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Abstract. In this paper, we present an Interactive multiple mode-Unscented Kalman filter (IMM-

UKF) algorithm to achieve mobile node location under wireless sensor networks environments. 

In the IMM structure, UKF and Variational Bayesian Adaptive Method based on UKF are 

adapted in parallel, which can improve positioning accuracy in the process of line-of sight (LOS) 

and non-line-of-sight (NLOS) signal state switching. The estimated values by filtering are fused 

according to the weighting factors to get the estimated positions. Moreover, when NLOS 

measurement noise covariance change, we propose Variational Bayesian Adaptive Method 
based on UKF to improve robustness. Both Simulation and experiments illustrate that the 

propose algorithm performs can achieve competitive localization accuracy.  

Keywords. Unscented Kalman filter; localization; mixed indoor; WSN. 

1. Introduction 

Wireless communication, digital electronics micro-electrical-mechanical systems (MENMS) and 
wireless sensor network (WSN) are booming recently for emergency and robot and so on [1]. For the 

WSN, Targets localization is one of the important applications, which consist of outdoor localization 

and indoor localization. GPS is effective means to deal with outdoor localization. However, it is not 

good choice for indoor localization due to the obstacle’s obstruction. WSN with hundreds of sensor 
nodes has been employed for indoor localization owing to its low-cost and low-power [2]. 

Unlike KALMAN filter (KF), it can only solve linear problems. The Unscented Kalman filter (UKF) 

can provide significant improvement in solving the problem of nonlinear positioning [3]. Therefore, we 
will discuss target localization problem under the UKF framework in this paper. 

Another vital extension study has also been considered about the non-Gaussian distributed 

assumption. Here, measurements outliers and contaminated distribution can bring to modelling errors. 

Fortunately, there are many fruitful researches to deal with above problem, such as Gaussian mixture 
distributions (GMD) filter, variational Bayesian filter, M-estimation filter.  

Undoubtedly, NLOS measurement error can be considered the dominant source of error in 

positioning. In most cases, we should consider its influence on the positioning accuracy. Hence, scholars 
carry out a research on the identification and elimination of NLOS. In [4], Researchers adopt a binary 

hypothesis test and Likelihood ratio test method to identify NLOS propagation channel [5-6]. Authors 

propose RSS localization approach for NLOS. This method introduces the selective residual test to 
identify the NLOS state, and then subtracting the mean of NLOS errors to correct the NLOS 

measurements error. However, this process is too tedious. In [7], Bayesian sequential test is proposed to 
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identify measurement condition. After smoothing measurement range, modified Kalman filter is applied 

to localization. In [8], improved KF based on Gaussian mixture distributions is proposed to reduce the 

impact of the NLOS error.  
In most of the ways, the prior conditions are needed known, but this is not possible in many cases.  

Main motivation this article of is to design a modified UKF based on the IMM framework under the 

condition that the NLOS error is non-Gaussian distributed. The Proposed approaches do not need to 
accurately know the sight state. 

The rest of paper is organized as follows: First, target localization system model is given and 

introduce Variational Bayesian Adaptive Method. Then derivation in the IMM framework is used 

modified UKF to solve nonlinear problems. Simulation Experimental result and analysis are state. 
Finally, the conclusion is present. 

2. System Model 

We consider a localization scenario in a 2-D space with K anchor nodes (ANs) and one moving target 
(MT), as shown in figure 1. Suppose the MT moves in office and corridor, and sight condition between 

MN and ANs might be LOS or NLOS. 

 

Figure 1. Localization scenario. 

Although it is very difficult to get accurate motion model from MT, a reasonable motion model can 

be built according to constant velocity model and model error. At sampling instant t, MT is denoted by 

a state vector 𝑋𝑡 = [𝑥, 𝑦, �̇�, �̇�]𝑇, where(𝑥, 𝑦) denotes MT’s position, (𝑥,̇ �̇�) denotes MT’s velocity. The 

state space model of localization system is defined as follows: 

               𝑋𝑡 = 𝜓𝑋𝑡−1 + 𝐺𝜍𝑡                                                                (1) 

𝑍𝑘
𝑡 = 𝐻𝑋𝑡 + 𝜑𝐿

𝑡 +𝜑𝑁
𝑡                                                                  (2) 

where 𝑋𝑡 is MT’s state and 𝑍𝑘
𝑡
 is kth AN’s measurement at sampling instant t. 𝜓 represents the state-

transition matrix, H is measure matrix. 𝜍𝑡  is the process noise with zero mean and covariance 𝑄𝑡 .𝜑
𝐿
𝑡  is 

the senor measurement noise in LOS sight, which is modelled as a white Gaussian with 𝑁 =
(0, 𝜎𝐿

2) .Whereas, sensor measurement noise 𝜑𝑁 which caused by NLOS propagation channel is 
unknown for us. It might obey Uniform, Exponential or Gaussian distribution with non-zero mean.  

𝐻𝑋𝑡 = ((𝑥𝑡 − 𝑥𝑘)
2 + (𝑦𝑡 − 𝑦𝑘)

2)1/2 is the actual distance between kth AS and MS. 

3. A VB-UKF Based IMM Localization 

The propagation state is continual change between LOS and NLOS in the complex indoor environment. 
Here, we employ the two-state Markov process to describe this switching state. The transition 

probabilities are defined as follows: 

LOS

NLOS

AN1

AN2

AN3

AN4

AN5



ICCSCT 2021
Journal of Physics: Conference Series 2026 (2021) 012003

IOP Publishing
doi:10.1088/1742-6596/2026/1/012003

3

{
 
 

 
 
𝑝11 = 𝑝(𝜃𝑖

𝑡 = 1|𝜃𝑖
𝑡−1 = 1)

𝑝12 = 𝑝(𝜃𝑖
𝑡 = 2|𝜃𝑖

𝑡−1 = 1)

𝑝21 = 𝑝(𝜃𝑖
𝑡 = 1|𝜃𝑖

𝑡−1 = 2)

𝑝22 = 𝑝(𝜃𝑖
𝑡 = 2|𝜃𝑖

𝑡−1 = 2)

                                                      (3) 

As mentioned above, single measurement model is inappropriate to apply in both LOS and NLOS 

situations. So, we introduce IMM structure to deal with the problem of localization for the LOS/NLOS 

environment. Under circumstance of the unknown measurement noise, we adopt VB-AUKF method for 
the MS localization [9-11]. 

3.1. Input Interaction 

We assume that all the transition probabilities are known, and the mixing probability 𝛽𝑖𝑗 is defined as 

𝛽
𝑖𝑗

(𝑡 − 1|𝑡 − 1)
=

𝑝𝑖𝑗𝛽𝑖
𝑡−1

�̅�𝑗
                                                           (4) 

where 𝑝𝑖𝑗 is transition probability, 𝛽𝑖
𝑡−1 is the probability of the ith mode, �̅�𝑗 is the normalization mode 

probability and is denoted as 

�̅�𝑗 = ∑ 𝑝𝑖𝑗𝛽𝑖
𝑡−12

𝑖=1                                                             (5) 

For the jth mode, the mixed prior state estimation 𝑋0𝑗  and covariance estimate �̂�0𝑗 is given by 

𝑋
0𝑗

(𝑡 − 1|𝑡 − 1)
= ∑ 𝑋

𝑖

(𝑡 − 1|𝑡 − 1)2
𝑖=1 𝛽

𝑖𝑗

(𝑡 − 1|𝑡 − 1)
                           (6) 

�̂�
0𝑗

(𝑡 − 1|𝑡 − 1)
= ∑ 𝛽

𝑖𝑗

(𝑡 − 1|𝑡 − 1)2
𝑖=1 {𝑃

𝑖

(𝑡 − 1|𝑡 − 1)
+ [𝑋

𝑖

(𝑡 − 1|𝑡 − 1)
− 𝑋

0𝑗

(𝑡 − 1|𝑡 − 1)
] ×

[𝑋
𝑖

(𝑡 − 1|𝑡 − 1)
− 𝑋

0𝑗

(𝑡 − 1|𝑡 − 1)
]
𝑇

}                                          (7) 

where 𝑋
𝑖

(𝑡 − 1|𝑡 − 1)
 is the state estimation, 𝑃

𝑖

(𝑡 − 1|𝑡 − 1)
 is covariance for the ith mode. 

3.2. VB-UKF Filter 

As mentioned above, the NLOS measurement noise is different from the LOS’s. Hence, we design two 

different UKF in mixed LOS/NLOS environment. For LOS propagation channel, the measurement noise 

is known, and we can directly use UKF to localization. However, the measurement noise is unknown 
for NLOS propagation channel and VB-UKF is designed to deal with this problem. 

According to the reference [12], if ψ in equation (8) is linear, then the prediction state estimation and 

covariance prediction estimation of j model can be directly obtained by the following formula at step t-1: 

𝑋
𝑗

(𝑡|𝑡 − 1)
= 𝜓𝑋

0𝑗

(𝑡 − 1|𝑡 − 1)
                                                   (8) 

𝑃
𝑗

(𝑡|𝑡 − 1)
= 𝜓𝑃

0𝑗

(𝑡 − 1|𝑡 − 1)
𝜓𝑇 + 𝐺𝑄𝐺𝑇                                         (9) 

The points generated by sampling are as follows: 

{
 
 
 
 

 
 
 
 𝜂(0),(𝑡|𝑡−1) = 𝑋

𝑗

(𝑡|𝑡 − 1)

𝜂(𝑖),(𝑡|𝑡−1) = 𝑋
𝑗

(𝑡|𝑡 − 1)
+ √𝑛 + 𝜆 (√𝑃𝑗

(𝑡|𝑡 − 1)
)
𝑖

𝑖 = 1,… , 𝑛

𝜂(𝑖),(𝑡|𝑡−1) = 𝑋
𝑗

(𝑡|𝑡 − 1)
− √𝑛 + 𝜆 (√𝑃𝑗

(𝑡|𝑡 − 1)
)
𝑖

𝑖 = 𝑛 + 1,… ,2𝑛

                                 (10) 
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where n is the dimension of the state estimation 𝑋(𝑡−1|𝑡−1). 
The weights of the sigma points are computed as follows: 

{
  
 

  
 𝜔𝑚

(0)
=

𝜆

𝑛+𝜆

𝜔𝑐
(𝑖)
=

𝜆

𝑛+𝜆
+ (1 − 𝑎2 + 𝑏)

𝑖 = 1,… , 𝑛                

𝜔𝑚
(𝑖)
= 𝜔𝑐

(𝑖)
=

𝜆

2(𝑛+𝜆)

𝑖 = 𝑛 + 1,… ,2𝑛       

                                                     (11) 

where λ is the scaling factor with  𝜆 = 𝑎𝑛 − 𝑛. The selection of α controls the distribution state of the 

sampling points. Here, 𝑏 ≥ 0 is a nonnegative weight coefficient, which can incorporate the higher 

order components of distribution. It can be obtained that the optimal value 𝑏 = 2, 𝑎 = 0.01 through a 

large number of experimental analysis. 

Prediction: 

State prediction estimation of sigma points is given by the state update function: 
The observation sigma points are yielded by the measurement function H. 

𝑍𝑘,𝑖,(𝑡|𝑡−1) = 𝐻𝜂(𝑖),(𝑡|𝑡−1)                                                       (12) 

𝑖 = 0,… ,2𝑛 

𝑘 = 1,… , 𝐾 

And measurement mean is calculated by observation sigma points and corresponding weights 

�̂�𝑘,(𝑡|𝑡−1) = ∑ 𝜔𝑚
(𝑖)𝑍𝑘,𝑖,(𝑡|𝑡−1)2𝑛

𝑖=0                                                  (13) 

The covariance, cross covariance and Kalman gain of the observed sigma point in LOS environment 

are as follows: 

𝑃𝑍𝑗 = ∑ 𝜔𝑐
(𝑖)(𝑍𝑖,(𝑡|𝑡−1) − �̂�(𝑡|𝑡−1))(𝑍𝑖,(𝑡|𝑡−1) − �̂�(𝑡|𝑡−1))𝑇2𝑛

𝑖=0 + 𝑅𝑡                      (14) 

𝑃𝑥𝑗𝑍𝑗 = ∑ 𝜔𝑐
(𝑖)(𝜂(𝑖),(𝑡|𝑡−1) − 𝑋𝑗

(𝑡|𝑡−1))(𝑍𝑖,(𝑡|𝑡−1) − �̂�(𝑡|𝑡−1))𝑇2𝑛
𝑖=0                       (15) 

𝐾𝑗 = 𝑃𝑥𝑗𝑍𝑗𝑃𝑍𝑗
−1                                                                (16) 

where 

𝑍𝑖,(𝑡|𝑡−1) = [𝑍𝑖,1,(𝑡|𝑡−1), ⋯𝑍𝑖,𝐾,(𝑡|𝑡−1)]𝑇                                             (17) 

�̂�(𝑡|𝑡−1) = [�̂�1,(𝑡|𝑡−1), ⋯ �̂�𝐾,(𝑡|𝑡−1)]𝑇                                              (18) 

The state and covariance are given by 

𝑋𝑗
(𝑡|𝑡)

= 𝑃𝑗
(𝑡|𝑡−1) + 𝐾𝑗(𝑍

𝑡 − �̂�(𝑡|𝑡−1))                                            (19) 

𝑃𝑗
(𝑡|𝑡)

= 𝑃𝑗
(𝑡|𝑡−1) −𝐾𝑗𝑃𝑍𝑗𝐾𝑗

𝑇                                                    (20) 

The noise parameters measured in LOS propagation model are known, but unknown in NLOS 
propagation model, so UKF can’t be used directly to estimate the state. Here, VB-UKF algorithm is 

used to estimate the state of unknown nodes. 

Since the NLOS measurement noise is unknown, the covariance of the observed sigma points in the 
NLOS environment will be transformed as follows: 

�̃�𝑍𝑗 = ∑ 𝜔𝑐
(𝑖)(𝑍𝑖,(𝑡|𝑡−1) − �̂�(𝑡|𝑡−1))(𝑍𝑖,(𝑡|𝑡−1) − �̂�(𝑡|𝑡−1))𝑇2𝑛

𝑖=0                          (21) 
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According to reference [13], NLOS measurement noise can be approximately written as: 

�̂�𝑡 = (𝑉𝑡 − 𝑛 − 1)−1 𝑊𝑡                                                       (22) 

Iteration i = 1: n step, the covariance matrix and gain of the observation point can be rewritten as 

follows: 

𝑃𝑍𝑗
𝑖+1 = �̃�𝑍𝑗 + (𝑉

𝑡 − 𝑛 − 1)−1 𝑊𝑡                                                (23) 

𝐾𝑗
𝑖+1 = 𝑃𝑥𝑗𝑍𝑗/𝑃𝑍𝑗

𝑖+1                                                            (24) 

where, 𝑉𝑡 = 1 + 𝑉(𝑡|𝑡−1), 𝑉(𝑡|𝑡−1) = 𝜌(𝑉𝑡−1 − 𝑛 − 1) + 𝑛 + 1, n is the number of state variables; 𝜌 

is a constant around 0 to 1. 𝜆 is a matrix with 𝜆 = √𝜌𝐼. The renewal equations of state and covariance 

are as follows: 

𝑋𝑗
𝑖+1,(𝑡|𝑡)

= 𝑋𝑗
(𝑡|𝑡−1) +𝐾𝑗

𝑖+1(𝑍𝑡 − �̂�(𝑡|𝑡−1))                                        (25) 

𝑃𝑗
𝑖+1,(𝑡|𝑡)

= 𝑃𝑗
(𝑡|𝑡−1)

− 𝐾𝑗
𝑖+1,𝑡𝑃𝑍𝑗

𝑖+1(𝐾𝑗
𝑖+1)𝑇                                         (26) 

𝑊𝑖+1,𝑡 = 𝑊(𝑡|𝑡−1) + ∑ 𝜔𝑚
(𝑗)2𝑛

𝑗=0 ( 𝑍𝑡 − 𝑍𝑖,𝑗,(𝑡|𝑡−1))( 𝑍𝑡 − 𝑍𝑖,𝑗,(𝑡|𝑡−1))𝑇
.
                  (27) 

Iteration steps until 𝑊𝑡 = 𝑊𝑁,𝑡, 𝑃𝑗 = 𝑃𝑗
𝑁，𝑋𝑗 = 𝑋𝑗

𝑁, where, 𝑍𝑡 = [𝑍1,𝑡 , ⋯ , 𝑍𝐾,𝑡]𝑇. 

3.3. Model Probability Update 
We have got the state estimation of model j, then the probability of the model needs to be updated to 

complete the output combination. 𝛬𝑗
𝑡  is the likelihood function of model taj, which is a zero mean. 

covariance is 𝑆𝑗
𝑡 , and residual 𝑒𝑗

𝑡  is the Gaussian density function. The definition is as follows: 

𝛬𝑗
𝑡 = 𝑁(𝑒𝑖

𝑡|0, 𝑆𝑖
𝑡)                                                              (28) 

where  

𝑆𝑖
𝑡 = 𝐻𝑡𝑃𝑖

(𝑡|𝑡−1)
                                                               (29) 

𝑒𝑗
𝑡 =

1

𝐾
∑ (𝑍𝑘,𝑡 − �̂�𝑘,(𝑡|𝑡−1))𝑘=𝐾
𝑘                                                   (30) 

The probability of model j will be updated in the following form: 

𝛽𝑖
(𝑡|𝑡)

=
𝛬𝑗
𝑡�̅�𝑗

𝛼
                                                                  (31) 

where 

𝛼 =∑𝛬𝑗
𝑡�̅�𝑗

2

𝑗=1

 

3.4. Combination Output 
Based on the previous derivation, combined total state estimation and covariance of two models are 

expressed as: 

𝑋(𝑡|𝑡) = ∑ 𝑋𝑖
(𝑡|𝑡)

𝛽𝑗
𝑡2

𝑗=1                                                          (32) 

𝑃(𝑡|𝑡) = ∑ 𝛽𝑗
𝑡2

𝑗=1 {𝑃𝑗
(𝑡|𝑡)

+ [𝑋𝑖
(𝑡|𝑡)

− 𝑋(𝑡|𝑡)] [𝑋𝑖
(𝑡|𝑡)

− 𝑋(𝑡|𝑡)]
𝑇
}                       (33) 
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4. Experimental Result and Analysis 

In this section, we will compare proposed algorithm with other algorithm to evaluate the algorithm 

performance by simulation experiment. The position of AS’s and obstacles are stochastic deployment. 
The experimental environment and deployment are shown in figure 1. We assume that all the ASs have 

same the communication range and structure, and the upper limit of the communication range of the 

node is 120m. The Markov transition probability matrix is defined as: 

𝑝𝑝 = [
𝑝11 𝑝12
𝑝21 𝑝22

] = [
0.9 0.1
0.1 0.9

]                                                  (34) 

We apply the root of mean square errors (RMSEs) to assess the effectiveness of the proposed 

algorithm. And compare it with the UKF-LOS EKF-NLOS and ML. The RMSE is formed as follows: 

ALE =
1

𝐶∙𝑇
∑ ∑ √(𝑥𝑡 − 𝑥 ̂𝑖

(𝑡|𝑡)
)2 + (𝑦𝑡 − 𝑦 ̂𝑖

(𝑡|𝑡)
)2𝑇

𝑡=1
𝐶
𝑖=1                               (35) 

where (𝑥(𝑡), 𝑦(𝑡))  is the true position coordinate of MS; (𝑥 ̂𝑖
(𝑡|𝑡)

, 𝑦 ̂𝑖
(𝑡|𝑡)

)  is the estimated position 

coordinate for the ith trial; T is total sampling times. C is the number of Monte Carlo trial. We use table 
1 to illustrate the experimental default parameters. 

Table 1. Parameters of simulation. 

Parameters Default value 

Number of ANs (K) 5 

Sampling number 100 

Sampling time T 1s 

speed 1m/s 

𝜌 1-exp(3) 

The ALE of the four algorithms fluctuates with the change of sampling time is shown in figure 2, but 

the change range is different. The fluctuation amplitude of the proposed algorithm with sampling time 

is relatively small, ALE is not more than 2. ML algorithm amplitude fluctuation is relatively large and 
there are many spikes. UKF algorithm and EKF algorithm fluctuation amplitude are also more than the 

proposed algorithm. 

Next, we will discuss the NLOS error performance of the proposed algorithm. It is assumed that the 

NLOS error obeys a Gaussian distribution 𝜑𝑁~𝑁(𝜇, 𝜎𝑁
2). Figure 3 describes the relationship between 

ALE of the four algorithms and the mean 𝜇 of NLOS measurement error. The ALE of the proposed 

algorithm is 43.1%, 52% and 76.1% higher than that of UKF, EKF and ML, respectively. So, we know 

that the ALE of the proposed algorithm is the smallest and the degradation degree of positioning 
accuracy is the smallest, which can suppress NLOS error to a certain extent. In addition, degradation 

degree of the ML positioning accuracy is the largest. For the other two algorithms, when the parameter 

μ is small, the positioning accuracy of UKF and EKF are close, but with the increase of μ, the degradation 
degree of EKF positioning accuracy is greater than UKF. 

When NLOS measurement error 𝜎𝑁 is very small, we can observe that the ALE of UKF and EKF 

are very small as the standard deviation of NLOS measurement, as shown in figure 4. When 𝜎𝑁 = 2, 
the ALE of the proposed algorithm is 52.9% and 57.7% higher than UKF and EKF respectively, while 

78% higher than ML. The ALE of the proposed algorithm is the smallest with 𝜎𝑁 = 7, less than 2m. 

The ALE of UKF and EKF algorithm is close to 3m, but the ALE of ML algorithm is more than 7m. It 

shows that the performance of the proposed algorithm has least affected by the change of parameter 𝜎𝑁. 

It is assumed that the NLOS error parameter follows an exponential distribution, i.e., 𝜑N~𝐸(
1
𝜆⁄ ). 

We can see from the figure 5 when λ=1, the ALE of the proposed algorithm, EKF and UKF algorithm 

are relatively close. With the increase of parameters, the ALE of the four algorithms will increase. 
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Compared with ML algorithm, the ALE of ML algorithm will increase greatly and is sensitive to the 

change of parameters. However, the performance of the proposed algorithm is insensitive to the change 

of parameters. And ALE increases more smoothly and the positioning accuracy is higher. 

 

Figure 2. The ALE of the algorithm at the sampling time. 

 

 

 

Figure 3. ALE vs. the mean of NLOS 

measurement error 𝜇. 

 Figure 4.  ALE vs. standard deviation of NLOS 

measurement error σN. 

 

 

 

Figure 5. ALE vs. the parameter λ.  Figure 6. ALE vs. the parameter 𝑈𝑚𝑎𝑥. 

It is assumed that the NLOS error parameter 𝑈𝑚𝑎𝑥 is uniformly distributed, i.e, φN~U(0,Umax). 
From figure 6, we can see the performance of four algorithms change with the parameter Umax. In the 

whole process of parameter change, the ALE of the proposed algorithm is 17.9% higher than that of 
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UKF, 27.8% higher than EKF and 46.9% higher than ML. It can be seen that the proposed algorithm 

has the highest positioning accuracy and the best superiority. 

5. Conclusion 

In order to improve the positioning accuracy of MT in the LOS/NLOS indoor environment, we propose 

IMM-UKF filter algorithm. For LOS and NLOS measurements, UKF and VB-UKF filters in IMM 

algorithm are used for filtering to get the estimated value. The position estimation can be obtained by 
weighting the filtering results. The above analysis show that positioning accuracy of the proposed 

algorithm is higher than that of EKF, UKF and ML model algorithm in LOS/NLOS environment. 
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