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Abstract. The conformal bridge transformation (CBT) is reviewed in the light of the PT
symmetry. Originally, the CBT was presented as a non-unitary transformation (a complex
canonical transformation in the classical case) that relates two different forms of dynamics in
the sense of Dirac. Namely, it maps the asymptotically free form into the harmonically confined
form of dynamics associated with the so(2, 1) ∼= sl(2,R) conformal symmetry. However, as the
transformation relates the non-Hermitian operator iD̂, where D̂ is the generator of dilations,
with the compact Hermitian generator Ĵ0 of the sl(2,R) algebra, the CBT generator can
be associated with a PT -symmetric metric. In this work we review the applications of this
transformation for one- and two-dimensional systems, as well as for systems on a cosmic string
background, and for a conformally extended charged particle in the field of Dirac monopole.
We also compare and unify the CBT with the Darboux transformation. The latter is used to
construct PT -symmetric solutions of the equations of the KdV hierarchy with the properties
of extreme waves. As a new result, by using a modified CBT we relate the one-dimensional
PT -regularized asymptotically free conformal mechanics model with the PT -regularized version
of the de Alfaro, Fubini and Furlan system.

1. Introduction
The very fact that the properties of various complex systems can be related with the properties
of a free particle and obtained from it in elegant ways is just amazing. A good example of this is
the connection between the free particle and the KdV hierarchy, based on the covariance of the
Lax representation with respect to Darboux transformations [1]. The stationary Schrödinger
equation for a one-dimensional free particle enters the game when the operators of the auxiliary
spectral problem in the Lax pair representation are taken with a zero potential identified
as a trivial solution of the KdV equation. Then, the iterative application of the Darboux
transformation to the linear equations associated with the Lax representation combined with
the Darboux dressing of the Lax operator allows ones to generate multi-soliton solutions of the
equations of the KdV hierarchy. A Schrödinger system of the auxiliary spectral problem with
the obtained multi-soliton potential is reflectionless being almost isospectral to the free particle,
and its states are generated from the eigenstates of the free particle Hamiltonian operator
by the Darboux transformation [2, 3]. At least some of reflectionless systems are converted by
periodization into the finite-gap quantum systems [4, 5, 6], and their potentials can be promoted
to the cnoidal type solutions by using, again, the Darboux covariance of the Lax representation
[3]. One can introduce soliton defects propagating in a crystalline background with the help
of the same Darboux transformations [3]. By the Miura transformation, intimately related to
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supersymmetry, one also can relate the free particle system with the modified KdV equation
[7]. Using the same methods, one can construct PT -regularized Calogero type quantum models
with the exotic properties, whose potentials can be transformed into complex PT -symmetric
solutions of the equations of the KdV hierarchy [8, 9].

On the other hand, an important characteristic of the free particle in arbitrary case of d-
dimensional Euclidean space is that this non-relativistic system is described by the so(2, 1)
conformal symmetry. The non-relativistic conformal symmetry occurs naturally in a wide
variety of physical phenomena, and attracted recently a lot of attention in the context of non-
relativistic AdS/CFT correspondence [10, 11, 12, 13], black hole physics [14, 15, 16], cosmology
[17, 18, 19, 20], AdS/CDM correspondence [21, 22, 23, 24] and QCD confinement [25, 26], to
name a few. The non-relativistic conformal symmetry of the free particle and its generalizations
lie in the base of the so-called conformal bridge transformation (CBT) [27, 28, 29, 30] by which
the dynamics and symmetries of an asymptomatically free conformally invariant system can
be mapped into those of the associated in a certain way harmonically trapped system. This
corresponds to the picture described in the Dirac seminal article [31], where different forms of
dynamics are studied by choosing, in the general case, a linear combination of the generators
of a given symmetry as the Hamiltonian of the system. In the original work [27], it is shown
that in one dimension the CBT relates the free particle and the two-body Calogero model with,
respectively, the harmonic oscillator and the conformal mechanical model of de Alfaro, Fubini
and Furlan (AFF) [32]. In two dimensions, the free particle system can be related with a variety
of systems such as the isotropic and anisotropic harmonic oscillators, the Landau problem, and
the exotic family of rotationally invariant harmonic oscillators [27, 30]. As the transformation
is based on the algebraic arguments, it can be applied to systems in any conformally-invariant
space-time and gauge backgrounds. In this way, it was employed to study the dynamics and
hidden symmetries in backgrounds of the Dirac monopole [28] and cosmic string [29]. One of the
goals of this article is to review how this transformation works and the scope of its applications.

In comparison with the Darboux transformation, which relates almost isospectral one-
dimensional systems by means of finite order differential operators, the CBT is generated by
a non-local operator, whose realization is not restricted by a space dimension, and it relates
the systems with essentially different spectra in a non-trivial way. In fact, it is expected that
the possibilities to connect the systems by the CBT expand with increasing the number of
dimensions and with the conformally invariant change of the space-time metric. Additionally,
some hints on a possible close relationship of the CBT with PT -symmetric systems [33, 34, 35, 36]
were indicated in the original works [27, 28, 29, 30]. They are based on the fact that at the

quantum level, the transformation is realized by a non-unitary operator Ŝ that transforms a
non-Hermitian operator iD̂, where D̂ is a generator of dilations, into the Hermitian compact
generator of the sl(2,R) symmetry which has a real discrete spectrum. In this work, we show that
the connection between the one-dimensional free particle and the harmonic oscillator corresponds
to a particular example of the PT -symmetric Swanson models studied in [37, 38, 39, 40]. In this

way our Hermitian generator Ŝ of the CBT can be related to a PT -symmetric metric operator.
Furthermore, since the applications of our CBT touch the systems in the spaces Rd with d ≥ 1,
and the models in different geometric and gauge backgrounds, new possibilities are opened for
connecting PT -symmetric systems with models that reveal interesting physical properties such
as quantum anomalies, Bose-Einstein condensation, gauge symmetries, etc.

The paper is organized as follows. In Sec. 2 we present the basic properties of the CBT
at the classical and quantum levels, and establish its connection with PT -symmetric systems.
In Sec. 3 we consider the explicit applications of the CBT to one-dimensional systems. As a
new result we present the connection between a one-parametric family of the PT -regularized
perfectly invisible zero-gap Calogero type systems with a PT -symmetric version of the AFF
conformal mechanics. We use the relation of the former family with the free-particle by means
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of Darboux transformations based on a scale-invariant higher-order differential equation to build
the complete set of the spectrum-generating ladder operators for the latter system. We also
consider there a reinterpretation of the CBT from the point of view of the PT -symmetric
Swanson model. In Sec. 4 we consider the isotropic and anisotropic CBT in d-dimensions, as
well as the generation of the exotic rotationally invariant harmonic oscillator in two dimensions.
In Sec. 5 we study the application of the CBT for systems in two different backgrounds which
correspond to the cosmic string and Dirac monopole. In Sec. 6 we show how the Darboux
transformation applied appropriately to the PT -regularized Calogero type systems allows us to
produce complex PT -symmetric solutions of the equations of the KdV hierarchy which reveal the
properties typical for extreme waves. In Sec. 7 we conclude with discussion of some interesting
open problems and further generalizations of the CBT in the light of the PT symmetry.

2. Conformal bridge transformation
2.1. Classical case
Consider the classical so(2, 1) algebra

{D0, H0} = H0 , {D0,K0} = −K0 , {K0, H0} = 2D0 , (1)

without specifying the concrete form of the generators. Identifying H0 as a Hamiltonian of a
particular classical system, one sees that D0 and K0 cannot be true, not depending explicitly on
time, integrals of motion. They, however, can easily be promoted to the dynamical, explicitly
depending on time integrals of motion in the sense of the evolution equation Ȧ = {A,H}+ ∂A

∂t =
0,

K0 → K = K(t) = TH0(t)(K0) , D0 → D = D(t) = TH0(t)(D0) . (2)

Here, TH0(t) indicates the Hamiltonian flux in a phase space,

exp(γF ) ? f(q, p) := f(q, p) +
∑∞

n=1
γn

n! {F, {. . . , {F, f } . . .}}︸ ︷︷ ︸
n

:= TF (γ)(f) , (3)

that is a canonical transformation. Obviously, TH0(t)(H0) = H0, and H0, D and K satisfy the
same so(2, 1) algebra, in which D and K are identified as generators of dilations and special
conformal transformations, respectively.

The real and complex linear combinations

J0 = 1
2(ω−1H0 + ωK0) , J± = J1 ± iJ2 = −1

2

(
ω−1H0 − ωK0 ± 2iD0

)
, (4)

satisfy the classical sl(2,R) algebra,

{J0,J±} = ∓iJ± , {J−,J+} = −2iJ0 . (5)

A constant ω of dimension of frequency is introduced to compensate the dimensions of the
generators H0 and K0. H0 has a nature of a non-compact (parabolic) generator of the so(2, 1)
algebra [41, 42], and so, the corresponding classical system can be asymptotically free (like, e.g.
a free particle, or conformal mechanics model). J0 is a compact (elliptic) generator of sl(2,R),
and represents a harmonically trapped (confined) version of the system H0. The quantity 2ωJ0

can be considered as a Hamiltonian of such a system, which corresponds to another form of
dynamics with respect to the same conformal symmetry so(2, 1) ∼= sl(2,R). Then J± can be
promoted to the dynamical integrals of motion for the harmonically trapped system by the
analog of the transformation given by Eqs. (2) and (3) with H0 and t changed for 2ωJ0 and τ .
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The quantities 2ωJ0 and J± generate the Newton-Hooke symmetry of the harmonically trapped
system [43, 44, 45, 46, 47].

Consider now the transformation

S : (H0, D,K) → (−ωJ−,−iJ0, ω
−1J+) , (6)

where we assume that J± are the dynamical integrals of motion with respect to the evolution
generated by 2ωJ0. It is an internal automorphism of the conformal algebra so(2, 1) ∼= sl(2,R)
generated by the composition of the canonical transformations

T (τ, β, γ, δ, t) = T2ωJ0(τ) ◦ Tβγδ ◦ TH(−t) , (7)

where

Tβγδ := TωK0(β) ◦ Tω−1H0
(1

2δ) ◦ TD0(γ) = TωK0(β) ◦ TD0(γ) ◦ Tω−1H0
(δ) , (8)

β = −i , γ = − ln 2 , δ = i . (9)

In this composition, the first transformation TH(−t) removes dependence on t in the dynamical
integrals D and K. The second transformation relates the t = 0 generators with the generators
J0 and J± of the sl(2,R) algebra, taken at τ = 0. The last transformation T2ωJ0(τ) restores the
τ dependence. The independent of the evolution parameters transformation Tβγδ is equivalent
to

Tβγδ = TG1(ε) , G1 := ω−1H0 − ωK0 , ε = π
4 i . (10)

Since the parameters β, δ and ε are pure imaginary, this canonical transformation is of an
unusual, complex form from the point of view of the conventional classical mechanics. It
transforms, particularly, the so(2, 1) hyperbolic [41, 42] generator D0 multiplied by 2iω into
the compact real sl(2,R) generator J0 multiplied by 2ω. This picture corresponds to the change
of the form of dynamics in the sense of Dirac [31]. Both, the asymptotically free and the
harmonically confined, forms of dynamics are associated to the conformal symmetry, and are
related one to another by the described classical conformal bridge transformation [27, 29].

One can easily check that for the complex so(2, 1) automorphism (6) the following relation

S2 = S ◦S : (J0,J1,J2) → (−J0,J1,−J2) (11)

is valid in terms of the sl(2,R) generators, that is a rotation by π about J1. Therefore, (6)
is the fourth order root of the so(2, 1) ∼= sl(2,R) identity automorphism, S4 = 1. In terms of
the so(2, 1) generators its eigenelement of eigenvalue 1 is G1 = ω−1H0 − ωK0, see Eq. (10),
while linear combinations G+i = −2D0 + ω−1H0 + ωK0 and G−i = 2D0 + ω−1H0 + ωK0

are eigenelements of eigeinvalues +i and −i, respectively. There is no eigenelement of the
automorphism (6) of eigenvalue −1 to be linear in the so(2, 1) generators. The quadratic
eigenelement of eigenvalue −1 is a(G+i)

2 + b(G−i)
2 with arbitrary coefficients a and b. The

so(2, 1) classical Casimir C = H0K0−D2
0 = 1

4G+iG−i is an eigenelement of automorphism S of
eigenvalue 1.

Given a particular system described by some symmetry algebra (that can be of a non-linear,
W type), in which conformal symmetry so(2, 1) appears as a subalgebra, we can always apply
to this system the classical (and quantum, see below) conformal bridge transformation to relate
it to its harmonically confined version. As a result, the integrals of one system can be mapped
into integrals of another. Explicit examples of this are discussed in Secs. 4 and 5. Note that in
this picture, the classical dynamics of the harmonically trapped system, which is generated by
the compact Hamiltonian 2ωJ0, corresponds to the Hamiltonian flow generated by the complex
quantity 2iωD0 in the asymptotically free system described by the Hamiltonian H0.
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2.2. Quantum version
Consider now the quantum so(2, 1) algebra

[D̂, Ĥ0] = i~Ĥ0 , [D̂, K̂] = −i~K̂ , [K̂, Ĥ0] = 2i~D̂ . (12)

Here

D̂ = e−i
Ĥ0
~ tD̂0e

i
Ĥ0
~ t , K̂ = e−i

Ĥ0
~ tK̂0e

i
Ĥ0
~ t , (13)

and we just note that acting on a solution of the time-dependent Schrödinger equation

Ψ(t) = e−i
Ĥ0
~ tΨ(0), a generic dynamical integral operator Â = e−i

Ĥ0
~ tÂ0e

i
Ĥ0
~ t produces

Â(t)Ψ(t) = e−i
Ĥ0
~ tÂ0Ψ(0) . In this work we consider only stationary eigenstates and linear

combinations of them, and for this reason, at the quantum level we suppose D̂ = D̂0 and
K̂ = K̂0, bearing in mind that the time dependence can be reconstructed by application of the
corresponding time-evolution operator.

By introducing the rescaled by ~ quantum analogs of the linear combinations (4),

Ĵ0 = 1
2ω~(Ĥ0 + ω2K̂) , Ĵ± = Ĵ1 ± iĴ2 = − 1

2ω~(Ĥ0 − ω2K̂ ± 2iωD̂) , (14)

we produce the quantum sl(2,R) algebra

[Ĵ0, Ĵ±] = ±Ĵ± , [Ĵ−, Ĵ+] = 2Ĵ0 . (15)

The quantum conformal bridge transformation (CBT) [27, 29, 30] is a similarity transformation

Ŝ(Ĥ0)Ŝ−1 = −ω~Ĵ− , Ŝ(iD̂)Ŝ−1 = ~Ĵ0 , Ŝ(K̂)Ŝ−1 = ~ω−1Ĵ+ , (16)

generated by the non-unitary, Hermitian operator

Ŝ = e−
ω
~ K̂e

i
~ ln(2)D̂e

Ĥ0
~ω = exp

[
π
4~

(
ω−1Ĥ0 − ωK̂

)]
. (17)

Notice that all the operators Ĥ0, K̂ and iD̂, to which the CBT (16) is applied, as well as the

CBT generator Ŝ itself commute with the PT operator, i.e. they are PT -symmetric 1.
Relations (16) imply that

D̂ |λ〉 = i~λ |λ〉 ⇒ Ĵ0(Ŝ |λ〉) = λŜ |λ〉 , (18)

Ĥ0 |E〉 = E |E〉 ⇒ Ĵ−(Ŝ |E〉) = − E
~ω Ŝ |E〉 . (19)

Then, to have a physical eigenstate Ŝ |λ〉 of Ĵ0, the formal state |λ〉 must obey the following
conditions:

I. The series exp
(
Ĥ0
2~ω

)
|λ〉 =

∑∞
n=0

1
n!(2~ω)n (Ĥ0)n |λ〉 has to reduce to a finite number of terms;

this means that |λ〉 should be a Jordan state of the operator Ĥ0 corresponding to zero energy
2.

1 Here P is a space reflection operator, Px = −xP, P2 = 1, and a complex conjugation operator T is defined by
T z = −z∗T , T 2 = 1, where z ∈ C is an arbitrary complex number.
2 The wave functions of generalized Jordan states corresponding to energy λ satisfy relations of the form
P (Ĥ)Ωλ = ψλ, where Ĥψλ = λψλ and P (η) is a polynomial [48, 49, 50]. Here we consider the Jordan states
satisfying the relations (Ĥ)`Ωλ = λψλ with λ = 0 for a certain natural number `.
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II. If a wave function Ωλ = 〈x |λ〉 is a rank n Jordan state of Ĥ of zero energy, ĤnΩλ = 0, then

Ωλ, as well as (Ĥ0)kΩλ, k = 1, . . . , n− 1, must not have poles and have to be single-valued.

On the other hand, the eigenvectors |E〉 (physical, or non-physical, with complex eigenvalues in

general case) of Ĥ0 are transformed into eigenvectors of the lowering operator Ĵ− of the sl(2,R)
algebra. Therefore, the resulting eigenstates in (19) are the coherent states of sl(2,R) in the
sense of Perelomov [51].

The formalism related to the quantum CBT admits a reinterpretation in the context of the
PT symmetry [37, 39]. Indeed, the second relation in (16) can be written as

ŜĤPT = ĤHCŜ , (20)

where ĤPT = 2iω~D̂ is a PT -invariant operator, while ĤHC = 2ω~Ĵ0 is a Hermitian
operator. From here we see that the Hermitian operator Ŝ, being the generator of the complex
automorphism of the conformal algebra so(2, 1) ∼= sl(2,R), intertwines a non-Hermitian, but PT -

invariant Hamiltonian with a Hermitian one. By multiplying this relation from the left by Ŝ we

obtain Θ̂ĤPT = Ĥ†PT Θ̂, where Θ̂ = Ŝ2, and we have taken into account the relation D̂ = −~Ĵ2

and the quantum analog of (11). This implies that if ĤHC represents a well defined quantum

system with real eigenvalues and normalizable eigenfunctions, then ĤPT has a real spectrum
with corresponding eigenstates of finite but not positive definite norm under the indefinite scalar
product 〈λ1| Θ̂ |λ2〉. With respect to this inner product, operator ĤPT is pseudo-Hermitian [35].

3. Applications of CBT to one-dimensional systems
In this section, based on [27], we apply the quantum CBT to one-dimensional systems. For the
sake of simplicity, we use here the units ~ = m = 1. In each of the examples, we consider the
symmetry operators, the eigenstates, and the rank n Jordan states of zero energy corresponding
to an asymptotically free system. By applying the CBT, we get the symmetry operators, the
eigenstates and the coherent states of the corresponding harmonically confined models.

In subsection 3.3, we give a reinterpretation of the CBT by comparing its construction
with the Swanson PT -symmetric system [37, 39] in correspondence with Eq. (20) and related
comments there. This will allow us, particularly, to generalize the construction of ref. [37, 39]
to the case of the AFF conformal mechanics model.

3.1. Example 1: The free particle - harmonic oscillator relation
Let us start with the one-dimensional free particle symmetry generators

Ĥ = −1
2
d2

dx2
, D̂ = − i

2

[
x d
dx + 1

2

]
, K̂ = 1

2x
2 , (21)

p̂ = −i ddx , x̂ = x . (22)

They produce the one-dimensional Schrödinger symmetry [52]. The eigenstates and eigenvalues

of Ĥ are

ψκ = eiκx , E = 1
2~

2κ2 , κ ∈ R . (23)

The functions 〈x|λ〉 that satisfy the two conditions specified in Sec. 2.2 correspond to

Ωn(x) = 〈x|λ〉 = xn , n = 0, 1, 2, . . . . (24)

The set of states (24) as a whole is invariant under the action of the symmetry generators (21),
(22),

ĤΩn = −1
2n(n− 1)Ωn−2 , K̂Ωn = 1

2Ωn+2 , 2iD̂Ωn = (n+ 1
2)Ωn , (25)

p̂Ωn = −inΩn−1 , x̂Ωn = Ωn+1 . (26)
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Via the repeated application of Ĥ to Ωn, we arrive at the functions Ω0 = 1 (if n is even) or
Ω1 = x (if n is odd), which are the (physical and non-physical) zero energy solutions of the free
particle stationary Schrödinger equation. So, Ωn(x) are the rank [n/2] + 1 Jordan states of zero

energy of the free particle, (Ĥ)[n/2]+1Ωn = 0, where [.] denotes an integer part. We see that Ωn

are common formal eigenfunctions of the operators 2iD̂ and (Ĥ)[n/2]+1.
According to Eq. (16), the application of the CBT to the free particle’s so(2, 1) generators

gives us the sl(2,R) generators of the one-dimensional harmonic oscillator system,

Ĥos = 2ωĴ0 = −1
2
d2

dx2
+ ω2

2 x
2 , Ĵ± = 1

4ω

[
d2

dx2
+ ω2x2 ∓ ω(x d

dx + 1
2)
]
. (27)

Along with them, we obtain the Heisenberg generators (ladder operators)

â± =
√

ω
2

(
x∓ 1

ω
d
dx

)
, [â−, â+] = 1 , (28)

according to the relations Ŝ(p̂)Ŝ−1 = −i
√
ω â− and Ŝ(x̂)Ŝ−1 =

√
1
ω â

+. From here one deduces

that this non-unitary (similarity) transformation can be identified as the fourth order root of
the space reflection operator P,

Ŝ : (x, p̂, â+, â−)→(â+,−iâ−,−ip̂, x) , Ŝ2 : (x, p̂, â+, â−)→(−ip̂,−ix,−â−, â+) ,

Ŝ4 : (x, p̂, â+, â−)→(−x,−p̂,−â+,−â−) . (29)

For the sake of simplicity, we set ω = 1 in (29). Notice here that the action of the CBT
on generators of the Heisenberg algebra corresponds to the eighth order root of the identity
automorphism, Ŝ8 = 1 3.

The application of the operator Ŝ to the functions (24) gives us

ŜΩn = Nnψn , ψn = 1√
2nn!

(ωπ )
1
4Hn(

√
ωx)e−

ωx2

2 , Nn = (2π)
1
4

ω
n
2 +1

4

√
n , (30)

where we have used the Weierstrass transformation [55, 27]. Additionally, by acting from the

left by the operator Ŝ on both sides of Eqs. (25) and (26) one gets the well known relations

Ĥosψn = ω(n+ 1
2)ψn , Ĵ±ψn =

√
(n± β±)(n+ β± ± 1)ψn±2 , β± = 1±1

2 , (31)

â−ψn =
√
nψn−1 , â+ψn =

√
n+ 1ψn+1 . (32)

Finally, the action of the operator Ŝ on the free particle eigenstates of the form (23), being
simultaneously eigenfunctions of p̂, produces

φ(x, κ) = Ŝe
i κx√

2 = 2
1
4 exp

(
−ω2

2 x
2 + κ2

4ω + iκx
)

= (2π
ω )

1
4
∑∞

n=0( ik√
2ω

)n ψn√
n!
. (33)

These are the coherent states [56] that satisfy the relation â−φ(x, κ) = iκ√
2ω
φ(x, κ). Under the

time evolution these functions take the form

φ(x, κ, t) = e−iĤostφ(x, κ) = e−i
ωt
2 φ(x, κe−iωt) . (34)

To have the over-complete set of coherent states of the quantum harmonic oscillator, we allow
the parameter κ to take complex values. In the same vein one can show that the free particle

3 See the comments related to Eq. (35) below, and refs. [53, 54] where the automorphism of the one-dimensional
Heisenberg group is discussed in the context of the Stone-von Neumann theorem and the properties of the Fourier
transform.
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Gaussian wave packets are mapped into the squeezed states of the harmonic oscillator, see ref.
[27].

Finally, we note that the described CBT formalism is close with the unitary transformation
between the coordinate and the Fock-Bargmann representations. In fact, this last representation
can be obtained if we formally replace the spacial variable x with the complex variable z in
operators (21), (22) as well as in the Jordan states (24), and as an additional step, substitute
the usual L2(R) scalar product for the inner product

(ψ1, ψ2) = 1
π

∫
R2 ψ1(z)ψ2(z)e−z̄zd2z, d2z = d(Re z)d(Im z) . (35)

The kernel of the integral transformation, which is a unitary transformation from the L2(R)
Hilbert space to the Fock-Bargmann space, can be related to the considered CBT, for further
details see ref. [27].

3.2. Example 2: The one-dimensional Calogero model - AFF model relation
The two-particle Calogero model admits a separation of variables in terms of the relative
coordinate and the coordinate of the center of mass, which has a free dynamics. The
corresponding so(2, 1) symmetry generators associated with the relative coordinate x > 0 are
defined on the positive real half-line R+, and they correspond to

Ĥν = −1
2
d2

dx2
+ ν(ν+1)

2x2
, D̂ = − i

2

[
x d
dx + 1

2

]
, K̂ = 1

2x
2 , (36)

where we assume that ν > −1
2 [50]. The eigenstates and eigenvalues of Ĥν , are given by

ψκ,ν(x) =
√
xJν+1/2(κx) , E = 1

2~
2κ2 , κ > 0 , (37)

where Jα are the Bessel functions of the first kind. Besides, the functions 〈x|λ〉 = Ωn,ν , that are

well defined on R+ and are the zero energy Jordan states of Ĥν correspond to

Ωn,ν = x2n+ν+1 . (38)

These functions satisfy the following set of equations,

ĤνΩn,ν = −n(2n+ 2ν + 1)Ωn−1,ν , K̂Ωn,ν = 1
2Ωn+1,ν , (39)

2iD̂Ωn,ν = (2n+ ν + 3
2)Ωn,ν . (40)

In the same vein as in the previous subsection, one can see that after the repeated application
of Ĥν one gets the zero energy solution Ω0,ν = xν+1, which is a regular function on R+.

On the other hand, the conformal symmetry generators of the AFF model [32],

ĤAFF
ν = 2ωĴ0 = −1

2
d2

dx2
+ ν(ν+1)

2x2
+ ω2

2 x
2 , (41)

Ĵ± = 1
4ω

[
d2

dx2
− ν(ν+1)

x2
+ ω2x2 ∓ ω(x d

dx + 1
2)
]
, (42)

are obtained by applying the CBT to generators (36). In the same way, the normalized

eigenstates of ĤAFF
ν correspond to

ŜΩn,ν = Nn,νψn,ν , ψn,ν =

√
2ων+

3
2 n!

Γ(n+ν+ 3
2

)
xν+1L

(ν+ 1
2

)
n (ωx2)e−

ωx2

2 , (43)
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where Nn,ν = (−1)n
(

2
ω

) ν
2

+n
√
ω−1n!Γ(n+ ν + 3

2) . They satisfy equations

ĤAFF
ν ψn,ν = En,νψn,ν , En,ν = ω(2n+ ν + 3

2) , (44)

Ĵ−ψn,ν = −
√
n(n+ ν + 1

2)ψn−1,ν , Ĵ+ψn,ν = −
√

(n+ 1)(n+ ν + 3
2)ψn+1,ν , (45)

that are obtained directly from the application of Ŝ to equations (39), (40).

On the other hand, the application of the operator Ŝ to eigenstates (37) of the system Ĥν

yields

Ŝψκ,ν( 1√
2
x) = 2

1
4 e−

1
2
x2+ 1

4
κ2√xJν+1/2(κx) := φν(x, κ) , (46)

that are the states satisfying the relation Ĵ−φν(x, κ) = −1
4κ

2φν(x, κ) . By changing the
parameter κ for the complex parameter z, one obtains coherent states that are eigenstates

of operator Ĵ− with complex eigenvalue −1
4z

2. By using the evolution operator exp
(
−itĤAFF

ν

)
,

the time-dependent coherent states are obtained,

φν(x, z, t) = 21/4√xJν+1/2(z(t)x)e−x
2/2+z2(t)/4−it , z(t) = ze−it . (47)

3.3. Example 3: CBT and PT -regularized conformal systems
The conformal symmetry operators of the PT -regularized Calogero systems, which are defined
for x ∈ R, are given by [8, 9]

Ĥα,ν = −1
2
d2

dx2
+ ν(ν+1)

2(x+iα)2
, D̂α = − i

2

[
(x+ iα) d

dx + 1
2

]
, (48)

K̂α = 1
2(x+ iα)2 . (49)

Notice that Ĥα,ν and K̂α are PT -symmetric, [PT , Ĥα,ν ] = [PT , K̂α] = 0, while D̂α is the PT -

odd, PT D̂α = −D̂αPT , operators. They are obtained by application of the complex translation
x→ x+ iα, α ∈ R, α 6= 0, generated by the Hermitian operator

Îα = e−αp̂ = eiα
d
dx , (50)

to the generators of the Hermitian Calogero system (36),

Îα(Ĥ0,ν)Î−α = Ĥα,ν , Îα(D̂0)Î−α = D̂α , Îα(K̂0)Î−α = K̂α , (51)

supplemented by extension of the domain for the position variable to the entire real line, that
we imply in the rest of this subsection. In the same way, the eigenstates of Ĥα,ν are formally

obtained by application of operator Îα to the states (37), and to their corresponding linearly
independent partners, which are given by the Neumann functions Yν(κx). On the other hand,
the rank [n/2] + 1 Jordan states of zero energy are given by

Ωα
n,ν = ÎαΩn,ν = (x+ iα)2n+ν+1 , Ξαn,ν = ÎαΞn,ν = (x+ iα)2n−ν , (52)

where Ξn,ν = x2n−ν is obtained by the transformation ρ : ν → −ν − 1 (with respect to which
generators (36) are invariant) over functions (38) [50]. Relations analogous to (39), (40) for

functions Ωα
n,ν are generated by applying the operator Îα. Additional transformation ρ then

yields

Ĥα,νΞαn,ν = −n(2n− 2ν − 1)Ξαn−1,ν , K̂αΞαn,ν = 1
2Ξαn+1,ν , (53)

2iD̂αΞαn,ν = (2n− ν + 1
2)Ξαn,ν . (54)
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In the special case ν = m with m = 1, 2, . . ., the system Ĥα,m can be obtained from the free
particle system on R by the Darboux transformation of the order m [57, 8]. As a consequence,
each such system possesses a hidden symmetry described by the Darboux-dressed generators of
the translations and Galilean boosts of the free particle,

P̂α,m = Â−α,mp̂Â+
α,m , X̂α,m = Â−α,m(x̂+ iα)Â+

α,m , (55)

Â−α,m = Â−α,m . . . Â
−
α,1 , Â+

α,m = Â+
α,1 . . . Â

+
α,m , Â±α,m = ∓ 1√

2

(
d
dx ±

m
x+iα

)
. (56)

The order (2m + 1) differential operator P̂α,m is the analog of the Lax-Novikov integral
in the quantum reflectionless and finite-gap systems whose potentials are snapshots of the
corresponding multi-soliton and cnoidal-type solutions to the KdV equation [7, 3]. Here the

operators Â±α,m are the higher order intertwining operators that connect the free particle

Hamiltonian Ĥα,0 = Ĥ with the PT regularized Calogero Hamiltonian Ĥα,m,

Â−α,mĤα,0 = Ĥα,mÂ−α,m , Â+
α,mĤα,m = Ĥα,0Â+

α,m . (57)

The PT -symmetric system Ĥα,m is regular on a real line, and due to its relation to the free
particle via the intertwining relations (57), it turns out to be perfectly invisible system with a
unique L2(R) integrable state Ξ0,m of zero energy at the very edge of the doubly degenerate

continuous part of the spectrum. The integral P̂α,m separates the states of the same energy in
the doubly degenerate continuous part of the spectrum as well as detects the unique bound state
of the system Ĥα,m by annihilating it [8, 9].

The commutation relations between the symmetry generators (55) and Ĥα,m, D̂α and K̂α

produce an extended non-linear algebra, that includes, particularly, the Lie algebraic relations

[Ĥα,mP̂α,m] = 0 , [Ĥα,m, X̂α,m] = −iP̂α,m , (58)

[D̂α, P̂α,m] = i
2(2m+ 1)P̂α,m , [D̂α, X̂α,m] = i

2(2m− 1)X̂α,m . (59)

The action of operators (55) on Jordan states (52) with ν = m yields

P̂α,mΞαn,m ∝ Ωα
n−2m−1,m , X̂α,mΞαn,m ∝ Ωα

n−2m,m , (60)

P̂α,mΩα
n,m ∝ Ξαn,m , X̂α,mΩα

n,m ∝ Ξαn,m , (61)

ker P̂α,m = span{Ξα0,m, . . . ,Ξα2m,m} , ker X̂α,m = span{Ξα0,m, . . . ,Ξα2m−1,m} . (62)

To relate a non-Hermitian PT -symmetric asymptomatically free system like Ĥα,m with its
confined version, we introduce an extended CBT operator

Ŝα = ÎαŜ0Î−α , Ŝ−1
α = ÎαŜ

−1
0 Î−α , (63)

which in this case yields

Ŝα(Ĥα,m)Ŝ−1
α = −ωĴ−,α , Ŝα(iD̂α)Ŝ−1

α = Ĵ0,α , Ŝα(K̂α)Ŝ−1
α = 1

ω Ĵ+,α , (64)

Ĵ0,α = 1
2ω (Ĥα + ω2K̂α) , Ĵ±,α = − 1

2ω (Ĥα − ω2K̂α ± 2iωD̂α) . (65)

Here we have Ĵ0,α = ÎαĴ0,0Î−α and Ĵ±,α = ÎαĴ±,0Î−α, and this implies that Ĵ+,α is not

the Hermitian conjugation (with respect to the usual inner product on R) of Ĵ−,α. Operators

(Ĵ0,0, Ĵ±,0) correspond to the AFF model generators (41), which are singular for x ∈ R.
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On the other hand,

ĤAFF
α,ν = Îα(ĤAFF

0,ν )Î−α = −1
2
d2

dx2
+ ν(ν+1)

2(x+iα)2
+ ω2

2 (x+ iα)2 , (66)

is the non-Hermitian Hamiltonian of the PT -regularized AFF model with arbitrary value of
the parameter ν > −1/2. Note that for ν = 0 we recover the PT -symmetric one-dimensional
harmonic oscillator with x displaced for imaginary constant iα being the simplest case of non-
Hermitian systems introduced in [33]. The corresponding eigenstates of (66) are

ψαn,ν ∝ ŜαΩα
n,ν , φαn,ν ∝ ŜαΞαn,ν , (67)

whose explicit form is

ψαn,ν = (x+ iα)ν+1e−
ω(x2−α2)

2
+iωαxL

(ν+ 1
2

)
n (ω(x+ iα)2) , φαn,ν = ψαn,−ν−1 . (68)

These functions satisfy the eigenvalue equations

ĤAFF
α,ν ψαn,ν = En,νψ

α
n,ν , En,ν = ω(2n+ ν + 3

2) , (69)

ĤAFF
α,ν φαn,ν = En,νφαn,ν , En,ν = ω(2n− ν + 1

2) , (70)

and they are L2(R) normalizable, being of the form of a regular polynomial times a Gaussian
term, see Figs. 1a and 1b. The notable here is that we have two different towers of
states, where the distance between two consecutive energy levels in each tower is given by
∆E = En,ν − En−1,ν = En,ν − En−1,ν = 2ω. On the other hand, δE = En,ν − En,ν = ω(2ν + 1).
The last relation means that when ν = `− 1

2 , δE = `∆E, ` = 1, 2, . . ., one could conclude that
there emerges a double degeneracy in the spectrum because of the relation Es−`,`− 1

2
= Es,`− 1

2

with s ≥ `. However, due to the Laguerre polynomial identity

(−η)s

s! L
(s−`)
` (η) = (−η)`

`! L
(`−s)
s (η) , (71)

one can deduce that ψs−`,`− 1
2
∝ φs,`− 1

2
, and so, such a double degeneracy does not really exist.

For a similar phenomenon observed earlier in the Darboux transformations of the AFF model
see ref. [50]. On the other hand, when ν = m one has δE = ω(2m + 1). In this case the
levels of the tower En,m appear in the middle between the levels corresponding to En,m, and the
resulting spectrum is divided in two parts. One part corresponds to a semi-infinite equidistant
part with energy levels separated by ω. In another, finite part, equidistant separation between
energy levels is ∆E = 2ω, see Figs. 1c-1e.

The action of the operators Ĵα,± is obtained via the application of Ŝα, that yields

Jα,±ψαn,ν ∝ ψαn±1,ν , Jα,±φαn,ν ∝ φαn±1,ν , kerJα,− = span{ψα0,ν , φα0,ν} . (72)

This tells us that the states associated to each tower of energy levels can be produced by the
sl(2,R) generators starting from any fixed state, and also shows that there is no way to relate
the states from the two towers when ν is not integer. In the integer case ν = m we have the
operators

Âα,m = Ŝα(P̂α,m)Ŝ−1
α , B̂α,m = Ŝα(X̂α,m)Ŝ−1

α , (73)

[ĤAFF
α,m , Âα,m] = −ω(2m+ 1)Âα,m , [ĤAFF

α,m , B̂α,m] = −ω(2m− 1)B̂α,m . (74)

With the help of the CBT, one learns that the operator Âα,m annihilates the states φj,m with

j = 0, 1, . . . ,m, while the operator B̂α,m annihilates the states φl,m with l = 0, 1, . . . ,m − 1.
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Among these states we have all the eigenfunctions corresponding to the part separated from the
infinite equidistant part of the spectrum. One finds also that they effectively relate the states
of one tower with the states of another,

Âα,mφαn,m ∝ ψαn−2m−1,m , B̂α,mφαn,m ∝ ψαn−2m,m , (75)

Âα,mψαn,m ∝ φαn,m , B̂α,mψαn,m ∝ φαn,m . (76)
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(a) n = m = 9 , α = 0.75
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Figure 1: In Figs. 1a and 1b, the modules of the states φαn,m and ψαn,m (normalized by their respective
maxima) with some values of n, m and α are compared. On Figs. 1c, 1d and 1e, the energy levels En,m
(continuos blue lines) and En,m (dashed red lines) are shown for different values of the parameter m.

Finally, via application of Ŝα to eigenstates of Ĥα,ν we get the overcomplete set of coherent
states by allowing κ to take complex values,

Ŝαψ
α
κ,ν( 1√

2
x) = 2

1
4 e−

1
2

(x+iα)2+ 1
4
κ2
√
x+ iα Jν+1/2(κ(x+ iα)) := Ψα

ν (x, κ) , (77)

Ŝαφ
α
κ,ν( 1√

2
x) = 2

1
4 e−

1
2

(x+iα)2+ 1
4
κ2
√
x+ iα Yν+1/2(κ(x+ iα)) := Φα

ν (x, κ) . (78)

Considering the issue of the inner product, one could try to take it in the form 〈χ1| Î−2α |χ2〉,
and then we obtain

〈
ψαn,ν

∣∣ Î−2α

∣∣ψαn,ν〉 ∝ 〈ψ0
n,ν

∣∣ψ0
n,ν

〉
. However the quantity

〈
φαn,ν

∣∣ Î−2α

∣∣φαn,ν〉
diverges when ν 6= 0, since functions φ0

n,ν are singular in the origin, see Eq. (68). Note, however,
here that in the case of PT -symmetric harmonic oscillator (ν = 0) we do not have these problems
since the states φ0

n,0 can be written in terms of even Hermite polynomials, which do not have

singularities in the real line. So, the interesting open problem is to find a Hermitian system Ĥν ,
defined on the entire real line, with the same spectrum of Ĥα,ν , and an operator Ôα such that

ÔαĤνÔ−1
α = Ĥα,ν . One can expect that such a Hamiltonian will be a non-local operator of the

nature similar to that considered in [58], see also [59].

3.4. A PT -symmetric reinterpretation of CBT
According to [37, 39], the PT symmetric Hamiltonian operator

Hα,β,γ = αâ+â− + β(â−)2 + γ(â+)2 , x ∈ R , (79)
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where â+ and â− are the Hermitian conjugate raising and lowering ladder operators (28), is
characterized by a purely real spectrum if the real parameters α, β and γ satisfy the relation
α2 − 4βγ ≥ 0. In the particular case in which α = 0, β = ω and γ = −ω, this operator takes
the form

Ĥ0,ω,−ω = 2iωD̂ , (80)

where D̂ corresponds to the dilatation operator appearing in (21). The eigenstates of this
Hamiltonian are the functions Ωn presented in Eq. (24), and the eigenvalue problem corresponds

to the third equation in (25). From Eq. (30) one deduces that the CBT generator Ŝ works as the
operator that relates the Hamiltonian (80) with the harmonic oscillator system described by the
Hermitian Hamiltonian. Indeed, from equations (16) we obtain the PT -symmetric conjugation

Ĥ0,ω,−ωΘ̂ = Ĥ †
0,ω,−ωΘ̂ , Θ̂ = (Ŝ)2 , (81)

implying that the PT -symmetric normalization of the eigenstates Ωn is just equivalent to
normalization of eigenstates of the quantum harmonic oscillator under the usual inner product
in R. In the same vein, we note that at the classical level, the time evolution produced
by the Hamiltonian H0,ω,−ω = 2iωD in the variables x and p is governed by the equations
ẋ = {x,H0,ω,−ω} = iωx and ṗ = {p,H0,ω,−ω} = −iωp, which resemble the equations of motion
of the classical analog a+ and a− of the first order ladder operators of the harmonic oscillator
system. Off course, both systems are related to each other by the classical version of the
conformal bridge transformation reviewed in Section 2.1.

The model (79) can be generalised up to a concrete realization of the so(2, 1) ∼= sl(2,R)
generators, by changing the harmonic oscillator operators by

Ĥα,β,γ = αĴ0 + βĴ− + γĴ+ = α−β−γ
2ω Ĥ + ω(α+β+γ)

2 K̂ + i(β − γ)D̂ . (82)

Relation (81) holds since it is true by the conformal algebraic arguments. This also means that
the PT -symmetric normalization of the considered physical states of the system, which are also
the rank [n/2] + 1 Jordan states of zero energy of Ĥ, correspond to the normalization of the

eigenstates of the system given by the Hamiltonian Ĵ0. In this way, if we select the realization
(36), where the generators are defined on R+, the physical eigenstates of (82) with α = 0,
β = −γ correspond to (38), and the corresponding eigenvalue equation is given by Eq. (40).

4. CBT for higher-dimensional Euclidean systems
Let us start with realization of the operators Ĥ, D̂ and K̂ in higher-dimensional systems. In
the simplest case of a free particle in Rd, the generators of its so(2, 1) conformal symmetry are
given by (in this section we restore the dimensional constants):

Ĥ =
∑d

i=1 Ĥi , D̂ =
∑d

i=1 D̂i , K̂ =
∑d

i=1 K̂i , (83)

Ĥi = −~2
2m

∂2

∂x2i
, D̂i = −i~2

(
xi

∂
∂xi

+ 1
2

)
, K̂i = m

2 x
2
i . (84)

These symmetry generators are complemented by the Heisenberg algebra generators

p̂j = −i~ ∂
∂xj

, ξ̂j = mxj , [ξ̂j , ξ̂k] = [p̂j , p̂k] = 0 , [ξ̂j , p̂k] = i~mδjk , (85)

and the angular momentum tensor M̂ij = 1
m(ξ̂ip̂j− ξ̂j p̂i) . Together, all these generators produce

a d-dimensional Schrödinger symmetry of a free particle [52].
The commutation relations in (85) imply that different conformal bridge transformations

can be applied for each spatial direction, and each of them works in the same way as in the
one-dimensional case considered in Sec. 3.1.
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First, let us consider the isotropic CBT produced by the operator

Ŝ = Πd
i=1Ŝi , Ŝi = e−

ω
~ K̂ie

Ĥi
2~ω e

i
~ ln(2)D̂i , [Ŝi, Ŝj ] = 0 . (86)

This operator generates a composed CBT with equal frequencies in each direction. For this
reason, it commutes with the angular momentum tensor, and so, is rotationally invariant.
Applying the similarity transformation given by (86) to the free particle, we obtain, in accordance
with Eqs. (16) and (14), the d-dimensional isotropic harmonic oscillator, with the sl(2,R)

generators Ĵ± to be quadratic radial ladder operators. Also one gets

Ŝ(p̂j)Ŝ
−1 = −i

√
m~ω â−j , Ŝ(ξ̂j)Ŝ

−1 =
√

m~
ω â+

j , (87)

where â+
i are the first order ladder operators for each direction,

â±i =
√

mω
2~

(
xi ∓ ~

mω
∂
∂xi

)
, [â±i , â

±
j ] = 0 , [â−i , â

+
j ] = δij . (88)

The second option is the anisotropic CBT composed from generators with different values of
frequencies ωi > 0,

Ŝω1,...ωd = Πd
i=1Ŝωi , Ŝωi = e−

ωi
~ K̂ie

Ĥi
2~ωi e

i
~ ln(2)D̂i , [Ŝωi , Ŝωj ] = 0 . (89)

Via the similarity transformation, this operator and its inverse transform the linear combination
2iD̂ε1,...,εdω1,...,ωd = 2i

∑d
i=1 ωiεiD̂i into the d-dimensional anisotropic oscillator Hamiltonian

Ĥε1,...,εd
ω1,...,ωd =

∑d
i εiĤ

ωi
os with Ĥωi

os = ~ωi(â+
ωi â
−
ωi + 1

2), and â±ωi =
√

mωi
2~

(
xi ∓ ~

mωi
∂
∂xi

)
, where

each εi can be chosen as 1 or −1. On the other hand, up to multiplicative constants, one also
gets Ŝω1,...ωd : (ξ̂i, p̂i)→ (â+

ωi , â
−
ωi).

Systems in d Euclidean dimensions, such as the free particle and isotropic or anisotropic
harmonic oscillators, can have hidden symmetries generated by higher order integrals of motion
[60]. Since these integrals are always written in terms of x̂ and p̂ (or in terms of (88)), the
CBT maps the symmetry generators of one system into those of another. In practical terms,
application of the CBT to the operators that commute with 2iD̂ (2iD̂) produces the Hamiltonian
symmetries of the isotropic (anisotropic) case. This scheme allows a reinterpretation from the

perspective of PT symmetry, in the spirit of Sec. 3.4, since the operators 2iD̂ and 2iD̂ are a
generalization of the Hamiltonian (80) to d-dimensions, in the isotropic and anisotropic case,
respectively.

To see some concrete applications of the higher dimensional CBT in detail, we will consider
only the case d = 2. In particular, we focus our attention on the exotic rotationally invariant
harmonic oscillator (ERIHO) system [30], which corresponds to the planar isotropic harmonic
oscillator extended by a Zeeman type term. This model is generated by the isotropic CBT
by generalizing the already considered constructions. It represents a one parametric family of
systems revealing different phases, two of which correspond to the Landau problem. Additionally,
in [30] it also was shown that in spite of the explicit rotationally invariant nature, the model is
unitary equivalent to the planar anisotropic harmonic oscillator (AHO) via the application of a
certain su(2) rotation accompanied by an anisotropic so(1, 1) Bogolyubov transformation [61].

4.1. The ERIHO system: classical case
Starting from the two-dimensional free particles system, let us consider the following complex
combination of its symmetry generators

2iD0 + gpϕ = xj∆jkpk g ∈ R , (90)

∆jk = iδjk + gεjk , ∆jk∆jl = (g2 − 1)δjl , det ∆ = g2 − 1 . (91)
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The generator pϕ = M12 = εijxipj of so(2) rotations is invariant under the classical isotropic
CBT. As a result, (90), multiplied by ω, is transformed into the classical Hamiltonian of the
ERIHO system,

Hg = Hosc + gωpϕ , Hosc = 1
2mpipi + 1

2mω
2xixi . (92)

System (92) admits the following three different physical interpretations [30].
First, Hg corresponds to the Hamiltonian of a planar particle in a non-inertial frame rotating

with angular velocity Ω = gω and subjected to the action of the isotropic harmonic trap
U = 1

2kxixi. The cases k > mΩ2, k = mΩ2 and 0 < k < mΩ2 correspond, respectively, to
the phases 0 < g2 < 1, g2 = 1 and g2 > 1 of the system (92), while the inertial case Ω = 0,
k = mω2 corresponds to the phase of the isotropic oscillator of (92) with g = 0.

Second, in the cases g = +1 and g = −1, (92) takes the form of the Hamiltonian of
Landau problem in symmetric gauge with different orientation (sign) of the magnetic field
B and ω = gωB, ωB = qB/2mc, where q is the charge of a particle. Then the phases with
0 ≤ g2 < 1 and g2 > 1 of (92) correspond to the extended Landau problem in the presence of
the additional harmonic potential term 1

2mΛxixi with Λ > 0 and 0 > Λ > −ω2
B, respectively,

where ω =
√

Λ + ω2
B, and g = ωB/ω. The repulsive critical, Λ = −mω2

B, and supercritical,

Λ < −mω2, cases of the extended Landau problem have no analogs in the system (92).
Finally, in terms of the classical analogues of the circular ladder operators,

b−1 = 1√
2
(a−1 − ia

−
2 ) , b+1 = (b−1 )∗ , b−2 = 1√

2
(a−1 + ia−2 ) , b+2 = (b−2 )∗ , (93)

a±i =
√

mω
2

(
xi ∓ i

mω pi
)
, (94)

Hamiltonian (92) takes the form

Hg = ω
(
`1b

+
1 b
−
1 + `2b

+
2 b
−
2

)
, `1 = 1 + g , `2 = 1− g . (95)

It looks like the anisotropic harmonic oscillator Hamiltonian, but system (92) is manifestly
rotational invariant.

In correspondence with relations (91) and the comments on different interpretations, it
is expected that the system (92) should have essentially different physical properties and
symmetries in the cases g2 < 1 and g2 > 1, as well as when g = ±1. Indeed, the system
corresponds to the planar isotropic harmonic oscillator when g = 0, meanwhile, as it was
already mentioned, the model at g = ±1 represents the Landau problem in the symmetric
gauge. In the case |g| < 1, the Hamiltonian (92) formally looks like the Euclidean AHO with
different frequencies ω1 6= ω2, ωi = `iω, contrary to the case of |g| > 1, when (92) has instead
the form of a Hamiltonian of the Minkowskian AHO with frequencies of two different signs.
This last family of systems resembles the Pais-Uhlenbeck oscillator, which recently attracted a
considerable attention in relation to the PT -symmetry, see Refs. [62, 63, 64]. Finally, in the
limit g →∞, one has

g−1Hg → ωpϕ = ω(b+1 b
−
1 − b

+
2 b
−
2 ) = b+i ηijb

−
j , η = diag(1,−1), (96)

which can be interpreted as the isotropic Minkowskian oscillator.
From the point of view of the PT symmetry, the generator (90) is a generalization of the

classical analogue of the PT invariant Hamiltonian of the form (80), extended now by the
angular momentum taken with arbitrary coupling constant. Here, the isotropic CBT provides
us the transformation that connects this system with its real (Hermitian in the quantum case)
counterpart Hg.
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By solving the equations of motion for b±j , ḃ±j = ±iω`jb±j , j = 1, 2, and using the relation√
mω(x1 + ix2) = b+1 + b−2 , we get the trajectories of the system,

z(t) = x1(t) + ix2(t) = R1e
iγ1eiω`1t +R2e

−iγ2e−iω`2t , (97)

where Ri ≥ 0 and γi ∈ R are the integration constants. The energy and angular momentum of
the system are given by Eg = mω2(`1R

2
1 + `2R

2
2), pϕ = mω(R2

1 − R2
2). Notice that for g2 < 1

the exponents in (97) evolve in opposite directions, while in the case of g2 > 1 they change in
the same direction that depends on the sign of g. On the other hand, at g = +1 (g = −1), one
gets ω2 = 0 (ω1 = 0), and the orbit is a circumference of radius R1 (R2) centered at (X1, X2)
with Z = X1 + iX2 = R2e

−iγ2 (Z = R1e
iγ1).

In general case, the trajectory is closed for arbitrary choice of the integration constants iff the
condition `1/`2 = q2/q1 with q1, q2 ∈ Z is fulfilled. This implies rational values for the parameter
g = (q2− q1)/(q1 + q2). Some trajectories for rational values of g are shown in Figs. 2 and 3. In
the case of Minkowskian isotropic oscillator (96), the trajectories are obtained by applying the
transformation ω → ω/|g|, and taking the limit |g| → ∞ in (97). As a result one gets a circle
centered in the origin of the coordinate system, z(t) = eiεωt(R1e

iγ1 +R2e
iγ2), where ε = ±1 for

g → ±∞ [30].
The closed character of the trajectories for rational values of the parameter g indicates that

some additional true integrals of motion have to appear in the corresponding systems. To obtain
them, let us employ the classical CBT.

In the case in which we select g as the irreducible rational number

gs1,s2< = (s2 − s1)/(s1 + s2) , s1, s2 = 1, 2, . . . , |gs1,s2< | < 1 , (98)

it is easy to see that the phase space functions of the classical free particle

S+
s1,s2 = (ξ+)s1(p+)s2 , Ŝ−s1,s2 = (p−)s1(ξ−)s2 , (99)

where p± = p1± ip2 and ξ± = ξ1± iξ2, Poisson commute with (90). After the application of the
classical CBT we get (up to certain constant multiplicative factors)

L+
s1,s2 = (b+1 )s1(b−2 )s2 , L−s1,s2 = (L+

s1,s2)∗ . (100)

These new generators are the true integrals of motion for the system (92). Together with pϕ
and Hg, they generate a non-linear deformation of the u(2) ∼= su(2) ⊕ u(1) algebra [30], which
in the case of s1 = s2 = 1, g = 0, reduces to the u(2) ∼= su(2) ⊕ u(1) Lie algebraic symmetry
of the isotropic oscillator. As {L+

s1,s2 ,L
−
s1,s2} is a polynomial of Hg and pϕ (of order s1 + s2),

effectively (100) provides us with only one new integral independent from Hg and pϕ.
If instead of (98) we chose now the irreducible fraction

gs1,s2> = (s2 + s1)/(s2 − s1) , |gs1,s2> | > 1 , (101)

one can show that the polynomials of the free particle Heisenberg generators

Ξ+
s1,s2 = (ξ+)s1(ξ−)s2 , Ξ−s1,s2 = (p+)s1(p−)s2 (102)

Poisson commute with (90), and after the application of the conformal bridge transformation,
we obtain (up to certain multiplicative constants) the true integrals of motion for our system,

J +
s1,s2 = (b+1 )s1(b+2 )s2 , J −s1,s2 = (J +

s1,s2)∗ . (103)
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(b) g = 1/3, R1 = R2
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(c) g = 3/5, R1 > R2
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(e) g = 1, R1 = R2
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(f) g = 1, R1 > R2
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(g) g = 3/2, R1 < R2
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y

(h) g = 3, R1 = R2

x

y

(i) g = 5/3, R1 > R2

Figure 2: Trajectories for some rational values of g. In cases b), e) and h), pϕ = 0 and trajectories pass
through the origin. For R1 6= R2, sign (pϕ) = sign (R1 −R2).

As in the previous case, these integrals generate a non-linear algebra, which corresponds here
to a deformation of the gl(2,R) = sl(2,R)⊕ u(1) algebra [30].

The symmetries of the phases g = 1 and g = −1 of the Landau problem as well as of the
isotropic Minkowskian oscillator, |g| = ∞, can also be reproduced by the described CBT, see
ref. [30].

We do not discuss here the complete algebraic structure generated by computing the Poisson
brackets between the true integrals and the rest of dynamical symmetries of the system.
Nevertheless we notice, that in the case g = gs1,s2< (g = gs1,s2> ) the integrals J ±s1,s2 (L±s1,s2)

are dynamical, and can be generated via the Poisson brackets between the integrals L±s1,s2
(J ±s1,s2) and the quantities L±1,1 := L± (J ±1,1 := J±), which also are dynamical integrals of the
system. In this process we generate a large but still finite number (depending on the values of
the integer parameters s1 and s2) of dynamical integrals, which together with four true integrals
generate a finite non-linear algebra of the W type. From this point of view we also have a
kind of transmutation of symmetries for the “dual” pairs of the systems with g = gs1,s2< and
g = gs1,s2> = 1/gs1,s2< , where the non-linearly deformed u(2) and gl(2,R) subalgebras generated
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(a) g = 1/3, R2/R1 = 2
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(b) g = 1/2, R2/R1 = 6
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(c) g = 3/5, R2/R1 = 20

x

y

(d) g = 3, R2/R1 = 2

x

y

(e) g = 2, R2/R1 = 6

x

y

(f) g = 5/3, R2/R1 = 20

Figure 3: Trajectories for some rational values of g and R1/R2. The “dual” figures (a) and (d), see
below, correspond to a general case R1|`1| = R2|`2| of the trajectories with cusps, in which velocity turns
into zero.

by the sets (Hg,L2,L±s1,s2) and (Hg,J0,J ±s1,s2) change their role in the sense of the true and
dynamical sub-symmetries. For more details see ref. [30].

4.2. Quantum case of the ERIHO system
At the quantum level we have

Ĥg = Ĥosc + ωp̂ϕ = Ŝω(2iD̂ + gp̂ϕ)Ŝ−1 = ~ω(`1b̂
+
1 b̂
−
1 + `2b̂

+
2 b̂
−
2 + 1) , (104)

`1 = 1 + g , `2 = 1− g , (105)

b̂−1 = 1√
2
(â−1 − iâ

−
2 ) , b̂+1 = (b̂−1 )† , b̂−2 = 1√

2
(â−1 + iâ−2 ) , b̂+2 = (b̂−2 )† . (106)

Notice here that the operator 2iD̂ + gp̂ϕ, to which we apply the CBT, is PT symmetric if P
is identified as a spatial reflection operator in two dimensions, Px1 = −x1P, Px2 = x2P. To
obtain the eigenstates and the spectrum of this system, analogously to the procedure described
in Sec. 3, we first have to solve the eigenvalue equation

(2iD̂ + gp̂ϕ)φλ = ~
(
(1 + g)z ∂

∂z + (1− g)z∗ ∂
∂z∗

)
φλ = λφλ , z = x1 + ix2 . (107)

The well defined in R2 solutions of this equation correspond to φn1,n2 = zn1(z∗)n2 , where n1 and
n2 are non-negative integers. These are the Jordan states of the two-dimensional free particle
that satisfy the equations Ĥφn1,n2 = −2~

mn1n2φn1−1,n2−1, 2iD̂φn1,n2 = ~(n1 + n2 + 1)φn1,n2 ,

p̂ϕφn1,n2 = ~(n1 − n2)φn1,n2 , which imply that (2iD̂ + gp̂ϕ)φn1,n2 = ~(n1`1 + n2`2 + 1)φn1,n2 .
The isotropic two-dimensional CBT produces (up to multiplicative constants) a map

Ŝ : (ξ̂+, ξ̂−, p̂+, p̂−) → (b̂+1 , b̂
+
2 , b̂
−
2 , b̂
−
1 ) , (108)
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where p̂± = p̂1 ± ip̂2 and ξ̂± = ξ̂1 ± iξ̂2, as well the map (16) with Ĥ, D̂ and K̂ given
by (83) with d = 2, while p̂ϕ is left invariant. By computing the action of the generators

(Ĥ, D̂, K̂, p̂ϕ, ξ̂+, ξ̂−, p̂+, p̂−) on the states φn1,n2 , and with the subsequent application of the

CBT generator Ŝ from the left, one obtains the equations

b̂±1 Ψn1,n2 =
√
n1 + β±Ψn1±1,n2 , b̂±2 Ψn1,n2 =

√
n2 + β±Ψn1,n2±1 , (109)

Ĵ±Ψn1,n2

√
(n1 + β±)(n2 + β±)Ψn1±1,n2±1 , (110)

ĤgΨn1,n2 = En1,n2Ψn1,n2 , p̂ϕΨn1,n2 = ~(n1 − n2)Ψn1,n2 , (111)

En1,n2 = ~ω(`1n1 + `2n2 + 1) , β± = 1±1
2 . (112)

Here the physical eigenstates Ψn1,n2(x1, x2) are given by

Ŝφn1,n2 = Nn1,n2Ψn1,n2 , Nn1,n2 =
(

2~
mω

)n1+n2
2
√
n1!n2!π , (113)

Ψn1,n2 =
√

mω
~πn1!n2! Hn1,n2

(√
mω
~ x1,

√
mω
~ x2

)
e−

mω
2~ (x21+x22) , (114)

where the functions are the generalized Hermite polynomials of two indexes [65].

From equations (109) one deduces that the operators b̂±i are the spectrum generating ladder
operators of the system for arbitrary values of g. Eqs. (111) and (112) yield the energy spectrum
of the system and the angular momentum value of each stationary state. In dependence on the
value of g, the spectrum has the following properties. It is degenerate iff g is a rational number,
that we assume from now on. The spectrum is positive, has a finite degeneracy, and the ground
state is not degenerate when |g| < 1. In the case |g| > 1, it is not bounded from below, and has
infinite degeneracy in each energy level. Finally, we have the spectrum of the Landau problem
when |g| = 1, see [27].

In the case in which g is equal to (98) one gets that the integrals

L̂+
s1,s2 = (b̂+1 )s1(b̂−2 )s2 , L̂−s1,s2 = (L̂−s1,s2)† , (115)

which are the direct quantum analogs of L±s1,s2 , act as follows,

L̂±s1,s2Ψn1,n2 =
√

Γ(n1+β±s1+1)Γ(n2+β∓s2+1)
Γ(n1−β∓s1+1)Γ(n2−β±s2+1)Ψn1±s1,n2∓s2 . (116)

Besides, when g corresponds to the case (101), the action of the quantum analogs of the integrals

Ĵ ±s1,s2 ,

Ĵ +
s1,s2 = (b̂+1 )s1(b̂+2 )s2 , Ĵ −s1,s2 = (Ĵ −s1,s2)† , (117)

yields

Ĵ ±s1,s2Ψn1,n2 =
√

Γ(n1+β±s1+1)Γ(n2+β±s2+1)
Γ(n1−β∓s1+1)Γ(n2−β∓s2+1)Ψn1±s1,n2±s2 . (118)

All the normalizable eigenfunctions with the same energy can be obtained by repeated
application of these operators to some fixed state Ψn1,n2 . When considering the case (98),

the action of the integrals L̂±s1,s2 with both upper signs produces a finite list of states. This
happens due to obligatorily appearance of the poles in the Gamma function in a denominator
of some coefficients. In contrast, when g is given by Eq. (101), equations (118) imply that

the repeated action of Ĵ −s1,s2 at some step annihilates a state, but the repeated application of

Ĵ +
s1,s2 will never produces zero. The described properties of the quantum integrals reflect the

properties of the spectrum in dependence on the corresponding rational value of g.
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As in the previous section, we can construct the coherent states of the system. The way to
obtain them is to apply the CBT operator to the eigenstates of the free particle Hamiltonian.

For this, we consider the plane wave e
1√
2

(α1z+α2z∗), which, in dependence on the values of the
parameters α1, α2 ∈ C can be a physical or non-physical, formal eigenstate of Ĥ. The resulting

L2(R2) integrable functions are eigenstates of operators b̂−i with eigenvalues
√

~
mωαi, i = 1, 2,

and they hold their shape under the time translations and rotations [30].

5. CBT in cosmic strings and Dirac monopole backgrounds
Here we discuss applications of CBT with non-trivial realizations of conformal generators in
more than one dimension. In the first subsection we consider the relationship between the
free particle and the harmonic oscillator on a cosmic string background [29]. In the second
subsection we comment on the three-dimensional example in the Dirac monopole background
[28]. This second example corresponds to a direct generalization of the relationship between the
one-dimensional Calogero type model and the AFF conformal mechanics studied in Sec. 3.2 to
the case of three-dimensional spaces.

5.1. CBT in a cosmic string background
The metric corresponding to the (2 + 1) cosmic string space-time is given by [66, 67]

dS2 = −c2dt2 + ds2 , ds2 =
(

1− 8µG
c2

ln
(
r
r0

))
(dr2 + r2dϕ2) , (119)

where G is Newton constant, c is the speed of light, µ is the linear mass density of the cosmic
string and r0 corresponds to the cosmic string radius. By introducing the new coordinate

r′2 =
(

1− 8µG
c2

ln
(
r
r0

))
r2 , α2dr′2 =

(
1− 8µG

c2
ln
(
r
r0

))
dr2 , α = 1

1− 4µG

c2

> 0 , (120)

one gets (renaming r′ → r)
ds2 = α2dr2 + r2dϕ2 . (121)

When α > 1, which implies µ > 0, metric (121) is obtained from the three-dimensional Euclidean
metric reduced to the conic surface z = λEr. On the other hand, when 0 ≤ α < 1, that means
µ < 0, metric (121) is obtained by reducing a (2 + 1) dimensional Minkowski space metric
ds2 = −c2dτ2 + dr2 + r2dϕ2 to the surface cτ = λr, 0 < λ < 1. Such metric also appears in
condensed matter systems [68, 69, 70, 71, 72].

The non-relativistic action of a free particle in this space is I =
∫
Ldt, L = m

2 gij
dxi
dt

dxj
dt =

m
2

(
α2ṙ2 + r2ϕ̇2

)
, and the classical Hamiltonian corresponds to

H(α) = 1
2m

(
p2r
α2 +

p2ϕ
r2

)
. (122)

The formal analogs of the momenta integrals and the Galilean boosts generators are given
by

Π± = Π1 ± iΠ2 =
(pr
α ± i

pϕ
r

)
e±i

ϕ
α , (123)

Ξ± = Ξ1 ± iΞ2 =
[
αmr − t

(pr
α ± i

pϕ
r

)]
e±i

ϕ
α . (124)

These are well defined phase space functions only when α−1 is an integer, while in the general
case they are multi-valued. Despite this obstacle, we can use these formal conserved quantities
to construct the well defined integrals for the system. In the general case of α, we have the
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sl(2,R) ⊕ u(1) generators which are the Hamiltonian H(α), the dilatations generator D, the
generator of the special conformal transformations K, and the generator of rotations J0,

H(α) = 1
2mΠ+Π− , D = 1

4m(Ξ+Π− + Π+Ξ+) , (125)

K = 1
2mΞ+Ξ− , J0 = i

4m(Ξ+Π− −Π+Ξ+) = α
2 pϕ . (126)

For the case of rational values of α = q/k, with q, k = 1, 2, . . . , one can construct

O±µ,ν = (Ξ±)µ(Π±)ν , µ = 0, 1, . . . , q, ν = q − µ , (127)

S±µ′,ν′ = (Ξ±)µ
′
(Π±)ν

′
, µ′ = 0, 1, . . . , 2q, ν ′ = 2q − µ′ . (128)

Here, the generatorsO±µ,ν (S±µ′,ν′) have the angular dependence e±ikϕ (e±i2kϕ), and therefore, they

are well defined phase space functions. The finite sets of generators (127) and (128) are obtained
by taking repeated Poisson brackets between K (or H(α)) with O±0,q (O±q,0) and S±0,2q (S±2q,0)

respectively. On the other hand, the brackets {O+
µ,ν ,O−λ,σ} and {S+

µ′,ν′ ,S
−
λ′,σ′} are polynomial

functions of m, D, J0, and H(α) only. These properties imply that the sets U1 = {H(α), K, D,
J0, O±µ,ν} and U2 = {H(α), K, D, J0, S±µ′,ν′} generate independent non-linear subalgebras. The
complete symmetry algebra of the system corresponds to U1 ∪U2 and also one can show that U1

is an ideal subalgebra [29]. For subsequent application of the conformal bridge transformation,
it is useful to write down explicitly the brackets

{D,O±µ,ν} = ν−µ
2 O

±
µ,ν , {D,S±µ′,ν′} = ν′−µ′

2 S
±
µ′,ν′ . (129)

From them one sees that in the case q = 2n, the integrals that Poisson commute with D
correspond to (O±n,n,S±2n,2n = (O±n,n)2), while in the case q = 2n+1, only the integral S±2n+1,2n+1
are dilatation invariant.

These properties associated with the parameter α can be predicted by analyzing the classical
trajectories

r(ϕ) = r∗
cos((ϕ−ϕ∗)/α) , r∗ =

pϕ√
2mH(α)

, −π
2α ≤ ϕ− ϕ∗ ≤

π
2α , (130)

from where we learn that the scattering angle is ϕscat = απ. Some examples of the trajectories
are shown on Fig 4.

Though in a free case special values of the parameter α associated with existence of additional
non-trivial integrals of motion reveal themselves in dynamics only in rational values of the
scattering angle in comparison with a flat case where ϕscat = π, they will explicitly be detected
in the dynamics after applying the conformal bridge transformation.

After quantization, the Hamiltonian operator, its eigenstates and its spectrum are given by

Ĥ(α) = − ~2
2m

1√
g
∂
∂xi
√
ggij ∂

∂xj
= − ~2

2m

(
1
α2r

∂
∂r

(
r ∂∂r
)

+ 1
r2

∂2

∂ϕ

)
, (131)

ψ±κ,l(r, ϕ) =
√

κ
2παJαl(κr)e

±ilϕ , E = ~2κ2
2mα2 , κ ≥ 0 , l = 0, 1, . . . . (132)

The eigenfunctions satisfy
〈
ψ±κ,l

∣∣∣ψ∓κ′,l′〉 = δll′δ(κ − κ′), where 〈Ψ1|Ψ2〉 =
∫
V Ψ∗1Ψ2

√
gdV =∫∞

0 αrdr
∫ 2π

0 dϕΨ∗1Ψ2. The quantum versions of the formal integrals Π± are given by

Π̂± = e±
iϕ
2α

(
1
α p̂r ±

i
r p̂ϕ
)
e±

iϕ
2α = −i~ 1

αe
±iϕ

α

(
∂
∂r ± i

α
r
∂
∂ϕ

)
, (133)
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Figure 4: Some examples of the geodesic motion in the conical geometry in coordinates x = r cosϕ,
y = r sinϕ. From the first three figures one sees that for 0 < α < 1, the dynamics resembles that of
the repulsive Kepler-Coulomb problem. When α > 1 and is even, α = 2n, the particle experiences a
backscattering. When α is odd, α = 2n + 1, the particle approaches the initial direction asymptotically
after n times circling the vertex of the cone.

and from the exponential factors one deduces that the action of these operators on eigenstates
produce non-physical solutions in the general case. Explicitly we have

Π̂±ψ
±
κ,l(r, ϕ) = i~κα

√
κ

2παJαl+1(κr)e±i(l+
1
α

)ϕ , (134)

Π̂±ψ
∓
κ,l(r, ϕ) = −i~κα

√
κ

2παJαl−1(κr)e±i(l−
1
α

)ϕ . (135)

Quantum analogs of the generators (125) and (126) can be constructed straightforward for
arbitrary values of α. But this is not the case for the integrals corresponding to rational values
of this geometrical parameter. In fact, with the help of expressions (134) and (135) one can
show that the well defined symmetry operators that are the quantum analogs of the integrals
(127), (128) can only be constructed for the special case of integer values of α = q. This reveals
a kind of the quantum anomaly in the system, since this is the only case in which the action
of the corresponding operators do not produce functions outside the Hilbert space constructed
from the eigenstates (132), see [29] for more details.

By applying the classical conformal bridge transformation to generators (125) and (126) we
obtain the sl(2,R)⊕u(1) generators of the harmonic oscillator in the geometry defined by (121),

J0 = 1
2b

+
a b
−
a = 1

2ωH
(α)
os , J± = b±1 b

±
2 , L2 = 1

2(b+
1 b
−
1 − b+

2 b
−
2 ) = 1

2αpϕ , (136)

b−1 = 1
2e
i(ωt−ϕ

α
)
(
α
√
mωr +

pϕ√
mωr

+ ipr
α
√
mω

)
, b+

1 = (b−1 )∗ , (137)

b−2 = 1
2e
i(ωt+ϕ

α
)
(
α
√
mωr − pϕ√

mωr
+ ipr

α
√
mω

)
, b+

2 = (b−2 )∗ , (138)
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where

H
(α)
os = 1

2m

(
p2r
α2 +

p2ϕ
r2

)
+ mω2α2

2 r2 , (139)

is the Hamiltonian of the isotropic harmonic oscillator in a cosmic string background, and the
formal dynamical integrals b±i correspond to the mapping

Ŝ : (Ξ̂+, Ξ̂−, Π̂+, Π̂−) →
(√

2m~
ω b̂+

1 ,
√

2m~
ω b̂+

2 ,−i
√

2mω~b̂−2 ,−i
√

2mω~b̂−1

)
. (140)

By solving the associated equations of motion of the system one gets

r2(ϕ) =
p2ϕ

mH
(α)
os

(
1 + δ cos

(
2
α(ϕ− ϕ∗)

))−1
, δ =

√
1−

(
ωαpϕ

H
(α)
os

)2
, (141)

from where one finds that the closed trajectories are possible only in the rational case α = q/k,
see Fig. 5.
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Figure 5: Images of the trajectory for some irrational and rational values of α. One can show in particular
that r(ϕ) = r(ϕ + αlπ), l = 1, 2, . . .. From here one deduces that in the case α = q/k the number of
maxima/minima of r on the orbit is Nmax/min = k(qmod 2 + 1).

In correspondence with (141), there are globally well defined in the phase space integrals
of motion that control the periodic behaviour of the trajectory iff α is rational. To find these
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integrals we use the relations (140) to transform the quantities (127) and (128) (up to inessential
multiplicative constant factors) into

G+
µ,ν = (b+

1 )µ(b−2 )ν , (G+
µ,ν)∗ = G−ν,µ , F+

µ′,ν′ = (b+
1 )µ

′
(b−2 )ν

′
, (F+

µ′,ν′)
∗ = F−ν′,µ′ . (142)

Since the classical CBT is a canonical transformation, the algebraic properties of the free
particle algebra are inherit by the harmonic oscillator algebra (with 2iωD as a pre-image of the
harmonic oscillator Hamiltonian). This implies that in the case q = 2n with n = 1, 2, . . .,
the true integrals of the harmonic oscillator system in the cosmic string background are
(G±n,n,F±2n,2n = (G±n,n)2) and in the case q = 2n + 1, the true integrals are F±2n+1,2n+1. This
is due to the dilatation invariance of their corresponding pre-images, see (129) and comments
below.

At the quantum level, the corresponding Hamiltonian operator, the eigenstates and the
spectrum are given by

Ĥ
(α)
os = − ~2

2m

(
1
α2r

∂
∂r

(
r ∂∂r
)

+ 1
r2

∂2

∂ϕ

)
+ α2mω2

2 r2 , (143)

ψ±nr,l(r, ϕ) =
(
mωα2

~

) 1
2
√

nr!
2παΓ(nr+αl+1) ζ

αlL
(αl)
nr (ζ2)e−

ζ2

2
±ilϕ , ζ =

√
mα2ω

~ r , (144)

En,l = ~ω(2nr + αl + 1) , nr , l = 0, 1, . . . . (145)

Eigenstates (144) and the spectrum can be obtained by applying the corresponding realization

of the operator Ŝ on the zero energy Jordan states of the free particle Hamiltonian (131),

which are simultaneously eigenstates of 2iωD̂. In this case these Jordan states are given by
Ω±nr,l(r, ϕ) = r2nr+αle±lϕ. In the same vein, the application of Ŝ to functions (132) gives us the
coherent states of the system. Due to this connection one deduces that the quantum anomaly
mentioned above for the free system is also present in the harmonically confined one. We refer
for the details to [29].

In correspondence with the spectral properties of the confined system, one notes that it
acquires a special degeneracy when α = q/k, however, due to the presence of the quantum
anomaly, only in the case α = q one can construct well defined operators that correctly reflect
the degeneracy in the spectrum [29]. When α = 2n (α = 2n + 1), these operators are Ĝ±n,n
(F̂±2n+1,2n+1).

5.2. CBT in a Dirac monopole background
The non-trivial three dimensional example we present here corresponds to the dynamics of a
particle with electric charge e, which is coupled to a Dirac magnetic monopole with magnetic

charge g and is subjected to the central potential V (r) = mω2r2

2 + α
2mr2

. Parameter α is a real
numerical constant and ω > 0 is a frequency associated to the harmonic trap. The model and its
supersymmetric extensions were extensively studied in [28] and here we just consider the system
in relation to CBT.

The Hamiltonian of the system is

Hω = π2

2m + mω2r2

2 + α
2mr2

, π = p − eA , ∇×A = B = g r
r3
. (146)

By considering the Poincaré integral of the system

J = r × π − νn , J2 = J 2 , n · J = −ν , eg = ν , (147)

we note that the Hamiltonian (146) in spherical coordinates admits an ‘AFF model
representation’,

Hω = π2
r

2m + L 2

2mr2
+ mω2r2

2 , L 2 := J 2 − ν2 + α , (148)



PTSeminar2020
Journal of Physics: Conference Series 2038 (2021) 012014

IOP Publishing
doi:10.1088/1742-6596/2038/1/012014

25

and by using the fact that {r, πr} = 1, it is deduced that the generators

J0 = 1
2ω2Hω , J± = − 1

2ω (H0 − ω2K0 ± i2ωD0) , (149)

produce the sl(2,R) algebra. In these last relations we have introduced the so(2, 1) symmetry
generators of the system without the harmonic trap

H0 =
π2
r

2m
+

L 2

2mr2
, D0 =

1

2
rπr −H0t , K0 =

mr2

2
−Dt−H0t

2 . (150)

Both forms of dynamics are connected by the classical conformal bridge transformation (6).

The model Ĥ0 and its supersymmetric extensions were studied in details in [73]. It is worth
to mention that the Poincaré integral J Poisson commutes with all generators (149) and (150),
and plays the role of angular momentum of the system.

After solving the trajectory equation for the system (146), one gets r = r(ϕ)n , where

r2(ϕ) = L 2

mHω
[1− ρ cos

(
2L
J ϕ

)
]−1 , ρ =

√
1− ω2L 2

H2
ω
, (151)

n = −νJ
J + n⊥(ϕ) , n⊥(ϕ) = n⊥(0) cos(ϕ) + J−1J × n⊥ sin(ϕ) , (152)

and n⊥ · J = 0. After that, the angle ϕ = ϕ(t) is obtained by substitution of r2(ϕ) into the
sl(2,R) generators (149). From (152) one concludes that the dynamics occurs on the surface of a
dynamical cone defined by the equation r ·J = −νr. Also from these solutions, with taking into
account the definition (148) of L , we find that the trajectories are closed for arbitrary values
of angular momentum J only when α = ν2. On the other hand, for α 6= ν2, the trajectories are
closed only for special values of J given by the equation

α = ν2 +
(

1
4
l2a
l2r
− 1
)
J2 , la, lr = 1, 2, . . . . (153)

The special properties at α = ν2 are expected to be reflected in the presence of the hidden
symmetry associated with additional non-trivial integrals of motion in the system [28]. In Fig.
6 examples of the trajectories are shown for some irrational and rational values of the parameter
α.

(a) α = 1/e (b) la/lr = 3/2 (c) la/lr = 2

Figure 6: Examples of some non-closed and closed trajectories are shown. The last relation la/lr = 2
corresponds to the special case α = ν2.

To find the already anticipated hidden integrals of the system we employ the classical CBT.
For this aim, let use introduce the analogs of the Laplace-Runge-Lentz vector and generator
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of the Galilean boost transformations for the asymptomatically free system governed by the
conformal generators (150), that are only available when α = ν2 [73],

V = π × J , G = (mr − πt) × J . (154)

The components of these vector quantities satisfy the relations

{H0, Gi} = −Vi , {K0, Vi} = Gi , {H0, Vi} = {K0, Gi} = 0 (155)

{D0, Vi} = 1
2Vi , {D0, Gi} = −1

2Gi , {D0, ViGj} = 0 , (156)

and the classical conformal bridge transformation corresponds to the mapping

S : (V ,G) → (−i
√
mωa ,

√
m
ω a∗) , a =

√
mω
2 (r + i

mωπ) × J eiωt , (157)

S : (−iω(GiVj +GjVi), ω(GiVj −GjVi)) → (T(ij), , T[ij]) , (158)

T(ij) = mω(a∗i aj + a∗jai) , T[ij] = −imω(a∗i aj − a∗jai) . (159)

Here, T(ij) is the symmetric tensor integral of the system (146), being the analog of the Fradkin
tensor integral of the three-dimensional isotropic harmonic oscillator [74], while T[ij] is the anti-
symmetric tensor proportional to the Poincaré integral. In terms of r and π, the explicit form
of the components of these tensors are

2T(ij) = (π × J )i(π × J )j +m2ω2(r × J )i(r × J )j , 2T[ij] = εijkmω(J2 − ν2)Jk , (160)

from where we explicitly see that these are the higher order integrals of motion of the hidden
symmetries. It turns out that the complete geometric information on the trajectory that appears
in Fig 6c is encoded in the symmetric tensor, see [28].

As in the previous examples, here we can also obtain all the information for the quantum
version of the model by applying the quantum CBT to the asymptotically free version without
harmonic potential. This time it is necessary to take into account the quantization prescription
for the Dirac monopole, where the parameter ν has to be an integer or half integer number
[75, 76, 77], and the eigenstates are given in terms of the monopole harmonics [78, 79]. Due to
the presence of the integral (160), the spectrum, which is discrete and bounded from below, has
a special degeneracy depending on the choice of the quantized parameter ν. Furthermore, the
corresponding spectrum generation operators can be constructed from the quantum version of
the complex vectors a and a∗ introduced in (159). For more details, see ref. [28].

6. PT -symmetric systems and extreme waves
The conformal bridge transformation presented in all the previous sections shows how to derive
the properties of harmonically confined systems from the associated model whose dynamics is
asymptotically free. In this section, with the help of the generalized Darboux transformations
[1, 80] we construct reflectionless PT -symmetric systems with rational potentials of the type we
already considered in section 3.3. Then we promote the obtained stationary potentials to the
complex PT -symmetric solutions to the KdV equation and higher equations of its hierarchy,
whose peculiar evolution reveals the properties typical for extreme waves. We follow here refs.
[8, 9], and work in the units ~ = 1, m = 1/2.

First, we remind that the usual Darboux transformation and its generalizations allow ones

to generate from a given one-dimensional quantum system Ĥ0 = − d2

dx2
+ V (x) another system

described by the Hamiltonian

Ĥ[n] = − d2

dx2
+ V (x)− 2 d2

dx2
ln(W (φ1, . . . , φn)) . (161)
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Here functions (φ1, . . . , φn) are the so-called seed states, which are physical or formal, non-

physical eigenfunctions of Ĥ0 with different eigenvalues λj , and W (. . .) is the Wronskian. If the
seed states are chosen so that W (φ1, . . . , φn) 6= 0 in the domain where the potential V (x) of the

initial system Ĥ0 is regular, then the potential of the generated system Ĥ[n] will be nonsingular
in the same domain. The Darboux transformation ensures that any, physical or non-physical,
eigenfunction ψ of Ĥ0 of eigenvalue E not included in the set of the seed states can be mapped
into the corresponding eigenfunction Ψ[n] of Ĥ[n],

Ψ[n] = W (φ1 ...,φn,ψ)
W (φ1,...φn) , Ĥ[n]Ψ[n] = EΨ[n] . (162)

These relations can be verified by employing the intertwining relations Â−n Ĥ0 = Ĥ[n]Â−n and

Â†nĤ[n] = Ĥ0Â†n , where the operator

Â−n = Â−n . . . Â
−
1 , Â−k = Âk−1φi

d
dx

(
1

Â−k−1φk

)
, Â−0 = 1 , (163)

is constructed iteratively. With the help of this operator, eigenstate (162) can be presented in

the form Ψ[n] = Â−nψ. In particular case in which n = 1, the function W (x) = −(ln(φ1(x))′ is

called super-potential, and the systems Ĥ0 and Ĥ[n] can also be presented in the equivalent, up
to an additive common shift, form

Ĥ± = − d2

dx2
+ V± , V± = W 2 ±W ′ . (164)

The confluent Darboux transformation follows the same rules but now Jordan states of Ĥ0 can
appear in the set of the seed states, see [8, 9, 48, 49, 50]. In Sec. 3.3 we showed how the
PT -regularized Calogero system with integer coupling constant ν = m can be related with the
free particle by means of an appropriate Darboux transformation.

It worth to note here a similarity of the non-unitary CBT we described in the previous sections
with the Darboux transformations. As in the CBT construction, the system Ĥ[n] produced

from the initial system Ĥ0 in general case is not completely isospectral to it. However, the
generated system Ĥ[n] inherits some important properties of Ĥ0. This happens, for instance, in

the case when Ĥ0 corresponds to the free particle, from which reflectionless quantum systems
are produced. They represent snapshots of the soliton solutions to the KdV equation. This can
be compared with the CBT that transforms an asymptotically free system possessing conformal
symmetry into the harmonically trapped system with the same conformal symmetry but realized
in another form. The essential difference between the two transformations is that the Darboux
transformation, being generated by an operator of finite differential order, is local. The generator
of the CBT Ŝ is, however, essentially non-local since it includes in its structure the exponent of
the second order differential Hamiltonian operator of the initial conformally invariant system. In
the next, concluding section, we will return to some aspect of similarity between the CBT, based
on the conformal symmetry, and supersymmetry generated by the Darboux transformations of
the second order with n = 2.

Let us start with the PT -regularized Calogero type Hamiltonian

2Ĥα,1 = − d2

dx2
+ 2

ξ2
, ξ = x+ iα . (165)

Putting ν = 1 in Eqs. (56) and (57), one deduces that the system (165) can be obtained from
the free particle via the first order Darboux transformation by selecting its formal zero energy
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eigenfunction Ωα
0,0 = ξ = x + iαx as the seed state. Eq. (55) yields us then the Lax-Novikov

integral of the system (165),

2P̂α,1 = −
(
d
dx −

1
ξ

)
p̂
(
d
dx + 1

ξ

)
= −i1

4M̂ , M̂ = −4 d3

dx3
+ 6u d

dx + 3u , (166)

where u(ξ) = 2
ξ2

. The condition of commutativity of the third order operator (166) with

Hamiltonian (165) means that the potential u(ξ) = 2
ξ2

satisfies the stationary KdV equation

−6uux + uxxx = 0. Using the Galilean invariance of the KdV equation, one finds then that the
function

U(x, τ) = −1
6c+ 2

(x+iα−cτ)2
, c ∈ R , (167)

will satisfy the dynamical KdV equation, which can be presented equivalently in the Lax form

∂τ L̂ = [L̂, M̂ ] ⇔ Uτ − 6UUx + Uxxx = 0 , (168)

where L = − d2

dx2
+U(x, τ) and M̂ is given by Eq. (166) with u there changed for U(x, τ). Notice

that if we extend the definition of the time reflection operator T by requiring additionally
T τ = −τT , the time-dependent KdV equation will be invariant under the PT transformation
if U(x, τ) is PT -symmetric: [U(x, τ),PT ] = 0. The real and imaginary part of such a field
U(x, τ) = v(x, τ) + iw(x, τ), like this happens in the particular simplest case (167), will satisfy
the system of coupled non-linear dynamical equations

vτ − 3(v2 − w2)x + vxxx = 0 , wτ − 6(vw)x + wxxx = 0 . (169)

To construct a more interesting PT -symmetric solution to the KdV equation, let us use
system (165) as a starting point for a new Darboux transformation. To this aim we select
as the seed state the function ψ1

α,γ = γΞα0,1 + Ωα
0,1 = γξ−1 + ξ2. This is a zero energy

eigenfunction of (165). With pure imaginary parameter γ, function ψ1
α,γ is PT -invariant. A

further restriction γ = i%α3 with % ∈ R, % 6= −8, 1, guarantees that PT -odd superpotential

W = − d
dx ln

(
ψ1
α,γ

)
= 1

ξ −
3ξ2

ξ3+γ
does nor take zero value. The generated potentials of the

corresponding supersymmetric partner systems (164),

V+ = 6
ξ2
− 6γ(4ξ3+γ)

ξ2(ξ3+γ)2
:= V

(1)
+ (x;α, γ) , V− = 2

ξ2
, (170)

are PT -symmetric non-singular functions. Potential V+ is a stationary solution to the higher
order equation of the KdV hierarchy

Uτ + 30U2Ux − 20UxUxx − 10UUxxx + Uxxxxx = 0 . (171)

The substitution γ → γ(τ) = 12τ + i%α2 with % > 1 transforms function V+ into the dynamical

field V
(1)

+ (x, τ ;α, %) = V
(1)

+ (x;α, γ(τ)) which is a PT -symmetric solution of the KdV equation to
be non-singular for τ ∈ (−∞,∞) [8]. Some plots of the real and imaginary parts of the inverted

field −V (1)
+ (x, τ ;α, %) are shown on Fig. 7.

In the same way we provide a second example based on the PT -symmetric system

2Ĥα,2 = − d2

dx2
+ 6

ξ2
. (172)

This system can be obtained via a second order confluent Darboux transformation from the
free particle system, where the corresponding seed states are Ω0,0 = ξ and Ω1,0 = ξ3 [8]. The
Lax-Novikov integral of this model is given by the five order differential operator

4P̂α,2 =
(
d
dx −

2
ξ

)(
d
dx −

1
ξ

)
p̂
(
d
dx + 1

ξ

)(
d
dx + 2

ξ

)
. (173)
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Figure 7: The plots of the real and imaginary parts of −V (1)
+ (x, τ ;α, %) with α = 10 and % = 5.

As in the previous example, one can show that this operator is written in terms of derivatives
and the potential u = 6

x2
only, which is a stationary solution to the higher order equation of the

KdV hierarchy (171).
As a seed state we choose the following nodeless zero energy eigenfunction of (172), ψ2

α,γ =

γΞα0,2 + Ωα
0,2 = γξ−2 + ξ3, with γ = i%α5, ans now % is a real numerical parameter different from

−1 and −4. With this choice one gets the PT -odd superpotential W = − d
dx ln

(
ψ2
α,γ

)
= 2

ξ−
5ξ4

ξ5+γ
,

and the PT -symmetric potentials of the super-partner systems are given by

V+ = 12
ξ2
− 10γ(6ξ5+γ)

ξ2(ξ5+γ)2
:= V

(2)
+ (x;α, γ) , V− = 6

ξ2
. (174)

Similarly to the previous example, after the substitution γ → γ(τ) = −720τ + i%α5 with % > 24,

potential V
(2)

+ (x;α, γ(τ)) satisfies the higher order non-linear field equation (171). The real and

imaginary parts of the inverted function −V (2)
+ (x;α, γ(τ)) are shown in Fig 8.

Finally, we note that near a critical value of the parameter %, which in the first example is
% = 1 and in the second case it is % = 24, the real part of the potentials, defined respectively
in (170) and (174), have a δ-function like behaviour, while the corresponding imaginary parts
have a form similar to δ′-function [8, 9]. This behaviour is typical for the extreme (or, the so-
called rogue) waves, that corresponds to soliton type waves with extreme values of the amplitude
emerging in the process of their evolution.

7. Discussion and outlook
In conclusion, we indicate some open questions and problems related to the considered topics
that deserve a further attention.

1. The two systems presented in Sec. 3.3 have interesting spectral properties. The first one is
asymptotically free, and corresponds to a PT -regularized Calogero type model. It is a perfectly
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Figure 8: The plots of the real and imaginary parts of −V (2)
+ (x;α, γ(τ)) with α = 20 and % = 25.

invisible zero-gap system with the unique L2(R) integrable eigenfunction of zero energy when
the parameter ν in the potential term ν(ν + 1)(x + iα)−2 is an integer number, ν = m, and
the system can be related to a free particle by the Darboux transformation. These spectral
properties are coherently reflected by the presence (available only at ν = m) of a well defined
on all the real line Lax-Novikov integral [8, 9]. On the other hand, the harmonically confined
PT -regularized AFF model has two spectral towers that do not touch each other for any value
of the parameter ν, and for which the complete set of the spectrum generating ladder operators
can only be constructed when, again, the parameter ν is integer. As it was indicated at the
end of that section, the well defined indefinite scalar product for those PT -symmetric systems
is unknown for us. We also do not know the equivalent Hermitian systems into which they can
be transformed. However, due to the similarity of the spectrum of the PT -regularized AFF
model to the spectrum of a non-local model presented in ref. [58], one can expect that those
two families of the PT -regularized models can be related somehow to the non-local models with
Hamiltonians that include in the structure the spatial reflection operator P.

2. The higher order confluent Darboux transformations, which appeared in the PT -
regularized Calogero type systems with ν = m, are directly related to the construction of
higher order quantum supersymmetry [2, 6, 50, 80, 81] since the higher order intertwining
operators can be promoted to higher order supercharges. In general this kind of systems,
including the non-Hermitian ones, are described by non-linear superalgebras [2, 6, 8, 9, 81].
The generators of the higher order Darboux transformations can be factorized into generators of
Darboux transformations of the corresponding lower orders, and such factorization is non-unique
[82, 83]. In dependence on the choice of the factorization, the initial and final Darboux-related
Hermitian systems can be related via “virtual” systems which can be non-Hermitian. This
happens, in particular, in the case of the second order supersymmetry with Darboux generators
to be differential operators of the second order [83]. In some examples considered there, the
PT -symmetric systems like (165) do appear in the form of non-Hermitian virtual systems.. An
interesting question is whether other non-Hermitian systems obtained in this way can fit into
the scheme of the PT -symmetric models and CBT.
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3. Consider the following similarity transformation of the operator iD̂,

Ŝa,b(iD̂)Ŝ−1
a,b = i(1 + 2ab)D̂ + bĤ − a(1 + ab)K̂ := iD̂a,b , Ŝa,b = e

a
~ K̂e

b
~ Ĥ , (175)

where a = αω, b = βω−1, and α and β can be complex in general case dimensionless parameters.
Our CBT generator (17) corresponds here to the particular choice α = −1, β = 1/2. The

operator Ŝa,b is a generator of the internal automorphism of so(2, 1) ∼= sl(2,R) of the most

general form since the inclusion of the operator e
c
~ D̂ in its structure reduces just to the change

of the parameters α and β. The operator iD̂a,b has the structure of the operator (82) with
corresponding identification of the parameters. From (175) we obtain the relation

ŜŜ−1
a,b(iD̂a,b)Ŝa,bŜ

−1 = ~Ĵ0 , (176)

where Ŝ is the PT -symmetric generator (17) of our CBT. In our CBT scheme, the eigenvectors

|λ〉 that are transformed into the physical eigenstates of ~Ĵ0 correspond to the zero energy

Jordan states of Ĥ, which, in turn, are also eigenstates of 2iD̂ with real eigenvalues. Then, in
this extended scheme, the eigenstates of the operator iD̂a,b, that have to be transformed into

the physical eigenstates of ~Ĵ0, are e
a
~ K̂e

b
~ Ĥ |λ〉. However, in the general case we cannot say

too much about the behaviour of the resulting functions in the coordinate representation for
particular choice of the initial asymptotically free system described by the Hamiltonian Ĥ. One
can expect that the detailed analysis of this aspect should restrict the choice of the parameters α
and β. We just note that in our CBT with PT -symmetric generator Ŝ, the Jordan states of Ĥ,
which are transformed into eigenstates of Ĵ0, satisfy the equation Ĥn |λ〉 = 0 with some integer
n. This is a scale-invariant equation for asymptotically free examples of the systems considered
by us here. It is related with a unique peculiarity of our CBT: its generator Ŝ, having the
property Ŝ4 = P, and so, being internal automorphism of the so(2, 1) ∼= sl(2,R) algebra, maps

the first order scale-invariant differential operator 2iD̂ into the second order differential operator
~Ĵ0.

4. For our PT -symmetric CBT it does not matter if the number of degrees of freedom is
greater than two, or if we are working in some exotic geometry. The only decisive factor is to
have the generators of the so(2, 1) conformal symmetry of the initial asymptotically free system

to be able to construct the CBT operator. In this way, the operator iD̂, to which we apply the
CBT to get the Hamiltonian operator of the associated harmonically trapped system, can be
extended by a PT -symmetric ‘Zeeman type’ term Ẑ that commutes with the so(2, 1) generators.

In this case the operator (2iD̂+gẐ) will be mapped into 2~Ĵ0 +gẐ. For example if we consider

a free particle in the cosmic string background, and take the combination 2ω(iD̂+ gĴ0), with D̂

and Ĵ0 to be the corresponding quantum analogues of the quantities (125), (126), the application
of the corresponding CBT yields us

Ĥ
(α)
g = − ~2

2m

(
1
α2r

∂
∂r

(
r ∂∂r
)

+ 1
r2

∂2

∂ϕ

)
+ α2mω2

2 r2 − i~ωgα ∂
∂ϕ . (177)

This is a direct analog of the ERIHO quantum Hamiltonian (see Sec. 4) in the cosmic string
metric (conical background from the viewpoint of condensed matter physics [69, 71]). Results
related to this particular system will be presented by us soon.

In the case of two dimensions we also can add fermionic degrees of freedom by taking a
term of the form Z = ωgσ3pϕ. In particular, the application of the isotropic CBT to the

generator ω(2iD̂ + σ3p̂ϕ) produces Hamiltonian of the supersymmetric Landau problem [80].
This is an important indication how the CBT can be generalized for supersymmetric case. In
the same vein, the scheme of the Swanson model can be extended. The indicated generalizations
can be interesting, particularly, from the point of view of physics of Bose-Einstein condensates
[84, 85, 86, 87] and physics of anyons [88, 89, 90].
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