described in this study.

The air temperature and relative humidity (RH) in the laboratory and in the outdoor shelter
were measured with a Hobo UX100-023 data logger with its external sensor about .5 m from
the TDs. The average ambient air temperature in the laboratory during the drying sequence
was +21.6 ◦C (standard deviation, s = 0.8 ◦C) and the average RH was 28.6% (s = 5%). The
water vapour pressure in the room was thus between 580 Pa and 910 Pa. Assuming an RH of
≈ 100 % at the wet TD edge, the corresponding water vapour pressure at the wet CLT surface
was ≈ 2600 Pa. The difference in the water vapour pressure between the surrounding indoor
air and the wet surface describes a situation with good ambient drying potential. The average
air temperature in the sheltered but ventilated outdoor environment was +2.1 ◦C (s = 2.7 ◦C)
and the average RH was 92% (s = 5%). The corresponding water vapour pressure was between
500 Pa and 830 Pa. The water vapour pressure at the wet CLT surface in the outdoor conditions
was between 580 and 860 Pa, being often times equal to the ambient air water vapour pressure.
The drying potential was thereby marginal.

2.3. Measurements
Moisture content measurements were made according to the EN 13183-2:2002 standard [17].
A calibrated Logica Holzmeister LG9 NG electrical resistance-based wood moisture meter was
used. The expanded uncertainty was 0.8 % upon calibration for MC values between 12% and
22%. This increases notably when timber cell walls are completely saturated with water (fibre-
saturation point ≈ 30% MC), however, in this paper we have opted to report the measurements as
is. The high values that indicate a MC over the fibre-saturation point help to describe the extent
of wetting (e.g., just about at fibre-saturation point or certainly exceeding it). Nevertheless, if
the structure has wetted to fibre-saturation point, there is a large risk of damage due to microbial
growth or swelling and shrinkage.

All MC measurements were done with 60 mm long Teflon insulated pins that were attached
to a ram-in electrode. The pins had 10 mm long uninsulated peaks that made it possible to
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measure the MC at different depths, depending on how far the electrodes were rammed in. MC
was measured on every TD at two depths: 5 mm and 50 mm from the surface at five height
levels from the bottom of the TD (at 30 mm, 60 mm, 90 mm, 120 mm and 150 mm from the
water level (Figure 1). Thus, a total of ten MC measurements were made per one TD. The
5 mm deep measurement points describe MC in the outer ply of the CLT and the 50 mm deep
measurement points describe the conditions in the inner (3rd) ply of the CLT (5 layers in total).
Both timber board layers were in the same direction and had the end-grain part exposed to free
water. The measurements were done daily throughout the test period from wetting to drying.

The TDs were also weighed regularly (every 2h for the first 6h and every 24h afterwards) with
a Kern DS 30K0.1L platform scale with an expanded uncertainty of 0.8 g for loads up to 10,000 g.
Every TD was also photographed from one side before it was put back into water contact. Water
uptake rate and water absorption coefficient were calculated on the basis of these measurements.
The test was performed largely according to the European standard EN ISO 15148 [18], which
provides the procedure to determine the water absorption coefficient of a building material
by partial immersion. The difference with our test and the standard procedure was that the
standard requires coating of all sides, but we coated only the end-grain sides and top surface.
This was necessary for the additional dry-out sequence of the test.

2.4. Critical moisture content
For the estimation of the criticality of MC, we used the limit value of 16% (mould growth
initiation). Gradeci et al. made a systematic literature review about mould growth criteria and
reported that the minimum RH requirements for mould growth initiation varied from 70% to
85%, while most reviewed studies indicated mould growth when RH was at least 80% [19]. The
latter corresponds to a timber MC of ≈ 16% [20] at temperatures ≈ 0–20 ◦C. Mould growth is
also affected by exposure time and temperature [21], but in this study we focused on the MC
distribution and thus established only a critical MC level for the evaluation of results.

3. Results
During three weeks, a total of about 2800 MC measurements were done. Figure 3 summarises
the results and several effects become evident. The upper five plots describe the MC conditions
in the outer 5 mm surface layer of the TDs and the bottom plots describe the MC in the 50 mm
deep middle layer of the TDs. Moisture content measurements taken from various heights from
the water level are presented on separate plots (from 30 mm up to 150 mm, see Figure 1 for a
graphical representation of the measurement points).

At 90 mm and above (from the water level), the MC decreased in the 5 mm deep (surface)
measurement points during the wetting period due to the dry ambient air. This indicates
that the moisture absorbed from below did not reach the measurement points at that level.
Though, we observed some cases where moisture stains reached up to 130 mm adjacent to the
measurement points. The trend of decreasing MC in the surface level continued for the TDs
which were left to dry in the indoor environment. However, the TDs which were put to the
outside environment started to absorb moisture from the ambient air and the MC increased
above the critical level. The equilibrium MC was > 22% in the outside environment (calculated
with the equation 4-5 given in [20] with the average outside temperature of ≈ 2 ◦C and RH
92 %). Thus, the increase in the surface MC was to be expected. This effect was not evident
for the middle layer measurements taken 50 mm deep. However, the measurements indicated
moisture redistribution in the middle layer up to 90 mm high, where a slight upwards trend of
the MC levels was visible. The redistribution of moisture in the middle of the TDs was very
clear for measurements up to 60 mm above the water level, where the MC had an increasing
trend for all TDs regardless of conditions throughout the entire test period.
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Figure 3. Measured MC in the TDs over wetting and drying. The upper five plots describe
the MC in the surface layer (5 mm deep) of the TDs in different heights (Figure 1) from the
water level and the bottom five charts describe MC in the middle layer of the TDs (50 mm
deep). Each colour represents a different TD.

Further analysis of the results showed that MC in the middle layer of the TDs, which had
another CLT detail attached to the wet base, did not go below 20% even in the TDs that were
left drying in the inside air conditions (Figure 4, left). MC did decrease in the surface layer
(Figure 4, right), but only for the TDs that dried indoors.

The water uptake rate (average of every TD) was 200 g/(m2·h) for the first two hours,
then decreased quickly to about 85 g/(m2·h) during the next four hours and then decreased
gradually during the next 70 hours to about 20 g/(m2·h) where it stabilised (Figure 5). The
water absorption coefficient Aw was 3.51×10 -3 kg/m2·s0.5 (calculated as per EN ISO 15148 [18]).

The added blue dye illustrated moisture transport on the CLT surface. The results reflected
the electrical resistance-based MC measurement adequately from the surface layer. Heterogenic
properties of wood were also visible. Figure 6 shows photos of TD20 where the water level at
MC measurement points was lower than just next to the measurement points. The main water
level stain marks did not rise above 130 mm in any test detail during the seven-day wetting
period, but there were few instances where small stain marks were visible higher up in cracks
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and ply joints. However, the stain line inside the TDs did not correlate with the measured MC
in the middle layer. This was probably because the dye trapped in the lowest few millimetres of
the TD and did not reach further. Thus, the visual inspection was impractical inside the TD.
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Figure 4. MC at 30 mm from the bottom of the TDs that had wet edges against CLT.
Measurements from the middle (50 mm deep, left) and surface (5 mm deep, right) layer.

Figure 5. Water uptake rate during the test as an average of every TD.

Figure 6. Photos of TD20 at 2, 29 and 168 hours after the start of water contact. Water was
dyed blue and left stains on the timber surface. Red dots mark the MC measurement points.

4. Discussion
Our findings show that the most vulnerable area to moisture damage leading from water ingress
from under a CLT panel through the end-grain side is up to a height of 60 mm from the bottom
of the panel. There is a tendency of rising MC in the middle layer of the TDs up to 90 mm high,
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but we did not record MC levels above the critical level at that height during the seven-day
continuous wetting period and 14-day drying period afterwards. A greater risk to dampness
related problems in the higher areas are on the surface and more due to outside environment
conditions. However, in low temperature conditions, the probability of mould growth is low [19].

Measurements from the bottom area of the TDs (30 mm from the water level) indicate that
fibre saturation point was quickly reached in the bottom part of the TDs in both surface and
middle layers. During the two-week drying period, it became evident that there is no drying
potential even with wet edges exposed to air in the cold and humid outside environment (t ≈ 2 ◦C
and RH 92 %, which approximate to the February averages in the Estonian moisture reference
year for mould growth criticality [22]). Drying was also negligible in the indoor environment for
the TDs which were in contact with another CLT detail. This suggests that moisture dry-out
is very complicated for construction joints where the CLT end-grain is covered, such as the
exterior wall to foundation or intermediate ceiling connection. It is possible that moisture stays
in the CLT panel bottom part until the construction process reaches stages where temperature
around the panel is suitable for mould growth. These findings show that moisture redistribution
is probable for up to 90 mm from the water contact surface. This implies that MC in the
area could exceed the critical level well after the initial wetting incident and thus would be
susceptible to mould growth. Moreover, Li and Wadsö reported that fungal activity is greater
during moisture desorption process than absorption at the same RH levels [23]. Researchers
have suggested to use whole site weather protection for timber buildings [24] and although this
would help to minimise the risk of wetting, incidents might still occur. We propose to use end-
grain protection on CLT panels regardless of site weather protection, because the poor dry-out
characteristics and possible moisture trapping conditions in several end-grain joints.

Previous studies have measured the water absorption coefficient (Aw) of CLT, but have
determined it with the CLT panel face in water contact and not for the end-grain cut edge in
water contact. AlSayegh has reported that the Aw for the side surfaces of CLT is 1.6–1.7×10 -3

kg/m2·s0.5 [14, 15]. The European CLT samples from a study by Lepage had an Aw ≈
1.1×10 -2 kg/m2·s0.5 [25]. In a recent study by Kordziel et al. Aw was also calculated for the
side surfaces of CLT and was ≈ 2.5–2.8×10 -3 kg/m2·s0.5 [13]. Longitudinal moisture transport
in wood is greater than moisture transport perpendicular to grain [20]. This is evident when
comparing our results with the ones of Kordziel et al. and AlSayegh, where the Aw value we
calculated was greater. However, Lepage reported higher values of Aw for moisture transport
perpendicular to grain. This could be influenced by different wood species and glue formulas.
Measured values of Aw for softwoods are in the range ≈ 1–1.6×10 -2 kg/m2·s0.5 in the longitudinal
direction and ≈ 1–7×10 -3 kg/m2·s0.5 in the transverse directions [20]. It seems that regarding
the moisture absorption coefficient, CLT end-grain acts more like the transverse direction in
regular timber.

5. Conclusion
In this paper we characterised the water uptake and subsequent moisture dry-out of
CLT panels from the end-grain edge. The measured water absorption coefficient Aw was
3.51×10 -3 kg/m2·s0.5.

Taken together, our results from the drying sequence suggest that if gotten wet, the CLT end-
grain edges will not dry out in a timely manner, especially the parts of panels where moisture
trapping conditions occur.

We suggest to protect the end-grain edges of CLT panels with a moisture barrier that also
prevents water from getting between the CLT and the barrier itself. We reccomend to apply the
barrier before the delivery of CLT panels on site and use the barrier regardless of other weather
protection practices to minimise the risk of wetting in joints where moisture trapping conditions
could occur.
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