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Abstract. The load transfer systems of racks and nut columns are important components of the 
rack and pinion vertical shiplifts which bear the ship chambers and transfer the ship chamber 
loads in special cases to the tower columns. Aiming at exploring a design based calculation 
method for the nut column, racks and the associated second stage embedded parts, this paper 
proposes the double elastic foundation beam model for both the rack load transfer systems and 
nut column load transfer systems by which the formulas for describing the axial distribution of 
internal forces and deflections of the rack, column nut and the associated second stage embedded 
parts are derived. The calculation method is demonstrated by the description of the application 
in the Three-Gorges shiplift. 

1. Introduction 
In engineering design of a hydro-power project with the requirement of keeping water transportation, a 
navigation building is need to be considered as a part of the project[1]. As one of two forms of navigation 
facilities, ship lifts have obtained rapid development in past thirty years due to their advantage in 
excellent technical and economic performance for navigation in high dams over ship locks, and the 
achievements in construction of shiplifts in hydro-power projects have been recognized in the world[2]. 
The construction of the largest shiplifts in China, the Three-Gorges shiplift with tonnage of 3000t and 
hoisting height of 113m[3]，and the Xiangjiaba shiplift with tonnage of 1000t and hoisting height of 
114.2m[4], finished respectively in 2016 and 2018. Both shiplifts are the type of the full balance rack 
and pinion vertical shiplifts. 

The ship chambers of full balance rack and pinion vertical ship lifts are hoisted by the pinion–rack 
drive mechanisms during the lifting process, and secured by the screw rod and nut column safety 
mechanisms in case the ship chambers are unbalanced in the vertical direction as the accidents such as 
leakage of ship chambers occur, which is the essential feature of this type of shiplifts. So the racks and 
nut columns are important bearing components of the ship chambers. Besides the function of drive and 
vertical support of ship chambers during lifting, the racks act also as the guide rails of the lateral guide 
mechanisms of ship chambers and bearing the lateral loads of ship chambers, among which the seismic 
couple force between the ship chambers and tower columns is the largest one and is far more than the 
other lateral loads. 

The research of the racks in the rack and pinion vertical ship lifts focused mostly on the mechanical 
strength of the teeth of the racks under the vertical loads[5,6]. Wang Zhi-hao, Shi Duan-wei et al built a 
finite element model[7], which included a pinion, a rack, a section of adjusting beam that is the second 
stage embedded part, and concrete in the rack load-transfer system(RLTS)  of the Three Gorges shiplift, 
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for studying the static stress of main parts under the contact loads between the pinion and rack and 
temperature variation, and the fatigue strength of the pinion and the rack under the contact force. As for 
the nut columns, a physical model was built for test research of the stress and deformation of the parts 
of the nut column load transfer system(NCLTS) of the Three Gorges shiplift[8]. A model with finite 
element method of NCLTS of the Three Gorges shiplift was built by Li Zhi et al[9], which studies the 
static stress and deformation of the main parts in the system under the mechanical loads resulting from 
the accidents mentioned above and the temperature variation load. The site testing results for 
measurements of stress and deformation of NCLTS which aiming at testifying the safety of the shiplift 
under the accident of ship chamber empty conducted during shiplift’s commissioning is also introduced 
in this paper.  

Considering the structural complexity of the RLTSs and the NCLTSs, computation of the stress and 
deformation of the structure using the finite element method is necessary because it supplies the 
powerful means to testify accurately the strength and rigidity of the designed structure. On the other 
hand, the computation using finite element method is very time-consuming and is not convenient to 
conduct parameter study. So this method is not suitable to the primary design stage in which repeated 
tentative calculations under different groups of parameters are needed to determine primarily the proper 
design parameters (dimensions of cross sections for example) of the racks, nut columns and adjusting 
beams. In order to pursue a simpler design-oriented calculation method for primary design stage, this 
paper proposes a so-called double-elastic-foundation-beam model (DEFMB) for analysis of the 
mechanical characteristics of both the RLTSs and the NCLTSs, and derives the formulas for calculation 
of the internal forces and deflections of the racks and the adjusting beams of the RLTSs under the 
maximum horizontal load, and of the internal forces and deflection of the nut column and adjusting 
beams of the NCLTSs s under the maximum vertical load. These design-oriented methods supply the 
reference for primary design of the RLTSs and NCLTSs of the rack and pinion vertical shiplifts.  

2. Modelling of the DEFMB for both RLTSs and NCLTSs 

                    
Figure 1. Diagram of the RLTS              Figure 2. Diagram of the NCLTS 

According to the design of constructed rack and pinion vertical shiplifts in China(the Three-Gorge 
shiplift and the Xiangjiaba shiplift for example), both racks and nut columns are symmetrically placed 
on the longitudinal walls in four grooves in the column towers, and cover the range of the hoist height. 
Each of the four lines of racks and four nut columns consists of dozens of sections of racks or nut 
columns. 
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As shown in Figure 1, a RLTS consists of dozens of rack units with lateral guiding rails, adjust steel 
beams, grouting mortar, the second stage concrete, the first stage concrete and prestressed tendons, and 
so on. Racks and adjusting beams in a line are interlaced to obtain the superior performance in load 
transfer. The cams are evenly set on the opposite vertical surfaces of racks and adjusting beams, and the 
interval between adjacent cams are filled by the grouting mortar, so that the loads can be transferred 
continuously from racks to the adjusting beams, and further to the second stage concrete and the first 
stage concrete. Pretension is applied in the prestressed tendons, which yields the initial compressive 
stress inside the grouting mortar, the second stage concrete and the first stage concrete and the interfaces 
between the beams and their support foundations, and ensures that racks and adjusting beams are always 
supported compressively by the grouting mortar and second stage concrete. 

A NCLTS consists of nut columns, adjusting steel beams, grouting mortar, the second stage concrete, 
the first stage concrete and the prestressed tendons, as shown in Figure 2. The structural features of the 
NCLTSs are similar to that of the RLTSs. The vertical loads on the flank surfaces of the threads of the 
nut columns from the safety mechanisms of ship chambers are transferred to the tower columns through 
the grouting mortar, the adjusting beams, the second stage concrete and the first stage concrete. For a 
section of the nut column, the bending moments caused by the vertical loads are balanced by the 
horizontal support force from grouting mortar unevenly distributed along the whole section. By 
producing the initial compressive stress inside the whole load bearing system, the forces on the interfaces 
between the nut columns and grouting mortar and the interfaces between adjusting beams and the second 
stage concrete for example, are always pressure rather than tension. So no matter which directions of 
external loads are, the constraints of racks, nut columns and adjusting beams by grouting mortar or the 
second stage concrete can be treated as bilateral ones. Based on this, the racks, nut columns and adjusting 
beams may be treated as beams on elastic foundations. 

 
Figure 3. Diagram of a DEFMB 

A DEFMB is shown in the Figure 3, in which “beam I” represents the racks or nut columns supported 
on the grouting mortar, “beam II” represents the adjusting beams in RLTSs or in NCLTSs which are 
embedded in the mortar and the second stage concrete. In this mechanical model, we ignore the 
interlacement of beam I and beam II for the convenience of calculation, the way in which the physical 
model for the NCLTS of the Three Gorges shiplift was fabricated[8]. The maximum lateral horizontal 
seismic design is treated as design load for RLTSs. The design load may occur at any position of the 
racks. When the design load is applies at the ends of a section of rack, the rack is mostly unfavourable 
as far as its static strength concerned. So in this research we consider the design load is applied at one 
end. For nut column load-bearing systems, the design bending moment is considered to be applied at 
one end of the nut column for the same reason. Based on this consideration, we model the rack, nut and 
the attached adjusting beams as the semi-infinite beams on Winkler foundations that behave like an 
array of independent springs as shown in Figure 3 [10]. The rationality for semi-infinite beam 
assumption will be verified by the calculation results described later. 

The Figure 4 is the diagram to illustrate the forces in micro segments of the “beam I” and “beam II”, 
in which it is supposed that upward deflections are positive and the distributed reactions of the elastic 
foundations on the beams caused by upward deflections of the beams are positive. The signs of the 
bending moments and shear forces are regulated in accord with Material Mechanics. 
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(a) Illustration of the forces in                 (b) Illustration of the forces in   
a micro-section of beam I                            a micro-section of beam II 

Figure 4 Illustrations of forces in micro-section of beams in DEFMB 
According to the Figure 3(a) and Figure 3(b), we list the equilibrium equations for shear forces and 

bending moments of the micro segment of beam I and beam II as followings: 
0)( 2111  xyyKV                                                                   （1） 

011  xVM                                                                           （2） 
0)( 222112  xyKyyKV                                                          （3） 

022  xVM                                                                          （4） 

Where y1 and y2 denote respectively the deflections of the beam I, V1 and M1 are respectively the 
shear force and the bending moment of the beam I, V2 and M2 are respectively the shear force and the 
bending moment of the beam II, K1 and K2 are respectively the spring constants for the mortar and the 
second stage concrete. For an elastic foundation beam with width b, the spring constant K can be 
determined as followings[11]: 

 bkK                                                                               （5） 
Where b is the width of beams, k is the coefficient of subgrade reaction and can been calculated by 

following formulas[12]:  

                
)1(

2
0

0




H

E
k                                                                   （6） 

                
20

1 s

sEE


                                                                     （7） 

              )1(0 ss                                                                  （8） 
Where H is the thickness of the foundations, and Es and νs are respectively the elastic modulus and 

the Poisson’s rations of the foundation materials. 
In the rack and pinion vertical shiplifts built in China, the material of the foundations of beam I, 

which are nut columns and racks, is PAGEL V1/50, a German product of mortar material. According to 
the product performance data and the results of the  physical test on performances of PAGEL V1/50[13], 
the Yang's elastic modulus and the Poisson's ratio of PAGEL V1/50 are respectively Es1=3.8×104N/mm2 
and νs1=0.2. The material of the foundations of beam II, which are adjusting beams for nut columns and 
racks, is ordinary concrete, of which the Yang's elastic modulus and the Poisson's ratio are respectively 
Es2=2.0×104N/mm2 and νs2=0.1667. The spring constants K1 and K2 for RLTSs and NCLTSs can be 
determined by substituting the parameters of the physical performance and the geometrical dimensions 
into formulas (5)~(8).  

In formulas (1) and (2), let △x→0 we get equilibrium differential equation for beam I: 

0)( 211
1  yyK

dx

dV
                                                        （9） 

01
1  V

dx

dM
                                                              （10） 

Taking the derivative of formula (10) to x, and substituting the result into the formula (9), one gets 
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0)( 2112

1
2

 yyK
dx

Md
                                                         （11） 

According to the Material Mechanics, for beam I with small deflection, there exists following formula: 

1

1

2

1
2

EI

M

dx

yd
                                                                      （12） 

Where E is the elastic modulus of steel and I1 is the area inertial moment of the beam I. Substituting 
equation (12) into equation (11), one obtains 

  02114

1
4

1  yyK
dx

yd
EI                                                      （13） 

This is the deflection control equation for beam I.  
For beam II according to the equation (3) and equation (4) we have the following equations: 

0)( 22212
2  yKyyK

dx

dV
                                                  （14） 

02
2  V

dx

dM
                                                              （15） 

Substituting (15) into (14), we obtain  

0)( 112212

2
2

 yKyKK
dx

Md
                                             （16） 

Similar to (12), there exists following identity for beam II  

2

2

2

2
2

EI

M

dx

yd
                                                              （17） 

Where I2 is the area inertial moment of the beam II. We obtain the following equation by substituting 
(17) into (16) 

  0112214

2
4

2  yKyKK
dx

yd
                                              （18） 

Equation (13) can be changed into following form  

14

1
4

1

1
2 y

dx

yd

K
y 


                                                        （19） 

Substituting equation (19) into equation (18), one obtains 

  01114

1
4

1

1
2114

1
4

1

1

4

4

2 


























 yKy

dx

yd

K
KKy

dx

yd

Kdx

d
               （20） 

By reorganization of (20), the following equation is derived: 

 0124

1
4

1
1

21
28

1
8

1

21
2















yK

dx

yd

K

KK

dx

yd

K
                                  （21） 

Define    

     






















2

21

1

1

1

21
2

1
1

21
2

1 KKK

K

K

KK

a                                       （22） 

     
21

2

21




KK
b                                                                   （23） 

Equation（21）can be written in a simpler form 

014

1
4

8

1
8

 by
dx

yd
a

dx

yd
                                                       （24） 
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Because beam I and beam II are supposed to be semi-infinite beams, the deflections of the beams are 
zero when x→∞. The resolution of the equation (24) can be expressed as the following function of the 
deflection of beam I about argument x:  

   xDxCexBxAey xx
22

2
11

1
1 cossincossin                         （25） 

Where  

4

1

2
1 4

2

1














  baa                                                        （26） 

4

1

2
2 4

2

1














  baa                                                        （27） 

A、B、C、D are constants to be determined by the boundary conditions. 
Substituting the function (25) into the formula (19), we obtain function of the deflection of beam II 
about argument x: 

xe
k

Dxe
k

C

xe
k

Bxe
k

Ay

xx

xx

2
1

1
4

21
2

1
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1
4

1
1

1

1
4

1
2

cos
4

1sin
4

1

cos
4

1sin
4

1

22

11






















 










 











 










 


                            （28） 

Define  

 
1

1
2

1

1
4

1
1 2

)4(
1

4
1

k

EIbaa

k

EI 



                                                     （29） 

 
1

1
2

1

1
4

2
2 2

)4(
1

4
1

k

EIbaa

k

EI 
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
                                                    （30） 

The formula (28) can be simplified as following: 
xDexCexBexAey xxxx

222211112 cossincossin 2211                  （31） 

The internal bending moments of beam I and beam II are respectively derived:  

   xCxDeEIxAxBeEI

dx

yd
EIxM

xx
22

22
2111

12
11

2
1

2

11

cossin2cossin2

)(

  





          （32） 

   xCxDeEIxAxBeEI

dx
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EIM
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22

22
22211

12
112

2

2
2

22
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



      （33） 

The internal shear forces of beam I and beam II are respectively derived  

xeDCEIxeCDEI

xeBAEIxeABEI

dx
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3. Analysis of internal forces and deflections of NCLTS 
As specified in the Chinese code for shiplift design[14], the most unfavourable case for design of the 
NCLTS is the one so-called “ship chamber emptying by water leakage”, or “ship chamber emptying” in 
simple. In this case, the unbalance load of ship chambers caused by losing weight of water in the 
chamber is applied on the NCLTSs through the contact of screw thread pairs. In the DEFMB for the 
NCLTSs shown in Figure 5, the concentrated moment M01 results from the transfer of the concentrated 
force applied at the left end of the nut column to the left end of the adjusting beam by the cams, and M02 
results from the transfer of the force applied at the cams to the neutral axis of the adjusting beam. In the 
figure yn1 and yn2 are respectively the deflections of the nut column and the adjusting beam, and Kn1 and 
Kn2 are respectively the spring constants of the elastic foundations of the nut column and the adjusting 
beam. 

 
Figure 5 Diagram of DEFMB for NCLTS 

The boundary conditions for NCLTS are given as followings:  
 For the nut column 

01

0

2

1
2

11

)(
)0( M

dx

xyd
EIM

x

n
nn 



                                                   （36） 

0
)(

)0(

0

3

1
3

11 
x

n
nn

dx

xyd
EIV                                                       （37） 

For the adjusting beam 

02

0

2

2
2

22

)(
)0( M

dx

xyd
M

x

nn 


                                                     （38）  

0)0(

0

3

2
3

22 
x

nn
dx

yd
EIV                                                       （39）  

Where In1 and In2 denote respectively the area inertial moments of the cross sections of the nut column 
and the adjusting beam, Mn1(x) and Mn2(x) denote respectively the distribution functions of bending 
moments of the nut column and the adjusting beam, Vn1(x) and Vn2(x) denote respectively the 
distribution functions of shear forces of the nut column and the adjusting beam, M01 and M02 denote 
respectively the concentrated bending moments applied at the end of the nut column and adjusting beam 
can be calculated according to following formulas:  

sm lPM .01                                                                        （40） 

bm lPM .02                                                                        （41） 

Where Pm denotes the maximum vertical load for single mechanism caused by ship chamber 
emptying, and ls denotes the distance from the pitch line of the teeth of the nut column to the loading 
line of cams of the nut column and the adjusting beam, lb is the distance from the loading line of cams 
of the nut column and the adjusting beam to the neutral axis of the adjusting beam, as shown in the 
Figure 6. 

According to (32) and (34), the boundary condition for nut column (36) and (37) can be written in 
the following form: 
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2
012

2
2

11

M
CAEI nnn 





                                                         （42） 

     022
3
2

3
1  DCBA nn                                                     （43） 

 
Figure 6 Illustration of the distances between loading lines of the forces 

Where βn1 and βn2 are respectively the specified values of β1 and β2 for the NCLTS, obtained by 
applying equations (26), (27), (22) and (23) with I1 and I2 replaced respectively by In1 and In2. Similarly 
the boundary conditions for adjusting beam of NCLTS can be derived as followings:  

2
02

2
2

21
2

1
2

2

M
CAEI nnnnn 




                                              （44） 

    022 2
3

21
3
1  DCBA nnnn                                            （45） 

Where ξn1 and ξn2 are respectively the specified values ofξ1 and ξ2 for NCLTS, obtained by applying 
equations (29) and (30) with I1 and I2 replaced respectively by In1 and In2. 
The equation (42) can be rewritten in the following form: 

A
EI

M
C n

n
n

2
1

1

012
2

2
                                                       （46） 

Substituting (46）into (44) yields 

2

022
1

1

01
21

2
1

22 n
n

n
nnn

EI

M
A

EI

M
A 








                                   （47） 

Then we obtain the expression for the constant A for NCLTS 

nnnnn

nn

EI

MM
A





)(2 21
2

11

02012




                                                       （48） 

By the same way, we obtain the expression for the constant C 

nnnnn

nn

EI

MM
C





)(2 12
2

21

02011




                                                         （49） 

Where  

1

2

n

n
n I

I
                                                                      （50） 

Based on (43), (45), (48) and (49), the constants B and D for NCLTS can be derived: 

nnnnn

nn

EI

MM
AB


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)(2 21
2

11

02012




                                         （51） 

nnnnn

nn

EI

MM
CD
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

)(2 12
2

21

02011




                                         （52） 
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Substituting expressions for A, B, C and D into (22) and (28)~32 yields the following formulas for 
description of the distributions of deflections, internal bending moments and internal shear forces of the 
nut columns and the adjusting beams in the NCLTS: 
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   （58） 

A calculation of the deflections, internal bending moments and internal shear forces of the nut column 
and the adjusting beam of the NCLTS of the Three Gorges shiplift has been performed as an illustrative 
example. The parameters needed for calculation are shown in Table 1. Both the lengths of the nut column 
and adjusting beam are 4950mm. 

Table 1. The DEFMB parameters of NCLTS of the Three Gorge shiplift 
Components b 

(m) 
H 

(m) 
Kn 

(N/mm2) 
In 

(mm4) 
M0 

(Nm) 
Nut column 1.60 0.18 4.69×105 5.79×109 5.623×106 

Adjusting beam 1.02 1.13 3.81×104 4.15×1010 5.571×106 
The results are shown in Figure 7~Figure 9. Figure 7 illustrates the distribution functions of the 

deflections of the nut column and adjusting beam along the axis direction. The deflection distribution 
curves supply the useful information for determination of the pretensions and arrangement of the 
prestressed tendons of the NCLTS. The maximum deflections of the nut column and adjusting beam are 
respectively 1.098mm and 0.951mm, both occurring at the left ends. At the right ends(x=4950mm), the 
deflections of the nut column and the adjusting beam are respectively 1.02×10-3mm and 9.82×10-4mm, 
which are far less than the maximum deflections. This fact verifies the rationality of the semi-infinite 
beam assumption in DEFMB for NCLTS.  

Figure 8 shows the distributions of the internal bending moment Mn1(x) of the nut column and the 
internal bending moment Mn2(x) of the adjusting beam. The maximum internal bending moment of the 
nut column occurs at the left end, which equals to the concentrated moment M01. The maximum internal 
bending moment of the adjusting beam is 2.21×107Nm, which occurs at x=471.4mm.  

Figure 9 shows the distribution functions of the internal shear force Vn1(x) of the nut column and the 
internal shear force Vn2(x) of the adjusting beam. The maximum shear force of the nut column is 
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5.506×106N occurring at x=278.2mm, and the maximum shear force of the adjusting beam is -
5.68×106N occurring at x=159.0mm. 

  
(a)  Deflection of the nut column                     (b) Deflection of the adjusting beam  

Figure 7 Deflection functions of the NCLTS of the Three Gorges shiplift 
 

  
(b)  Moment of the nut column                                   (b) Moment of the adjusting beam  

Figure 8 The ending moment functions of the NCLTS of the Three Gorges shiplift 
 

  
(a) Shear force of the nut column                  (b) Shear force of the adjusting beam 

Figure 9 The shear force functions of the NCLTS of the Three Gorges shiplift 
 

4. Analysis of internal forces and deflections of RLTS 
As mentioned above, the racks as the guiding rails supply the lateral guiding for ship chamber and bear 
the seismic forces between the ship chambers and tower columns. The seismic forces may be applied at 
the any location of any section of a rack in the whole elevation range within which the ship chamber is 
hoisted. In this paper, we treat the seismic force as a concentrated force that applied at the one end of 
the rack, considering most unfavourable loading condition on the safe side. By the same way in building 
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the mechanical model for NCLTS, a DEFMB is built for RLTS as shown in Figure 10. In the figure yr1 
and yr2 are respectively the deflections of the rack and the adjusting beam, and Kr1 and Kr2 are 
respectively the spring constants of the elastic foundations of the rack and the adjusting beam.  

 
Figure 10 Diagram of DEFMB for RLTS 

The boundary conditions for RLTS are given as followings:  
For the rack 
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For the adjusting beam 
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Where Ir1 and Ir2 denote respectively the area inertial moments of the cross sections of the rack and 
the adjusting beam, Mr1(x) and Mr2(x) denote respectively the distribution functions of the bending 
moments of the rack and the adjusting beam, Vr1(x) and Vr2(x) denote respectively the distribution 
functions of shear forces of the rack and the adjusting beam, P0 denotes the seismic force on one set of 
the lateral guiding mechanism. Substituting the formulas (32)~(35) into the formulas (59)~(62）yields  

0
2

2
2

1  CA rr                                                       （63） 

0
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3
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11  CA rrrr                                                （65） 
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3
11  DCBA rrrr                                        （66） 

Where βn1 and βn2 are respectively the specified values of β1 and β2 for the RLTS obtained by applying 
equations (26), (27), (22) and (23) with I1 and I2 replaced respectively by Ir1 and Ir2, and ξr1 andξr2 are 
respectively the specified values ofξ1 andξ2 for the RLTS obtained by applying equations (29) and (30) 
with I1 and I2 replaced respectively by Ir1 and Ir2. Resolving the linear algebraic equations (63)~(66), we 
obtain the values of A and C and the expressions for B and D: 
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Substituting the values of A and C and the expressions for B and D into formulas (25) and (31)~(35), 
we obtain the formulas for description of distributions of the deflection and  the internal forces: 
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A calculation of the deflections, internal bending moments and internal shear forces of the rack and the 
adjusting beam of the RLTS of the Three Gorges shiplift has been performed as an illustrative example. 
The parameters needed for calculation are shown in Table 2. Both the lengths of the rack and adjusting 
beam are 4750mm. 

.Table 2. The DEFMB parameters of RLTS of the Three Gorges shiplift 
Components b 

(m) 
H 

(m) 
Kr 

(N/mm2) 
Ir 

(mm4) 
P0 

(N) 
Rack 0.880 0.140 2.58×105 1.223×1010 4.82×106 

Adjusting beam 0.820 0.640 2.66×104 8.277×109 0 
The results are shown in Figure 11~Figure 13. Figure 11 illustrates the distribution functions of the 

deflections of the rack and adjusting beam along the axis direction. The deflection distribution curves 
supply the useful information for determination of the pretensions and arrangement of the prestressed 
tendons of the RLTS. The maximum deflections of the rack and adjusting beam are respectively 
0.229mm and 0.163mm, both occurring at the left ends. At the right ends(x=4750mm), the deflections 
of the rack and the adjusting beam are respectively 5.73×10-5mm and 4.38×10-5mm, which are far less 
than the maximum deflections, which shows the rationality of the semi-infinite beam assumption in 
DEFMB for RLTS.  

Figure 12 illustrates the distributions of the internal bending moment Mr1(x) of the rack and the 
internal bending moment Mr2(x) of the adjusting beam. The maximum internal bending moment of the 
rack is 9.307×105Nm occurring at x=488.1mm. The maximum internal bending moment of adjusting 
beam is 4.318×107Nm occurring at x=636.2mm.  

Figure 13 illustrates the distributions of the internal shear force Vr1(x) of the rack and the internal 
shear force Vr2(x) of the adjusting beam. The maximum shear force of the rack occurs at the left end 
which equals to the concentrated force P0. The maximum shear force of the adjusting beam is -
1.116×105N occurring at x=221.7mm. 
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(a) Deflection of the rack                              (b) Deflection of the adjusting beam  

Figure 11 Deflections functions of the RLTS of the Three Gorges shiplift 
 

  
(a) Moment of the rack                              (b) Moment of the adjusting beam  

Figure 12 Bending moment functions of the RLTS of the Three Gorges shiplift 
 

 
(a) Shear force of the rack                       (b) Shear force of the adjusting beam  
Figure 13 Shear force functions of the RLTS of the Three Gorges shiplift 

5. Conclusion 
Based on the structures and design conditions of the nut column load transfer systems and the rack load 
transfer systems of the rack and pinion vertical shiplift, this paper proposes a so-called the semi-infinite 
double elastic foundation beam model shared by both systems, and performs analytical research on the 
deflections and internal forces of the nut columns, racks and the second stage embedded parts attached, 
and provides a set of design-oriented formulas for shiplift designers to calculate the deflections, internal 
bending moments and shear forces of nut columns, racks and attached adjusting beam in primary design 
stage. The application of the derived formulas to the Three-Gorges shiplift is demonstrated, and the 
calculation results show that the semi-infinite assumption is rational. 
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