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Abstract. The demodulation of digital signal plays a key role in the communication system. 

The traditional demodulator is usually realized by special hardware platform, which has the 

disadvantages of high cost and long development cycle. In this paper, we propose an end-to-

end digital signal demodulator based on convolutional neural network (CNN). It consists of an 

encoder and a decoder, in which the encoder encodes the input symbol sequence and maps the 

signal features to the hidden layer space. Then, the decoder decodes the features of the hidden 

layer space to obtain the demodulation result of the input sequence. The proposed algorithm 

can automatically learn how to demodulate the received signal without manually extracting the 

features. Compared with the traditional demodulator, the proposed CNN demodulator has 

better bit error rate (BER) performance. 

Keywords. Convolutional neural network; demodulation; end-to-end. 

1. Introduction 

A typical digital communications receiver includes a radio frequency (RF) front end, a band-pass 

filter, a low noise amplifier, automatic gain control, a demodulator, etc. The demodulator is the key 
device in the receiver, it is responsible for processing the intermediate frequency signal and recovering 

the baseband signal, its effect is directly related to the performance of the communication system. 

Traditional demodulator must obtain accurate channel state information (CSI) before demodulation, 

and then use coherent demodulation algorithm for demodulation and symbol decision. However, it is 
difficult to obtain real-time accurate CSI in large-scale multiple input multiple output (MIMO) 

antenna, high mobility and high frequency scenarios. Therefore, it is of great significance to design a 

demodulator which does not depend on the channel state information and has a low bit error rate. 
Recently, due to the rapid development of computer hardware, machine learning has been 

developed accordingly. Deep learning is a kind of machine learning, whose advantage lies in the 

formation of more abstract high-level features by combining lower-level features, thus simulating the 
cognitive mechanism of human brain, and automatically discovering the distribution patterns hidden in 

the data. Compared with the forward neural network, deep learning not only has faster training rate 

and better performance, but also has strong robustness. Since neural networks were proposed, 

researchers have been exploring their applications in the field of communication. At present, many 
researches have successfully applied neural network to channel estimation [1], modulation recognition 

[2-4], coding recognition [5, 6], communication system simulation [7] and adaptive filtering [8]. Take 

the paper [9] for example, CNN was used to analyze the cyclic spectrum of modulated signals, so as to 
achieve the purpose of modulation recognition. This method makes full use of the ability of CNN to 
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extract image features. It provides a new idea for the application of neural network in the field of 

communication. 

Based on deep learning technology, this paper proposes a digital signal demodulation scheme based 
on convolutional neural network. Compared with the traditional log likelihood ratios (LLR) 

demodulation algorithm, the proposed algorithm does not need to use specific hardware and can be 

simply modified to adapt to different modulation modes. In order to verify the effectiveness of the 
proposed algorithm, we generate binary phase shift keying (BPSK) and quadrature phase shift keying 

(QPSK) data sets in additive white gaussian noise (AWGN) channels respectively, and compare their 

performance with the existing demodulation schemes.  

2. Related Works 

In recent years, many deep learning-based methods have been widely used in digital demodulation. 

Nakayama et al. [10] proposed a neural network amplitude shift keying demodulator that integrates 

wideband noise suppression, pulse waveform shaping and decoding into a neural network and self-
organizes these functions through a learning process. Cheng et al. [11] took a sample corresponding to 

a symbol period in the baseband signal as the input of the neural network, which was mapped to 

binary symbols using the neural network. Onder et al. [12] used three-layer multilayer perceptron 
(MLP) for multiple phase shift keying (MPSK) demodulation and presented simulation results of 

channels with white Gaussian noise and multi-channel channels. In addition, Wang et al. [13] 

proposed two deep learning-based demodulator, namely, deep belief network-support vector machine 

demodulator and adaptive boosting demodulator. 
In the above demodulation algorithms based on neural network, sampling points are input into the 

neural network according to the code cycle, and then the code of input vector mapping is judged. 

However, it is difficult to group the baseband data strictly according to the symbolic period, especially 
when there is frequency offset or sampling error, grouping sampling points according to a fixed 

number will bring great error. In order to solve this problem, Zhang et al. [14] proposed a 

convolutional neural network architecture based on time-sliding window input for binary PSK 

modulation signals, and optimized it with one-dimensional convolutional check demodulation 
complexity and error performance. They determine symbol categories by detecting the position of 

phase shifts in the modulation data. At the same time, the proposed structure can deal with carrier 

frequency offset and sampling frequency error by coordinating with the symbolic synchronization 
algorithm. However, this algorithm cannot demodulate multiple modulation modes at the same time. 

When the modulation mode is changed, it needs to re-model and the number of identified networks 

increases exponentially. 

3. The Proposed Method 

3.1. CNN 

CNN is a kind of deep feedforward neural network, which is developed from back propagation (BP) 

neural network. It is widely used in visual image analysis, natural language processing and 
recommendation system. The network structure of CNN is composed of input layer, convolutional 

layer, pooling layer, full connection layer and output layer. CNN uses sparse connection, weight 

sharing, down sampling and other operations to reduce the computational complexity, so as to achieve 
the purpose of training deep network. In this paper, 1-D CNN is used to adapt one-dimensional digital 

communication signal data. Figure 1 shows a schematic representation of a one-dimensional 

convolutional operation. 1-D CNN is a special CNN, which is often used in the processing of one-
dimensional signals, such as speech signals. Its input is a one-dimensional vector, so the convolutional 

kernel and characteristic graph of the network are also one-dimensional. 
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Figure 1. A complete convolution operation. 

where wp is the p-th weight in the one-dimensional convolutional kernel, im+p is the (m+p)-th value in 

the input vector, Om is the m-th value in the output vector, b is the offset, and f is the activation 

function. 

3.2. Architecture of End-to-End Demodulation System 

The network structure proposed in this paper is shown in figure 2, which consists of two parts: encoder 

and decoder. The encoder corresponds to the signal down sampling process, and the decoder 
corresponds to the feature graph up sampling process. The encoder consists of 7 convolutional blocks 

and 7 subsampling layers, and each convolutional block contains 2 convolutional layers with the size 

of 3×1 convolutional kernel and step size of 1. The decoder consists of 7 convolutional blocks and 5 

up-sampling layers, among which, the convolutional block is the same as the convolutional block of 
the encoder. For the entire network, we used Leaky ReLU as the activation function. The Leaky ReLU 

function is an improved version of ReLU, as expressed in Equation (2). The Leaky ReLU function 

multiplies the input value when the input x<0 by a coefficient so that the gradient of the neuron is not 
0 when the neuron is not active, avoiding the situation where the inactive neuron never activates. 

,  0
( )

 ,   0

ax x
f x

x x


= 


 (2) 

In the Leaky ReLU definition of the excitation function, a is generally a very small coefficient, 

usually agreeing that 0< a <1. Compared with the ReLU function, the Leaky ReLU function retains the 

value of the negative axis so that the negative axis information is not lost, solving the problem that the 
ReLU function causes neurons to "die". 
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Figure 2. Structure of the proposed 1-D CNN demodulator. 
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The activation function for the final layer is softmax, which takes the maximum output probability 

for all categories as the final result. In addition, we add a batch normalization (BN) layer after each 

convolution layer. The BN layer has the ability to increase the learning rate so that the network 
converges faster without over-fitting. 

3.3. Implementation Platform 

The deep learning algorithm framework is based on Python 3.7.1, TensorFlow 2.3.0 and Keras 2.4.3, 
and the training/test data sets are randomly generated by MATLAB software. The whole system was 

trained and tested on a computer with an NVIDIA GTX 2080TI GPU and eight Intel i7-7700 CPUs. 

4. Simulation Results 

4.1. Experimental Dataset and Preprocessing 
Figure 3 shows the schematic diagram of the end-to-end convolutional neural network demodulation 

system based on deep learning, which is mainly composed of the transmitter terminal composed of 

baseband modulation, baseband shaping filter and modulator, the transmission channel, and the 
receiver terminal including pre-processing and neural network decision. This part of data is mainly 

used to analyze the demodulation ability of CNN model under AWGN interference. The symbol rate fd 

of the transmitter is 2.5 MBd, and the sampling rate fs is set to be 10 Msps, i.e., there are 4 samples per 
symbol. Signal pulses were shaped by a root-raised cosine pulse shaping filter, roll-off values are 

uniformly distributed in the range of 0.1-0.5. The training signal-to-noise ratio (SNR) varies randomly 

in the range of 3-4 dB, and the test SNR varies in the range of -2-8 dB. In addition, the baseband 

signals in this paper are randomly generated, and the sequence length of each sample is 1024 symbols. 
Two thousand samples were generated for each SNR and modulation type. 

 

Figure 3. System structure. 

In order to ensure the uncorrelation of signal features and the consistency of data dimensions, data 
pre-processing is needed. And most neural networks require input data within the range of [-1,1] or 

[0,1]. In addition, in order to make the input data of neural network conform to the distribution of 

output data better, data pre-processing is indispensable. In this paper, the input data x is mapped to 

between [0,1], and the maximum value xmax is guaranteed to be mapped to 1, the minimum value xmin is 
mapped to 0, and the rest data are distributed between [0,1] according to the original distribution. 
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max min
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x x
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x x
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=
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4.2. Training Complexity 

When using CNN to demodulate the symbol sequence, the cross-entropy loss function is adopted. 

0

1
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where yi represents the true probability distribution of the i-th training sample, and Nb represents the 

number of training samples in each training batch. Gradient descent is used to optimize the loss 

function in the training process. 

1 ( )t t tL   + = −   (5) 
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where η represents the learning rate, the initial value is set to 0.001, and Δ represents the gradient 

operation. 

The relationship between training loss value and iteration number is shown in figure 4. At the end 
of the iteration 100 times, the training loss value has almost stopped declining. 

 

Figure 4. Training loss plot. 

4.3. Performance Comparisons 

Figure 5 shows the bit error rate curve of BPSK signal demodulation by the optimal 1-D CNN 

demodulator, soft demodulator computes the log likelihood ratios (LLR) and MLP demodulator. The 
SNR (Es/N0) of the test set ranged from -2dB to 8dB. As can be seen from figure 5, when the SNR is 

less than or equal to 0dB, the demodulator based on CNN is basically close to the bit error 

performance of the traditional soft demodulator, and both are better than the MLP demodulator. When 
the SNR is greater than 0dB, the bit error performance of CNN demodulator is better than that of 

traditional demodulator and MLP demodulator, and shows relatively stable performance. Compared 

with the traditional demodulator, the CNN demodulator does not need to rebuild the architecture in the 
process of demodulating BPSK and QPSK modulation signals, but only needs to retrain in the scene of 

corresponding modulation information to obtain the ability of the best statistical decision. 

 

 

 

Figure 5. The demodulation performance of 

BPSK modulated signals. 

 Figure 6. The demodulation performance of 

QPSK modulated signals. 

Figure 6 shows the demodulation error rate curves of QPSK signals with three different algorithms. 

Compared with BPSK demodulation, the demodulation error rate of QPSK signal is much higher. This 

is because QPSK is a quaternary phase modulation. Each symbol contains two bits of original 

information. Under the same channel conditions, the bit error rate will be higher. However, it can be 
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seen from the figure that the CNN demodulator still has excellent performance. Only when the signal-

to-noise ratio is less than -1dB, the performance of the MLP demodulator is slightly better than the 

CNN demodulator and the traditional demodulator. When the signal-to-noise ratio is greater than -
1dB, the demodulation effect of CNN is still better than the traditional demodulator and MLP 

demodulator, and the demodulation effect of MLP is close to the traditional QPSK demodulator. 

5. Conclusion 

In this paper, a multi-code demodulation algorithm based on full convolutional neural network is 

proposed, which requires neither complex signal pre-processing nor grouping of sampling points. The 

proposed demodulator is composed of an encoder and a decoder. The encoder corresponds to the 

signal subsampling process, and the decoder corresponds to the feature map up-sampling process. 
Compared with the traditional blind demodulation system, this system has high demodulation 

accuracy and does not need to manually extract features. The experimental results show that when the 

SNR is greater than 0dB, the demodulator of CNN is better than the bit error performance of 
traditional soft demodulator and MLP demodulator, and shows relatively stable performance. In 

addition, compared with the traditional demodulator, the convolutional neural network does not need 

to rebuild the architecture in the process of demodulating BPSK and QPSK modulation signals, but 
only needs to retrain in the scene of corresponding modulation information, so as to obtain the ability 

of optimal statistical decision. 
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