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Abstract. Emergence of different interesting and insightful phenomena at different length
scale is the heart of quantum many-body system. We show that the physics of parity-time
(PT) symmetry is one new addition to them. We show explicitly that the emergence of different
topological excitation at different length scale for the PT symmetry system through the analysis
of renormalization group (RG) flow lines. We observe that the higher order RG process favour
the emergence of asymptotic freedom like behaviour and also show the effect of strong correlation
on the emergent phases. Interestingly, the asymptotic freedom like behaviour is favoured by PT
symmetry phase of the system. Moreover, we also derive the scaling relation for the couplings
in RG equations. These findings can be tested experimentally in ultracold atoms.

1. Introduction
In quantum many-body physics, emergent phenomena are an essential aspect. In this view,
fundamentally new kinds of phenomena emerge within the complex assemblies of particles which
can not be anticipated from a priori knowledge of the microscopic laws of nature. One can raise
the question at the fundamental level: what emergent principles and laws develop as we proceed
from the microscopic scale to the macro scale? P. W. Anderson first introduced the concept
of “emergent phenomena” into physics [1, 2]. The behavior of large and complex aggregation
of elementary particles cannot be understood in terms of simple extrapolation properties of
a few particles. Instead, at each level of complexity entirely new properties appear and the
understanding of the new behavior triggers a new front of the research area.
Laughlin and Pines [3] have explained the emergent phenomena very nicely in their article on
“The Theory of Everything”. The emergent physical phenomena regulated by higher organizing
principles have a property, namely their insensitivity to microscopic scale that is directly
relevant to the broad question of what is knowable in the deepest sense of the term. One
can also understand the emergent phenomena from the low energy excitations of conventional
superconductors. It is completely generic and is characterized by a handful of parameters that
may be obtained experimentally but not from the first principle.
It has been known since the early 1970s that renormalizability is an emergent property of
ordinary matter either in stable quantum phases, such as the superconducting state, or at
particular zero-temperature phase transitions between such states called quantum critical points.
In either case the low-energy excitation spectrum becomes more and more generic and less and
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less sensitive to microscopic details as the energy scale of the measurement is lowered, until in
the extreme limit of low energy, all evidence of the microscopic equations vanishes away.
In this research paper, we study the emergent physics of parity-time (PT) symmetric quantum
mechanical system in more advanced level. In the non-hermitian quantum system, PT symmetric
quantum mechanics is an extension of conventional quantum mechanics into complex domain
[4, 5, 6, 7, 8]. Initially, PT symmetry quantum mechanics has started as an interesting
mathematical discovery and a good theoretical exercise in theoretical physics [4, 5, 6, 7, 8].
But in current literature, it has been expanded experimentally in different field of science like
open quantum systems [8, 9], physics of gain and loss (as found in photonics [10, 11, 12]) or
systems where the non-Hermiticity models the finite lifetime [13, 14], localization–delocalization
of correlated many-body system [15, 16, 17], biological systems [18, 19, 20], Weyl semi-metals
[21, 22, 23, 24, 25], topology and dissipation [26, 27] and PT symmetric circuit QED [28]. One of
the most important feature of non-hermitian quantum mechanics is the exceptional point (EP)
[3, 4, 5, 6, 29, 30]. This EP has a dramatic effect on the system, leading to the nontrivial physics
with interesting counterintuitive features, which we will observe in this study.
We use the renormalization group (RG) method to study this PT symmetry quantum criticality
problem. The mathematical structure and results of the RG theory are a significant conceptual
advancement in the quantum field theory of both high-energy and condensed matter physics
[31, 32] in the last several decades. The need for RG is really transparent in condensed
matter physics. RG theory is a formalism that relates the physics at different length scales
in condensed matter physics and the physics at different energy scales in high-energy physics
[33, 34]. One of the successes of RG theory is in the study of classical and quantum
Berezinskii–Kosterltz–Thouless (QBKT) transition [35] in XY model and topological insulator
respectively. The classical two dimensional XY model was found to have a power-law correlation
function at low-temperature regime and exponential at the high-temperature regime. The phase
transition associated with it was not due to the well-known spontaneous symmetry breaking
mechanism. Berezinskii [31], in the year 1971 and Kosterlitz and Thouless [32], in the year
1973 have explained this new kind of phase transition in terms of topological non-trivial vortex
using the RG method. The high-temperature regime favours the thermal generation of vortices
that unbounded, while in the low-temperature regime vortices are bounded and vortex and
anti-vortex are always found in pairs. This binding and unbinding of vortex pairs facilitate
the phase transition which is now called BKT transition. QBKT at zero temperature was
also found to appear in the interacting helical liquid system at the one-dimensional edge
of a two-dimensional topological insulator, coupled to an external magnetic field and s-wave
superconductor. Through the RG flow analysis of this model, QBKT was identified between
Luttinger liquid phase and Ising-ferromagnetic and gaped superconducting phase. The direction
of the RG flow distinguishes between distinct quantum phases.
Motivation: We present emergent physics of quantum criticality at different length scales.
We will see that the interplay between many-body correlations and PT symmetry leads to the
emergence of quantum critical phenomena beyond the Hermitian paradigm of quantum many-
body physics [36, 37]. We also raise the question of how the topology related to the PT-symmetry
physics at different length-scales of the system emerges.
A successful part of the RG theory is the observation of asymptotic freedom for high-energy
physics and the other is the Berezinskii–Kosterltz–Thouless transition physics for condensed
matter physics, i.e, the two extreme ends of theoretical physics. In this study we are successful
in unifying these two observations of RG theory in a single framework of physics PT symmetry
for interacting quantum many body system.
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2. The Model Hamiltonian and Renormalization Group Equation
We consider a class of one-dimensional quantum systems described by the sine-Gordon field
theory

H = H0 + V (φ), (1)

where H0 is

H0 =

(
hv

2π

)∫
dx[K(∂xθ(x))2 +

1

K
(∂xφ(x))2]. (2)

The Hamiltonian, H gives a universal framework for describing one dimensional interacting
bosons and fermionic system and V (φ(x)) is the sine-Gordon potential. Here φ(x) is field
with the parity operation, PφP−1 = −φ. The θ(x) is the dual field of φ(x) and satisfies the
commutation relation, [φ(x), ∂xθ(x

′)] = −iπδ(x − x′). H0 is the Tomonoga Luttinger liquid
(TLL) Hamiltonian. We will see that the value of K will play an important role to determine
length-scale dependent quantum criticality for this model Hamiltonian system. The relevance
of this term gives the gapped phase in the system, this transition from the gapless Luttinger
liquid phase to the Mott insulating phase in the system.
A generalization to the PT symmetric case by adding an imaginary contribution [36, 37] to the
potential term is as follows

V (φ) =
αr
π
cos(2φ) − iαi

π
sin(2φ), (3)

where αr and αi are the real and imaginary part of the potential. The imaginary part of the
potential, which introduces physics of spectral singularity occurs when the real and imaginary
part of the potential are same [28].
We will observe that when αr becomes relevant, a stable gapped phase, i.e, the fluctuation of
φ gets suppressed. But when αi becomes relevant, it facilities the fluctuations of φ. Then the
imaginary of the potential profile are not the same as a consequence of it and the imaginary
potential enhances the correlation of conjugate field θ. To get the correct physical picture
of quantum criticality for this model Hamiltonian, RG study is essential [33]. The analytical
expressions for the second and third order RG equations are the following:
The analytical expressions for the second order RG equations are [36, 37],

dgr
dl

= (2 −K) gr

dgi
dl

= (2 −K) gi

dK

dl
= (gi

2 − gr
2)K2. (4)

The analytical expressions for the third order RG equations are,

dgr
dl

= (2 −K) gr + 5gr
3 − 5gi

2gr

dgi
dl

= (2 −K) gi − 5gi
3 + 5gr

2gi

dK

dl
= (gi

2 − gr
2)K2. (5)

Here l is the logarithmic RG scale and gr,i =
αr,ia

2

hv are the dimensionless coupling constants
with a being a short distance cut-off and v is the velocity of the collective excitations.
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Figure 1. (Color online.) RG flow diagram for the couplings gr, gi and K with length scale
(l) for third order RG equations (Eq. 5). Three different panels are for the different values of
K[0] (1.5, 2 and 2.2 are for the upper, middle and lower panels respectively) and three different
figures in each panel for different values of gr[0] and gi[0]. The initial values of gr[0], gi[0] and
K[0] are depicted in the figure captions. In this plot we use the magnitude of the imaginary
part of the coupling.

3. Derivation of scaling relation for the PT symmetry RG equations
It is well known that the critical theory is invariant under the rescaling. Then the singular part
of the free energy density satisfies the following scaling relations,

fs[gr, gi] = e−2lfs[e
(2−K)lgr, e

(2−K)lgi]. (6)

The scale l can be fixed from the analytical relation, e(2−K)l∗gr = 1. Finally, after few steps of
calculation, we arrive at

fs[gr, gi] = gr
2/(2−K)fs[1, gr

−(2−K)/(2−K)gi]. (7)

The scaling relation between the real and imaginary part of the sine-Gordon potential is

gr
−1gi ∼ 1. (8)

It reveals from this analytical relation that the gr and gi are proportional to each other and are
independent of K.
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Figure 2. (Color online.) RG flow diagram for the couplings gr, gi and K with length scale
(l) for second order RG equations (eq. 4). Three different panels are for the different values of
K[0] (1.5, 2 and 2.2 are for the upper, middle and lower panel respectively ) and three different
figures in each panel for different values of gr[0] and gi[0]. The initial values of gr[0], gi[0] and
K[0] are depicted in the figure captions. In this plot we use the magnitude of the imaginary
part of the coupling.

4. Results along with physical interpretations
4.1. Emergence of quantum criticality: length scale dependent PT symmetry study from the
whole set of RG equations
The author of Ref.[34] have solved the double frequencies dual field sine-Gordon Hamiltonian
from the perspective of interacting Helical liquid and also for the topological states of interacting
quantum matter. The most interesting features of the PT symmetry quantum criticality is that
there are two couplings (gr and gi) but there is only single field φ(x). When the PT symmetry
is broken, the fluctuation of the φ(x) facilitate the correlation of conjugate field. Therefore, PT
symmetry broken phase generate the physics of sine-Gordon dual field theory for the system.
This is the uniqueness of PT symmetry quantum criticality over the dual field double frequencies
sine-Gordon field theory.

The authors of Ref.[38] and Ref.[39] have shown that in QCD, the gauge theory of quarks
and gluons are asymptotically free, i.e., the coupling vanishes at very short distance (large
momentum) and grows at large distance (small momentum). This allowed us to understand
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why quarks seemed to be free inside the nucleons in deep inelastic scattering and are confined at
large distance. However, the present problem is not QCD. Here we solve a sine-Gordon model
Hamiltonian with a generalization of PT symmetry. At the same time we are not interpreting
our results in terms of quark and gluon physics, rather in terms of the real (gr) and imaginary
(gi) part of the potential. Therefore, we interpret our results from the length-scale dependent
asymptotic freedom like behaviour for this model Hamiltonian system.
Length-scale dependence study brings out the concept of asymptotic freedom like behaviour
in the RG flow sense. This asymptotic freedom is a feature of all RG flows with a marginally
relevant perturbation. We would like to explain it explicitly through the β function explanation.
This can be written as βλ = dλ

dlnL = Cλ2 (here βλ is the β function of the RG theory from where
one can predict the nature of the RG flow lines of coupling constant λ; in quantum field theory
flow lines are defined in energy scale but here we define RG flow lines in length scale. Here λ
is the coupling constant and C > 0 is a constant. As a result, the effective coupling is weak
at short distances and strong at long distances. We use this behaviour of coupling constant of
QCD in our present study.
Recently, asymptotic freedom like behaviour has found in different context of quantum matter
system. The author of Ref.[39], has found the asymptotic freedom like behaviour for the
topological state of interacting quantum matter. However, for the present study, we are
interested to find the asymptotic freedom like behaviour for the PT symmetry system.
Now we present the emergent quantum criticality of PT symmetry physics at different length-
scales of the system and also obtain the signature of asymptotic freedom like behaviour.
In Fig.1, we present the results for 3rd order RG equations from the whole set of RG equations.
This figure consists of three panels for different initial values of K[0]. The upper, middle and
lower panels are respectively for K[0] = 1.5, 2 and 2.2. Each panel consists of three figures for
different values of the coupling gr[0] and gi[0]. For each panel: left, middle and right figures
are respectively for different initial values satisfying the conditions gr[0] > gi[0], gr[0] = gi[0]
(spectral singularity condition) and gr[0] < gi[0]. It is found from this study that in the left
figure for each panel, both the couplings increases with the length scale very sharply while the
K decreases. This is the emergence of anomalous phase with the length scale, i.e., both of the
couplings increase with in the length scale for the smaller values of K. We observe that as the
initial values of K[0] increases (as shown in the middle and lower panel), the variation of the
couplings (gr and gi) with length scale are not sharp.
The middle figure for each panel is for gr[0] = gi[0], i.e., at the spectral singularity point. We
observe that K remains constant. For K[0] = 1.5 (the first panel), both the couplings increase
with the length scale for the lower values of K, i.e., the system is in the anomalous phase region.
As the value of K increases for the other panels both the couplings (gr and gi) decreases with
length scale,i.e., there is no anomalous phase region for this phase. For this regime of parameter
space system is in the Luttinger liquid phase.
In the right figures of each panel, K increases with the length scale for the smaller initial values
of K otherwise it is saturate. But the RG flow lines for the couplings (gr and gi) are flowing off
to zero. In this region, system is in the critical phase.

In Fig.2, we present the results of second order RG study for the same regime of parameter
space as we did for third order (Fig.1). It reveals from this study , variation of the couplings
constants with the length scale is not so sharp as we observed for third order RG. For the higher
initial values of K[0], almost there is no variation of K with length scale. The asymptotic
freedom like behaviour disappears for the higher values of K. We observe that there is no
evidence of asymptotic freedom for the higher values of K[0](> 2.2) for the PT symmetry phase
( gr[0] > gi[0]). Thus it is clear from this study that lower value K[0] and also the higher
initial value of gr[0] from the asymptotic like behaviour. The higher order RG process favours
asymptotic freedom like behaviour.
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Figure 3. (Color online.) RG flow diagram for the couplings gr, gi and K with length scale (l)
for the 3rd order RG equations (eq.8 and eq.9 ). The upper and lower panels are respectively
for gr,K and gi,K with length scale (l). The initial values of gr[0], gi[0] and K[0] are depicted
in the figures. In this plot we use the magnitude of the imaginary part of the coupling.

We have presented the scaling relation between the couplings gr and gi in Eq.6. We notice that
this scaling relation is independent of K. Both of the couplings are proportional to each other,
therefore the dependence of gr and gi for different initial values of K[0] is not possible from
this scaling relation, what we have found from the numerical solution of RG equations. One
similarity that we have noticed from this study is that for a particular value K[0] both of the
couplings are showing the same behaviour with the length scale.

4.2. Emergence of quantum criticality: length scale dependent PT symmetry study from the
conventional quantum Berezinskii-Kosterlitz-Thoulesss RG equations.
Here we present the four sets of conventional QBKT equations from the whole sets of RG
equations upto second and third order terms. Second order QBKT RG equations are,

dgr
dl

= (2 −K) gr

dK

dl
= −gr2K2. (9)

dgi
dl

= (2 −K) gi

dK

dl
= gi

2K2. (10)

Third order QBKT RG equations are,

dgr
dl

= (2 −K) gr + 5gr
3

dK

dl
= −gr2K2. (11)
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Figure 4. (Color online.) RG flow diagram for the couplings gr, gi and K with length scale
(l) for the 2nd order RG equations. The upper and lower panels are respectively for gr,K and
gi,K with length scale (l). The initial values of gr[0], gi[0] and K[0] are depicted in the figures.
In this plot we use the magnitude of the imaginary part of the coupling.

dgi
dl

= (2 −K) gi − 5gi
3

dK

dl
= gi

2K2. (12)

In Fig.3, we present the length scale dependent variation of couplings (gr and gi ) for the
third order quantum BKT equations. It consists of two panels, the upper and lower panels are
respectively for gr and gi. Each panel consists of three figures for three different initial values
of K[0]. The left, middle and the right figures are respectively for K = 1.5, 2 and 2.2. It reveals
from this study that the K decreases rapidly with the length scale for the lower values of K[0]
(< 2) and it almost saturates for the higher initial values of K[0]. The coupling constant gr
increases as along as K[0] < 2 and decreases for K[0] > 2. In the lower panel we observe K
increases with the length scale but the RG flow lines for the coupling constant, gi goes to zero.
In Fig.4, we present the length scale dependent variation of couplings in the quantum BKT
equation with the second order terms. It consists of two panels where the upper and lower
panels are respectively for gr and gi. Each panel consists of three figures for three different
values of K. The left, middle and the right figures are respectively for K = 1.5, 2 and 2.2.
Thus it is clear from the studies of Fig. 3 and Fig. 4 that for only K = 1.5, gr with l shows
the asymptotic freedom like behaviour. This findings can be tested experimentally in ultracold
atoms.

5. Discussion
We have observed that the presence of this quantum criticality for both the whole set
renormalization group equations and also from the conventional quantum BKT equation. We
have also presented the scaling equation for these coupling constants. We have observed the
asymptotic freedom like behaviour favour for the PT symmetric phase only. We have also
presented scaling relation for the coupling constants.
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