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Abstract. This study presents the effects of spatial resolution anisotropy on an isotropic 

turbulence field. Here, this turbulence field is steady. In order to set the anisotropy of the spatial 

resolution, the accuracy order of the viscosity terms is set to be anisotropic. The convection and 

viscosity terms are discretized using the second-order or fourth-order central difference schemes. 

The Reynolds number dependence of the turbulence statistics is used to examine this influence. 

The effects of resolution anisotropy on the small-scale turbulent field obtained by longitudinal 

derivatives as well as large-scale turbulent fields are small. On the other hand, the small-scale 

turbulent field obtained by lateral derivatives is significantly affected by the anisotropy of 

resolution in the low Reynolds number condition. 

1.  Introduction 

Numerical analysis [1] is considered to be the third method in addition to experiments and theoretical 

analysis (e.g., [2,3]). The background to this is the rapid development and spread of computers in recent 

years. Numerical analysis is widely used industrially because it often has advantages in safety and low 

cost compared to experiments. Numerical analysis is a primary tool for fundamental research because it 

can simulate complex phenomena that are difficult to measure physically. In computational fluid 

dynamics, the governing equations of flows are solved numerically, and the flow field is reproduced by 

using computational resources to elucidate and predict various flow phenomena. 

The central difference formula that discretizes the convections term appropriately without 

introducing high-order numerical viscosity is often used for simulating incompressible turbulence. Here, 

the high-order discretization schemes are also used for discretizing the convection terms. The accuracy 

for discretizing the viscous terms can also affect the observed results of the turbulence. The derivative 

terms discretized by using the finite-difference approximations are underestimated. Therefore, a 

sufficiently high spatial resolution should be set to be negligible the discretization error. Also, effects of 

conservation error of kinetic energy are often approached by previous works (e.g., [4]). This previous 

study proposed a series of discretization schemes for the convection terms with negligible conservation 

error of kinetic energy. This scheme is widely used to simulate incompressible flows by previous works. 

There is previous works which focus on the effects of spatial resolution of viscous terms on steady 

turbulence (e.g., [5]). Spatial resolution can be anisotropic around the wall when turbulent flows on the 

wall are simulated. This study considers that the effects of small-scale anisotropy on the turbulence field 

should be studied. Therefore, the purpose of this study is to clarify the effects of small-scale anisotropy 
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due to the resolution anisotropy of viscous terms. To approach this issue, the present study focuses on 

the Reynolds number dependence of the turbulent kinetic energy and fundamental statistics in isotropic 

turbulence. We also investigate the Reynolds number dependency of statistics for quantitating the 

anisotropy of the small-scale turbulence. 

Table 1. Numerical cases set based on the accuracy order for discretizing the convection and 

viscous terms. 

 Convection terms Viscous terms 

Directions x y z x y z 

Case 222-222 2nd order 2nd order 2nd order 2nd order 2nd order 2nd order 

Case 222-444 2nd order 2nd order 2nd order 4th order 4th order 4th order 

Case 222-424 2nd order 2nd order 2nd order 4th order 2nd order 4th order 

Case 444-444 4th order 4th order 4th order 4th order 4th order 4th order 

2.  Methods 

The governing equations of the flow field are the continuity equation and the Navier-Stokes equations 

shown as follows: 

  

∇ ∙ 𝒖 = 0 and 
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖 = −∇𝑝 +

1

Re
∇2𝒖 + 𝑭. (1) 

  

Here, u, p and Re are velocity vector, pressure, and Reynolds number, respectively, and F is an external 

force term according to the linear forcing method [6-8], and is given as follows. 

  

𝑭 = 𝐶𝒖𝐹. (2) 

  

This method is used to generate steady turbulence by giving a component of the external forcing term 

in proportion to the velocity component.  

The components (𝑢𝑥
𝐹 , 𝑢𝑦

𝐹 , 𝑢𝑧
𝐹) of the velocity vector 𝒖𝐹 is given based on Goto and Vassilicos [9] as 

follows as the setting of the external force term that generates the isotropic steady turbulence.  
  

𝒖𝒙
𝑭 = −𝐜𝐨𝐬(𝒙) 𝐬𝐢𝐧(𝒚), 𝒖𝒚

𝑭 = 𝐬𝐢𝐧(𝒙) 𝐜𝐨𝐬(𝒚), and 𝒖𝒛
𝑭 = 𝟎. (3) 

  

These velocity components are set based on Taylor's analytical solution. Here, the velocity vector 
giving this external force term has the following characteristics: 
  

∇ ∙ 𝒖𝐹 = 0 and ∇2𝒖𝐹 = −𝒖𝐹. (4) 

  

The external force term that produces the isotropic turbulence is set by combining the three 
components. The terms of external force applied are shown below. 
  

𝑢𝑥
𝐹 = (2 √3⁄ )(−cos(𝑥) sin(𝑦) + cos(𝑥) sin(𝑧))  

𝑢𝑦
𝐹 = (2 √3⁄ )(− cos(𝑦) sin(𝑧) + cos(𝑦) sin(𝑥)) (5) 

𝑢𝑧
𝐹 = (2 √3⁄ )(−cos(𝑧) sin(𝑥) + cos(𝑧) sin(𝑦))  

  

The isotropic external force term also has the properties of Eq. (4), similar to the anisotropic external 
force term. 
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Figure 1. (a) Visualization of the instantaneous field of the present turbulence using isosurface of the 

static pressure fluctuation. (b) Turbulent Reynolds number as a function of computational Reynolds 

number Re. 

The Smagolinsky model used in the LES is a vortex viscosity model with a typical length of filter 
width ∆ and is the most basic SGS model that has been used for many years. The Smagolinsky model is 
based on the assumptions of local equilibrium and eddy viscosity [1]. The Smagolinsky model is 
equivalent to a zero equation model and there is no need to solve the transport equation when calculating 
the SGS stress. There is a parameter dependency that the optimum value of the model constant Cs differs 
depending on the flow field. In the present analysis, a value of Cs is set to 0.0573. This value of the 
model constant is given based on results of direct numerical simulation for isotropic turbulence. 

The viscosity terms are linear and are analyzed by the second-order derivative. In the present analysis, 
the second-order and fourth-order difference schemes are used for discretizing the viscous terms. In the 
discretization of the viscosity term, the anisotropy of the spatial resolution is set by using the second-
order scheme for the transverse direction and the fourth-order scheme for the two directions. The 
convection terms are discretized by second-order and fourth-order discretization schemes as used in a 
previous study [10]. Here skew-symmetric form is used for discretizing the convection terms. In the 
present analysis, kinetic energy conservation is explicitly held because of using the skew-symmetric 
form. 

In this study, the numerical conditions were set as follows. The staggered grid system is used as the 

calculational grid. The size of the computational domain is L3 = (2π)2. The constant of the linear forcing 

is C = 1. The initial velocity field is isotropic flow field. The computational Reynolds number is Re = 

10, 20, 30, 50, 100, 200, 300, 500, 700, 1000. The number of  grid points is N3 = 323. The time integration 

method is the fourth-order Runge-Kutta method. The pressure equation is solved using the fast Fourier 

transform. The fractional step method was applied to the coupling of the governing equations. Table 1 

summarize present numerical cases. 

3.  Results and Discussion 

Figure 1(a) shows the observed vortical structures for the condition of Re = 300 and pressure p = − 3. 

Here the isosurface of static pressure fluctuation is used to visualize the large-scale structure. As shown 

in the figure, a typical large-scale structure is found in the present isotropic steady turbulence. Figure 
1(b) shows the Reynolds number dependence of the turbulent Reynolds number. Here, the turbulent 
Reynolds number Re𝜆 is defined as follows: 

101 102 103101

102

103

R
e 

Re

 Case 222-222
 Case 222-444
 Case 222-424
 Case 444-444

(a) (b)
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Re𝜆 = √
〈𝑢2〉+〈𝑣2〉+〈𝑤2〉

3
𝜆Re, where 𝜆2 = {

〈𝑢2〉

〈(𝑑𝑢 𝑑𝑥⁄ )2〉

〈𝑣2〉

〈(𝑑𝑣 𝑑𝑦⁄ )2〉

〈𝑤2〉

〈(𝑑𝑤 𝑑𝑧⁄ )2〉
}

1

3
. (6) 

  

Where λ is the Taylor micro scale. As shown in the figure, the values of the turbulent Re number for 

Case 222-222 are smaller than those for the other cases. Because values for Case 222-444 agree with 

those for Case 444-444, the effects of the accuracy order for discretizing the convection terms are small. 

Values of the turbulent Reynolds number are larger than 150 for the computational Reynolds number 

values larger than 300. Therefore, small-scale turbulence is considered to be isotropic in the conditions 

of higher Reynolds numbers.  

 
Figure 2. Turbulence statistics characterizing the large-scale structure. (a) Turbulent kinetic energy, 

(b) Large-scale anisotropy, and (c) root mean square value of statics pressure fluctuation. 

 

Figure 2(a) shows the Reynolds number dependence of the turbulent kinetic energy. As shown in the 

results of Case 444-444, the profile of the turbulent kinetic energy has a local maximum around the 

condition of Re = 200. Values of Case 222-222 are found to be smaller than those of Case 444-444. By 

setting the higher-order accuracy for the viscous terms, this decrement can be reduced as compared to 

Case 222-444 with Case 222-222. As shown in the results, the difference in accuracy order of viscous 
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terms is significant in the results of the present analysis. Figure 2(b) shows the Reynolds number 

dependence of the large-scale anisotropy of velocity field. Here, the large-scale anisotropy is defined as 

follows: IL = v2 / u2. As shown in the figure, the anisotropy obtained for Case 222-222 and Case 222-

444 is validated to be unity. Although, when the Reynolds number is small, there is a slight anisotropy 

in the results of Case 222-424, a value of the anisotropy approaches to unity for higher Reynolds number 

condition. Figure 2(c) shows the Reynolds number dependence of the root mean square (RMS) value of 

static pressure fluctuation (e.g., [11]). As shown in the results of Case 444-444, an RMS value is 

decreased as the computational Reynolds number increases in the higher Reynolds number region. 

Although results on the RMS values of static pressure fluctuation depend on the spatial resolution, the 

effects of the anisotropy of spatial resolution on the RMS values are small as comparing results of Case 

222-444 to those of Case 222-424. 

 
Figure 3. Effects of the spatial resolution anisotropy on the small-scale anisotropy. (a) small-scale 

anisotropy obtained using the longitudinal derivatives, and (b) small-scale anisotropy obtained using 

the static pressure fluctuation. 

 

 
Figure 4. Effects of the spatial resolution anisotropy on the small-scale anisotropy obtained using the 

lateral derivatives. (a) Isxy and (b) Iszz, where the definitions are shown in Equation (7). 

101 102 1030

1

2

3

4

I s
 =

 (

v/

y)

2 
 / 
(

u
/

x)
2 

Re

 Case 222-222
 Case 222-444
 Case 222-424

101 102 1030

1

2

3

4

 Case 222-222
 Case 222-444
 Case 222-424

Re

I p
 =

 (

p
/

y)
2 

 / 
(

p
/

x)
2 

(a) (b)

101 102 1030

1

2

3

4

I s
zz

 =
 (

v/

z)

2 
 / 
(

u
/

z)
2 

Re

 Case 222-222
 Case 222-444
 Case 222-424

101 102 1030

1

2

3

4

Re

I s
xy

 =
 (

v/

x)

2 
 / 
(

u
/

y)
2   Case 222-222

 Case 222-444
 Case 222-424

(a) (b)



4th Int. Conf. on Material Strength and Applied Mechanics (MSAM 2021)
Journal of Physics: Conference Series 2047 (2021) 012008

IOP Publishing
doi:10.1088/1742-6596/2047/1/012008

6

 

 

 

 

 

 

Figure 3(a) shows the Reynolds number dependence on the small-scale anisotropy of the velocity 

field. Here, the anisotropy of the small-scale velocity field is defined as follows: Is = (v/y)2 / 

(u/x)2. As shown in the figure, the small-scale velocity field is isotropic for the results of Case 222-

222 and Case 222-444. When the spatial resolution is anisotropic shown as in Case 222-424, there is the 

Reynolds number range where the small-scale velocity field is slightly anisotropy. Figure 3(b) shows 

the Reynolds number dependence on the small-scale anisotropy of the static pressure field. Here this 

anisotropy value is given as follows: Is = (p/y)2 / (p/x)2. As shown in the figure, in Case 222-222 

and Case 222-444, where the spatial resolution is isotropic, the static pressure fluctuation field on a 

small scale is isotropic. The small-scale static pressure fluctuation field in Case 222-424 is slightly 

anisotropic. This anisotropy increases as the computational Reynolds number decreases. 

In this study, in addition to the small-scale fluctuation field obtained using the longitudinal derivative, 

the anisotropy of the field obtained using the lateral derivative is also investigated. Here, two definitions 

are used in this study to calculate the anisotropy of the small-scale fluctuation field using the lateral 

derivative.  

  

𝐼𝑠𝑥𝑦 =
〈(𝑑𝑣 𝑑𝑥⁄ )2〉

〈(𝑑𝑢 𝑑𝑦⁄ )2〉
 and 𝐼𝑠𝑧𝑧 =

〈(𝑑𝑣 𝑑𝑧⁄ )2〉

〈(𝑑𝑢 𝑑𝑧⁄ )2〉
. (7) 

  

As shown in Figure 4 (a) and (b), the fluctuation fields obtained in Case 222-222 and Case 222-444 

are considered to be isotropic. On the other hand, the fluctuation field of Case 222-424 is significantly 

anisotropic. The magnitude of this anisotropy increases as the computational Reynolds number 

decreases. When the computational Reynolds number is small, the anisotropy obtained by using the 

lateral derivative of the fluctuation field of Case 222-424 is much larger than that obtained by using the 

longitudinal derivative. 

4.  Conclusions 

The purpose of this study is to numerically study the fundamental characteristics of the generated steady 

turbulence by giving an isotropic external force term using the linear forcing method. In conducting the 

present analysis, we focused on the Reynolds number dependence of the turbulent statistics and the 

effect of the spatial resolution anisotropy of the viscous terms in the governing equations. 

As shown in the results on the turbulent Reynolds number and the visualization results, the turbulent 

field used in this study is validated to be a turbulent flow sufficiently developed. Also, as shown in the 

results of the Reynolds number dependence of the large-scale turbulence statistics, spatial resolution 

accuracy of the viscous terms affects the turbulence statistics in the higher Reynolds number range. 

For the results on the anisotropy of small-scale turbulence field, the effects of the spatial resolution 

anisotropy on the small-scale field are more significant in the anisotropy obtained using the lateral 

derivatives. 

This study investigated the effects of spatial resolution anisotropy on the isotropic turbulent fields. 

In engineering applications, there are cases where anisotropic turbulence field, such as wall turbulence, 

is analyzed with anisotropic resolution. As a future study, the present study considers that the effects of 

anisotropic spatial resolution on the anisotropic turbulent field should be investigated. 
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