Paper The following article is Open access

Electron-energy-loss spectroscopy and cathodoluminescence for particles inside substrate

and

Published under licence by IOP Publishing Ltd
, , Citation Alexander A Kichigin and Maxim A Yurkin 2021 J. Phys.: Conf. Ser. 2015 012064 DOI 10.1088/1742-6596/2015/1/012064

1742-6596/2015/1/012064

Abstract

To simulate the interaction of a nanoparticle with an electron beam, we previously developed a theoretical description for the general case of a particle fully embedded in an infinite arbitrary host medium. The theory is based on the volume-integral variant of frequency-domain Maxwell's equations and, therefore, is naturally applicable in the discrete-dipole approximation. The fully-embedded approximation allows fast numerical simulations of the experiments for particles inside a substrate since the host medium discretization is not needed. In this work, we study how applicable the fully-embedded approach is for realistic scenarios with relatively thin substrates. In particular, we performed test simulations for a silver sphere both inside an infinite host medium and inside a finite box or sphere. For the host medium, we considered two non-absorbing cases (the denser one causes Cherenkov radiation), as well as an absorbing case. The peak positions in the obtained spectra approximately agree between substrates a few times thicker than the sphere and the infinite one. However, a much thicker substrate (of the order of μm) would be required to have a qualitative agreement for absolute peak amplitudes. The developed algorithm is implemented in the open-source code ADDA, allowing one to rigorously and efficiently simulate electron-energy-loss spectroscopy and cathodoluminescence by particles of arbitrary shape and internal structure embedded into any homogeneous host medium.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.