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Abstract. In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on 

Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the 

high-level strategy selection or the combination of the low-level heuristics to obtain a new 

hyper-heuristic, each round of optimization process is carried out in the whole problem domain. 

However, SESFA evaluates the problem domain through the feedback information of the 

meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the 

underlying heuristic or adjusting the algorithm parameters to improve the overall optimization 

performance. Second, the problem domain segmentation function in SESFA can reduce the 

complexity of the objective function within a single sub-domain, which is conducive to 

improving the optimization efficiency of the underlying heuristic. Further, the problem domain 

segmentation function in SESFA also makes there is no direct correlation between different 

sub-domains, so different underlying heuristics can be adopted in different sub-domains, which 

is beneficial to the realization of parallel computing. Comparing SESFA with Firefly 

Algorithms with five standard test functions, the results show that SESFA has advantages in 

precision, stability and success rate. 

1. Introduction 

With the development of computer technology, a large number of meta-heuristics based on swarm 

intelligence simulating natural characteristics have been proposed successively in the field of 

optimization algorithm. Although this kind of algorithms is widely used to solve kinds of optimization 

problems, a single algorithm is often designed to solve a certain kind of problems. In general, when 

the algorithm is applied to different cases, or even different types of problem in the same case, the 

solution performance may vary greatly[1]. According to the No Free Lunch (NFL) theory[2], the 

single meta-heuristic is still insufficient in the application research of generality[3]. In addition, 

meta-heuristics contain complex random behaviors and are difficult to have a general framework, 

which makes the algorithms have some limitations in mathematical analysis such as complexity, 

convergence and computing power. The application of meta-heuristics requires users to have 

professional knowledge and algorithm skills[4]. All the above factors restrict the extension and 

application of meta-heuristics. 

Based on these, the concept of hyper-heuristic is proposed[5]. A typical feature of this algorithm is 

the logical separation between the heuristic methodology and the problem domain at the High-Level 

Strategies (HLS), as shown in  1. In other words, hyper-heuristics focus on shielding applied domain 

knowledge from high-level methodology. The HLS provides a logical framework to manage one or 
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more heuristics as its Lower-Level Heuristic (LLH) and obtain new heuristics by means of dynamic 

parameter control or selection and combination. This HLS makes the hyper-heuristics no longer 

restricted by the NFL theory[6-9] and has higher universality. When the problem domain is changed, 

the original HLS can be applied to the new problem domain only by changing the corresponding LLH, 

problem description and evaluation function in the new problem domain. 

 
Figure 1. Typical hyper-heuristic framework 

 

Since it was proposed, the Hyper-Heuristic Algorithm has been applied in the combinatorial 

optimization field, such as timetabling problems[10-13], scheduling problems[14-17], bin-packing 

problems[18-19] etc. 

In order to overcome the local optimal solution and the poor stability of the general meta-heuristics 

in the large search domain, this paper proposes a hyper-heuristic which integrates problem domain 

partition, allocation, evaluation and elimination with multi-point search algorithm: Sub-domain 

Elimination Strategies based on Firefly Algorithm, SESFA. 

2. Material and Methods 

2.1. Low-level heuristic 

In 2008, Xin-She Yang proposed the Firefly Algorithm(FA)[20], which originates from the 

simplification and simulation of firefly group behavior and is a high-level heuristic. The basic 

principle of Firefly Algorithm is: regard all points in space as fireflies, and utilize the characteristics of 

fireflies with high luminescence intensity to attract fireflies with low luminescence intensity. In the 

process of moving from the dimmer firefly to the brighter firefly, the position iteration is completed to 

find the brightest position, that is, the optimization process is completed. 

2.2. The mathematical description of the optimization problem 

The essence of optimal design for a problem is to solve the maximum/minimum value of the function 

describing the problem in its problem domain. After defining the design variables, constraints and 

objective functions, the mathematical model of the optimization problem can be expressed as: 

Solve for x to satisfy 

 min ( )
x R

f x


 (1) 

In the above equation, R is the feasible domain of the optimization problem, also known as the 

problem domain. 

For the objective function f(x) defined on the d dimensional space, the design variable x can be 

expressed as: 

 

1 2( , ,..., )

1,2,...,

d

m m m

x x x x

Lb x Ub

m d



 

=

 (2) 

Where xm is the component of x in m dimension, the upper and lower bounds it can take are Ubm and 
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Lbm respectively. 

In order to reduce the complexity of the problem and facilitate the identification of sub-domains, 

the problem domain is divided into k segments of equal length in each dimension, so that a total of kd 

sub-domains with the same dimension, shape and size can be generated, and the length of the 

segments divided in the m dimension is denoted as Lm. Then, each sub-domain is coded and identified. 

The coding rules adopt the segment number sm of corresponding problem domain dimension counting 

from the lower boundary of the problem domain, and take these sequence numbers as the elements of 

vectors to form the identity vector sub of each sub-domain according to the order of dimension. The 

count of the segment number starts with "1", that is, the first segment starting from the lower bound of 

the search is 1. Thus, one identity vector of a sub-domain can be expressed as: 

 

1 2( , ,..., )

1,2,...,

1,2,...,

dsub s s s

s k

m d

=

=

 (3) 

In the above equation, sm is the serial number of the m dimensional segment in the problem domain. 

Then the value range of the sub-domains in m dimension is: 

  ( 1) , 1,2,...,m m m m m ms L Lb s L Lb m d−  +  + =  (4) 

As each sub-domain is an independent search unit, design variables should always be limited 

within the scope of the sub-domain during the search of the LLH. Therefore, when FA search in the 

sub-domain, firefly j, attracted by firefly i, moves towards it and updates its position. Its position 

updating formula should be adjusted from the original 

 ( 1) ( ) ( )j j jx t x t t+ = +   (5) 

to: 

 ( 1)=jx t
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 (6) 

In the above formula, 

 ( )( )= ( ) ( ) ( )j ij ij i j jt r x t x t   − +  (7) 

Among them, 

 
2

0( ) ijr

ij ijr e


 
−

=   (8) 

Represents the attraction of firefly i relative to j[10], 

 
2

, ,

1

( )
d

ij i j i m j m

m

r x x x x
=

= − = −  (9) 

Represents the Descartes distance between firefly i and j[10]. 

2.3. The basic steps of High-level strategy 

Based on the general description above of the optimization problem, the basic steps for SESFA are 

given below: 

(a) Set the number n of initial fireflies in the sub-domain and the maximum number maxGen of 

iterations; 

(b) Initialize the positions of n fireflies randomly in the sub-domain: 

 1 2( , ,..., )

,0 ( ) ( 1) randdsub s s s

j m m m m mu t s L L Lb= −  +  +  (10) 

The above formula represents the position component of firefly j in m dimension when sub(s1,s2,…,sd ) 

is in the t generation. 

(c) Call Firefly Algorithm in LLH to calculate the optimal value of sub(s1,s2,…,sd ): 
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 ( )1 2 1 2( , ,..., ) ( , ,..., )

min 1,2,...,min 0 ( )d dsub s s s sub s s s

n jf f u t=  (11) 

(d) Evaluate according to the optimal feedback results of each sub-domain:  

 ( )1 2( , ,..., )

minsort dsub s s s
sortedf f=  (12) 

(e) Record the best values in the current ranking: 

 (last)tempbestf sortedf=  (13) 

(f) The subdomain corresponding to the poorly ranked optimal solution is taken as the inferior 

solution space, that is, the subdomain which is unlikely to have the global optimal solution is 

eliminated. 

(g) When the termination condition is satisfied (For example, the number of remaining 

sub-domains is less than or equal to the set value), the loop is stopped. 

(h) Otherwise, adjust the parameters of the FA in LLH, repeat steps (b) to (g), the sub-domains that 

have not been eliminated are evaluated and eliminated in the next round; 

(i) Update the parameters of FA in LLH, perform further search on the remaining problem domains, 

repeat steps (b) and (c):  

 1 2( , ,..., )

,0 ( ) ( 1) randdsub s s s

j m m m m mu t s L L Lb= −  +  +  (14) 

 ( )1 2 1 2( , ,..., ) ( , ,..., )

min 1,2,...,min 0 ( )d dsub s s s sub s s s

z jf f u t=  (15) 

(j) In order to ensure the quality of the solution, the optimal value 1 2( , ,..., )

min
dsub s s s

bestf obtained is 

compared with the historical optimal value ftempbest recorded in, and the Minimum value is taken as the 

global optimal value 1 2( , ,..., )dsub s s s

bestoverallf , and the design variable 
1 2( , ,..., )dsub s s s

bestoverallx  in the sub-domain 

corresponding to this optimal value is also obtained:  

 ( )1 2 1 2( , ,..., ) ( , ,..., )d dsub s s s sub s s s

bestoverall bestoverallx arc f=  (16) 

2.4. Flowchart of SESFA 

SESFA requires three major phases of initialization, computation, and evaluation. The basic steps of 

SESFA are shown in Figure 2. 
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Figure 2. Flowchart of SESFA 
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2.5. Comparative experiments 

In order to evaluate the performance of the SESFA, the comparison group performed optimization 

experiments on several typical test functions using two kinds of FA with different parameters. 

Five test functions, Sphere, Rosenbrock, Rastrigin, Ackley and Griewank, were selected from the 

test functions[21]. The three-dimensional diagram of the test functions is shown in Figure 3. In order 

to comprehensively evaluate the effect of the size of the problem domain on the algorithm 

performance, the search domains were divided into [-5.12, 5.12] and [-100, 100], the optimization 

performance of SESFA and two different parameters of Firefly Algorithms were compared.  

  
(a). Sphere (b). Rosenbrock 

  
(c). Rastrigin (d). Ackley 

 
(e). Griewank 

Figure 3. The three-dimensional diagram of the test functions 

In order to avoid errors caused by contingency, each test function is run independently for 30 times. 

The optimal value, the worst value, the mean value and the standard deviation of the global minimum 

value of the objective function are counted and the success rate is calculated. The best experimental 

data for each evaluation indicator are marked in bold. 

In addition, in order to effectively distinguish the Firefly Algorithms with different parameters and 

simplify the algorithm names, the Firefly Algorithms with two different parameters are denoted as 

FA_1 and FA_2 respectively. 

In the Firefly Algorithm, the random term coefficient α, the original attraction β0, the minimum 
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attraction βmin and the light absorption intensity coefficient γ are all set as constant numbers in the 

algorithm, which need not be set separately. The number of fireflies n and the maximum number of 

iterations maxGen were set according to the experimental requirements. The specific parameter setting 

values are shown in Table 1. 

 

Table 1. The initial value of each algorithm parameter in the experiment 

The 

algorithm 

name 

Number 

of 

fireflies 

Maximum 

iteration 

number 

Random 

term 

coefficient 

Original 

attraction 

Minimum 

attraction 

Light 

absorption 

intensity 

coefficient 

The 

dimension 

of the 

problem 

domain 

n maxGen α β0 βmin γ d 

SESFA 15 2000 0.5 1.0 0.2 1.0 5 

FA_1 15 2000 0.5 1.0 0.2 1.0 5 

FA_2 30 2000 0.5 1.0 0.2 1.0 5 

3. Results and Discussion 

3.1. The results of the SESFA, FA_1 and FA_2 in search domain [-5.12,5.12] 

 

Table 2. The results of the SESFA, FA_1 and FA_2 in the search domain [-5.12,5.12] 

Test 

functions 

Algorithm 

name 

Evaluation indicators 

Best  

value 
Worst value Mean value Std deviation 

Success 

rate 

Sphere 

SESFA 7.24640E-11 2.54137E-09 1.24157E-09 5.99509E-10 100.00% 

FA_1 4.35586E-09 5.44567E-08 2.72709E-08 1.19603E-08 100.00% 

FA_2 3.09644E-09 5.66697E-08 2.34110E-08 1.13522E-08 100.00% 

Rosenbrock 

SESFA 5.28572E-03 1.08063E-01 4.93701E-02 2.19928E-02 100.00% 

FA_1 3.30919E-02 5.43600E+00 2.99860E-01 9.72670E-01 93.33% 

FA_2 2.98785E-03 1.60143E-01 8.30204E-02 3.74109E-02 100.00% 

Rastrigin 

SESFA 1.10320E-07 1.98992E+00 4.97480E-01 5.59895E-01 53.33% 

FA_1 5.82811E-06 5.96975E+00 2.48740E+00 1.51439E+00 3.33% 

FA_2 2.61151E-06 3.97984E+00 1.82410E+00 9.97719E-01 6.67% 

Ackley 

SESFA 1.81012E-05 9.16514E-05 6.55053E-05 1.76158E-05 100.00% 

FA_1 1.38741E-04 4.21858E-04 2.61545E-04 7.14466E-05 100.00% 

FA_2 1.20786E-04 3.65389E-04 2.56152E-04 5.25297E-05 100.00% 

Griewank 

SESFA 8.72381E-11 4.66060E-10 2.95598E-10 1.06922E-10 100.00% 

FA_1 1.27998E-09 1.99257E-01 1.85441E-02 4.58350E-02 46.67% 

FA_2 1.58728E-09 2.86502E-02 3.52250E-03 8.40488E-03 80.00% 

 

It can be seen from Table 2 that, in small search range, the three algorithms all have a 100% 

optimization success rate for Sphere function, indicating that the three algorithms all have a good 

convergence ability. However, all evaluation indicators of SESFA are superior to the comparison 

algorithms, reflecting the critical role of the evaluation and elimination strategy in the optimization 

process of the HLS. 

For Rosenbrock function, among the optimization results of the three algorithms, FA_2 achieved 

the best optimal value and 100% optimization success rate, that's because Rosenbrock is a non-convex 

sick function, but it's still a unimodal function. In the Firefly Algorithm, any two fireflies can 

communicate with each other in the optimization process. Obviously, the Firefly Algorithm with 

higher population density will have a higher probability to find the global optimal value. The SESFA 

performs best on all assessment measures other than its optimal value, and its optimal value is not 
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significantly different from the optimal value of FA_2, it shows that SESFA inherits the excellent 

performance of FA, thanks to the coordination of HLS, the stability and success rate of optimization 

are higher than that of single Firefly Algorithm with the same population density. 

For the Rastrigin function, SESFA performed best on all measures of evaluation, with a much 

higher success rate than the other two algorithms, this is due to the sub-domain division strategy, 

which can effectively avoid falling into the local optimal value, thus having a higher success rate of 

searching for the global optimal value. It should be noted that FA_2 presents a higher success rate of 

searching than FA_1, because the individual density of fireflies in FA_2 is twice as high as that in 

FA_1. This indicates that increasing population density in multi-peak function optimization will 

improve the probability of finding the global optimal value. 

For Ackley function, the three algorithms also have 100% optimization success rate, because 

although Ackley is a multi-peak function, there is a large gap between its global optimal value and its 

suboptimal value, In Figure 3(d), a sharp peak (or trough) appears near the global optimal point. Due 

to the information exchange among fireflies in the FA, it can effectively avoid falling into the local 

optimal value in the search process, so that the fireflies can stably focus on the global optimal value 

within a limited number of iterations. The SESFA results are superior to those of the other two 

algorithms, reflecting the improved precision and stability of SESFA in addition to the excellent 

performance of the Firefly Algorithm. 

For Griewank function, it can be seen from Figure 3(e) that there are a large number of suboptimal 

values near the global optimal value of this function, which are very close to the global optimal value. 

These suboptimal values will cause great interference to algorithm optimization, causing algorithms to 

easily fall into the local optimal value. The SESFA performs optimally across all the evaluation 

metrics and is significantly superior to the other two algorithms in terms of stability, which benefited 

from the problem domain division strategy, which ensures good stability and success rate by 

evaluating the sub-domain and eliminating the inferior region and gradually limiting the search region 

to the sub-domain where the global optimal value is located. 

3.2. The results of the SESFA, FA_1 and FA_2 in search domain [-100,100] 

 

Table 3. The results of the SESFA, FA_1 and FA_2 in the search domain [-100,100] 

Test 

functions 

Algorithm 

name 

Evaluation indicators 

Best 

 value 

Worst 

 value 

Mean 

 value 
Std deviation 

Success 

rate 

Sphere 

SESFA 4.23535E-08 3.32320E-07 1.69712E-07 7.17763E-08 100.00% 

FA_1 2.01298E-06 1.99438E-05 1.05121E-05 4.29718E-06 100.00% 

FA_2 2.10427E-06 1.71744E-05 9.49358E-06 4.17781E-06 100.00% 

Rosenbrock 

SESFA 1.52446E-02 9.69293E-02 6.08760E-02 2.23178E-02 100.00% 

FA_1 9.68933E-02 3.09327E+02 2.32269E+01 5.61866E+01 43.33% 

FA_2 6.65758E-02 3.54057E+02 3.35239E+01 7.97018E+01 53.33% 

Rastrigin 

SESFA 2.87264E-05 2.98490E+00 1.02819E+00 7.48234E-01 23.33% 

FA_1 9.96109E-01 5.97256E+00 3.05303E+00 1.40539E+00 0.00% 

FA_2 2.13706E-03 4.97566E+00 2.15793E+00 1.20697E+00 3.33% 

 Ackley 

SESFA 3.95086E-04 1.28464E-03 7.16719E-04 1.76665E-04 100.00% 

FA_1 2.44638E-03 2.00001E+01 4.00432E+00 7.99780E+00 46.67% 

FA_2 1.90636E-03 2.00000E+01 6.71822E-01 3.58915E+00 96.67% 

Griewank 

SESFA 6.44620E-08 2.71008E-02 1.12535E-02 5.67769E-03 6.67% 

FA_1 3.68262E-06 2.95604E-01 5.69959E-02 5.67685E-02 3.33% 

FA_2 1.61157E-06 1.01027E-01 3.30136E-02 2.02452E-02 3.33% 
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As shown in Table 3, for the larger problem domain, The SESFA delivers the best results for all the 

evaluation metrics across the five test functions. 

For unimodal functions like Sphere, all three algorithms still have a 100% success rate, this is 

because in the Firefly Algorithm, each individual has the ability to communicate with other individuals. 

As long as one firefly searches for the optimal value, it will attract other fireflies through information 

exchange and then search for the global optimal value. SESFA's evaluation and elimination strategy 

does not have a significant advantage over a single meta-heuristic algorithm in the optimization of 

such a simple unimodal function, but it does have a slight advantage over the single meta-heuristic 

algorithm in terms of solution accuracy and stability. 

For Rosenbrock function, it belongs to the extremely difficult non-convex ill-condition function 

with minimum value due to the interaction between variables in the Rosenbrock function. However, 

the SESFA achieves a 100% success rate, which is much higher than the comparison group algorithms. 

This is because the evaluation and elimination strategy can continuously narrow the scope of problem 

domain through evaluation in the optimization process, and then effectively improve the success rate 

of the underlying heuristic to find the global optimal value. Furthermore, SESFA's HLS also plays a 

key role in solving stability, which is evident in the data under the standard deviation index of 

Rosenbrock function in Table 3. 

For Rastrigin function, both algorithms in the comparison group had a very low success rate, with 

FA_1 having a 0% success rate in 30 independent trials and SESFA having a 23.33% optimization 

success rate, this is due to the fact that the problem domain partition strategy can decompose the 

complex multi-peak function into several relatively simple multi-peak functions, which is more 

conducive to the optimization performance of the underlying heuristic. Thanks to the evaluation and 

elimination strategy of HLS in SESFA, the algorithm achieves the best global optimal value, which is 

significantly better than the corresponding index of the comparison algorithms, reflecting the excellent 

global optimization precision of the algorithm. 

For Ackley function, it can be seen that in the statistics of 30 independent trials, the worst value of 

SESFA solution is much better than that of the comparison algorithms under the premise that the 

optimal values solved by the three algorithms are not significantly different, making SESFA solution 

much more stable than that of the comparison algorithms. The SESFA's problem domain evaluation 

and elimination strategy can effectively improve the algorithm's stability in the optimization of larger 

problem domain. In terms of convergence, the population density of LLH's Firefly Algorithm in 

SESFA is only half that of FA_2, but the success rate of SESFA is slightly higher than FA_2. This 

advantage stems from the evaluation and elimination strategy of the HLS of SESFA mentioned in the 

previous paragraph, which takes full advantage of the communication capabilities of FA between 

fireflies, enabling SESFA to converge to the global optimal value in 30 separate trials. 

For Griewank function, the optimization success rate of the three algorithms is low. One reason is 

that there are a large number of suboptimal values extremely close to the global optimal value around 

the function, which easily makes the algorithms fall into the local optimal value, leading to the failure 

of optimization. Another reason is that with the expansion of the search range, in order to accurately 

find the global optimal value, the number of fireflies or the maximum number of iterations should be 

increased, so as to fully search the whole problem domain. In addition, SESFA benefits from the 

HLS's evaluation and elimination strategy for the problem domain, enabling SESFA to continuously 

narrow the algorithm's search scope and take full advantage of the optimization capabilities of the 

Firefly Algorithm, resulting in higher solution stability compared to the comparison group algorithms. 

3.3. Overall performance 

Overview of the data in Table 2 and Table 3, with the expansion of the problem domain, the 

optimization performance of the three algorithms all reduced to varying degrees. However, SESFA has 

the lowest level of decline, which means that SESFA performs best in large problem domain searches, 

especially in search success rates, as shown in Figure 4. 
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Figure 4. The success rate of algorithm optimization in different problem domains 

3.4 Limitations 

Although the SESFA performs better than the comparison algorithms in terms of performance. 

However, it should be pointed out that, due to the existence of sub-domain division strategy, with the 

increase of solving domain dimension, the number of sub-domains after division will increase 

exponentially, and this will bring huge computation and unacceptable solution time, namely the 

dimensional disaster mentioned in literature[22]. Therefore, the SESFA is not suitable for solving 

high-dimensional data at present, which limits the application scope of the algorithm. In the next step, 

Non-negative Matrix Factorization (NMF)[23] will be taken as the next research direction. It is hoped 

that the algorithm can shorten the solving time and obtain a wider application range without 

significantly reducing the solving precision. 

4. Conclusions 

Analysis of the simulation results shows that SESFA has advantages in search precision, search 

stability, and solution success over a small search range. Compared with the other two algorithms, the 

advantages are more obvious in large search range. This indicates that SESFA is an effective 

optimization algorithm for complex functions with large search space and multiple peaks. 
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