This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Comparison of pharmacokinetics and biodistribution of laser-synthesized plasmonic Au and TiN nanoparticles

, , , , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Anton A Popov et al 2021 J. Phys.: Conf. Ser. 2058 012004 DOI 10.1088/1742-6596/2058/1/012004

1742-6596/2058/1/012004

Abstract

Plasmonic nanostructures offer wide range of diagnostic and therapeutic functionalities for biomedical applications. Gold nanoparticles (Au NPs) present one of the most explored nanomaterial in this field, while titanium nitride nanoparticles (TiN NPs) is a new promising nanomaterial with superior plasmonic properties for biomedicine. However conventional chemical techniques for the synthesis of these nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au and TiN NPs offer exceptional purity (no contamination by by-products or ligands) and unusual surface chemistry. Therefore, these NPs present a viable alternative to chemically synthesized counterparts. This work presents comparative analysis of pharmacokinetics and biodistribution of laser-synthesized 20 nm Au and TiN NPs under intravenous administration in mice model. Our data show that Au NPs and bare TiN NPs are rapidly eliminated from the blood circulation and accumulate preferentially in liver and spleen, while coating of TiN NPs by hydrophilic polymer polyethylene glycol (PEG) significantly prolongates blood circulation time and improves delivery of the NPs to tumor. We finally discuss potential applications of laser synthesized Au NPs in SERS, SEIRA and electrocatalysis, while TiN nanoparticles are considered as promising agents for photothermal therapy and photoacoustic imaging.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2058/1/012004