PAPER•OPEN ACCESS

Soft Graphs of Certain Graphs

To cite this article: K. Palani et al 2021 J. Phys.: Conf. Ser. 1947012045

View the article online for updates and enhancements

You may also like
Ensemble nonequivalence in random graphs with modular structure Diego Garlaschelli, Frank den Hollander and Andrea Roccaverde

Steady vortex patch solutions to the vortex-wave system Daomin Cao and Guodong Wang

Optimistic multigranulation roughness of
fuzzy bipolar soft sets by soft binary
relations and its applications
Asad Mubarak, Waqas Mahmood and
Muhammad Shabir

Soft Graphs of Certain Graphs

K Palani, T Jones, V Maheswari
Associate Professor, Research Scholar, Reg No : 19222012092004 (Assistant Professor, Sarah Tucker College, Tirunelveli),Assistant Professor, PG \& Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi. Affiliated to Manonmaniam Sundaranar University, TN, India
Email: palani@apcmcollege.ac.in, jones@sarahtuckercollege.edu.in, mahiraj2005@gmail.com

Abstract

Let $G^{*}=(\mathrm{V}, \mathrm{E})$ be a simple graph and A be any nonempty set of parameters. Let subset R of $\mathrm{A} \times \mathrm{V}$ be an arbitrary relation from A to V . A mapping F from A to $\mathcal{P}(V)$ written as $\mathrm{F}: \mathrm{A} \rightarrow \mathcal{P}(V)$ can be defined as $\mathrm{F}(\mathrm{x})=\{\mathrm{y} \in \mathrm{V} / \mathrm{xR} \mathrm{y}\}$ and a mapping K from A to \mathcal{P} (E) written as $\mathrm{K}: \mathrm{A} \rightarrow \mathcal{P}(E)$ can be defined as $\mathrm{K}(\mathrm{x})=\{\mathrm{uv} \in \mathrm{E} /\{\mathrm{u}, \mathrm{v}\} \subseteq \mathrm{F}(\mathrm{x})\}$. The pair (F, A) is a soft set over V and the pair (K, A) is a soft set over E. Obviously $(\mathrm{F}(\mathrm{a}), \mathrm{K}(\mathrm{a})$) is a subgraph of G^{*} for all a $\in \mathrm{A}$. The 4 -tuple $\mathrm{G}=\left(G^{*}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is called a soft graph of G . In this paper we discuss different soft graphs of graphs such as Complete graph, Star graph, Complete bipartite graph, Crown graph, Comb graph, Friendship graph, Bistar graph and Wheel graph Keywords: Soft graph, Soft set, Relations, Parameters, isomorphic

1.Introduction

Molodtsov [5] initiated the novel concept of soft set theory as a new mathematical tool for dealing with uncertainties. This theory provides a parameterized point of view for uncertainty modelling and soft computing. The operations of soft sets are defined by Maji et al. [4]. At present, work on soft set theory is progressing rapidly. A new notion on soft graph using soft sets was introduced by Rajesh K. Thumbakara and Bobin George [6]. The soft graph has also been studied in more detail in many papers.

2. Preliminaries

2.1. Definition:

Let U be a universal set and E be the set of parameters related to the objects in U. Let $\mathcal{P}(\mathrm{U})$ denote the power set of U. Let A be any non-empty subset of E. A pair (F, A) is called soft set over U, where F is a set-valued function given by $\mathrm{F}: \mathrm{A} \rightarrow \mathcal{P}(\mathrm{U})$. In other words, a soft set over U is a parameterized family of subsets of the universe U .

2.2. Definition:

Let $G^{*}=(\mathrm{V}, \mathrm{E})$ be a simple graph and A be any nonempty set of parameters. Let subset R of $\mathrm{A} \times \mathrm{V}$ be an arbitrary relation from A to V . A mapping $\mathrm{F}: \mathrm{A} \rightarrow \mathcal{P}(V)$ can be defined as $\mathrm{F}(\mathrm{x})=\{\mathrm{y} \in \mathrm{V} / \mathrm{x} \mathrm{R}$ y $\}$ and a mapping $\mathrm{K}: \mathrm{A} \rightarrow \mathcal{P}(E)$ can be defined as $\mathrm{K}(\mathrm{x})=\{\mathrm{uv} \in \mathrm{E} /\{\mathrm{u}, \mathrm{v}\} \subseteq \mathrm{F}(\mathrm{x})\}$.

A 4-tuple $G=\left(G^{*}, F, K, A\right)$ is called a soft graph of G if it satisfies the following properties:
(i) $\mathrm{G}^{*}=(\mathrm{V}, \mathrm{E})$ is a simple graph
(ii) A is a nonempty set of parameters
(iii) (F, A) is a soft set over V
(iv) (K, A) is a soft set over E
(v) $(F(a), K(a))$ is a subgraph of G^{*} for all a $\in A$

The subgraph $(\mathrm{F}(\mathrm{a}), \mathrm{K}(\mathrm{a}))$ is denoted by $\mathrm{H}(\mathrm{a})$
A soft graph can also be represented by $G=\langle F, K, A\rangle=\{H(x) / x \in A\}$
The set of all soft graphs of G^{*} is denoted by $\operatorname{SG}\left(G^{*}\right)$

3.Results and Discussions:

3.1. Theorem :

Let $\mathrm{A} \subseteq V\left(K_{n}\right)$ be any m element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$. Then the soft graph $\left(K_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ exists if and only if $\mathrm{k}=1$ and is isomorphic to $\mathrm{m} K_{n-1}$ and there does not exist a soft graph if $\mathrm{k} \geq 2$

Proof:

Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$
Let $\mathrm{A}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{m}\right\}$ be any m element parameter set
Case 1: $\mathrm{k}=1$
Here each H_{i} is isomorphic to K_{n-1} and hence the soft graph $\left(K_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{m} K_{n-1}$
Case 2: $\mathrm{k} \geq 2$
In this case there does not exist a soft graph.

3.2. Observation:

In the above theorem, define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$. Then the soft graph $\left(K_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{m} K_{n}$

3.3. Theorem:

Let $K_{1, n}=\left\{v, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ where v is the central vertex and $\mathrm{A} \subseteq V\left(K_{1, n}\right)$ be any m element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$ where $\mathrm{k}=1,2$. Then the soft graph ($K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is totally disconnected if exist

Proof:

Let $\mathrm{V}\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ where v is the central vertex.
Let A be any m element parameter set.
Case 1: $\mathrm{k}=1$
Case 1 a: A contains v
Corresponding to $v, \mathrm{H}(v)$ is isomorphic to $\overline{K_{n}}$ For all other vertices , each $H_{i}\left(v_{i}\right)$ is isomorphic to K_{1}
Then the soft graph $\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\overline{K_{n+(m-1)}}$ and hence totally disconnected.
Case 1 b: A does not contain v
Here each $H_{i}\left(v_{i}\right)$ is isomorphic to K_{1}
Hence the soft graph $\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\overline{K_{m}}$ and hence totally disconnected
Case 2: $\mathrm{k}=2$
Case 2 a: A contains v
Corresponding to $v, H(v)$ doesn't exist.
For all other vertices, each $H_{i}\left(v_{i}\right)$ is isomorphic to $\overline{K_{n-1}}$
Hence the soft graph $\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to union of $n(m-1)$ times $\overline{K_{n-1}}$
Case 2 b: A does not contain v
Here each $H_{i}\left(v_{i}\right)$ is isomorphic to $\overline{K_{n-1}}$
Hence the soft graph ($K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is isomorphic to union of m times $\overline{K_{n-1}}$
Hence in general, the soft graph $\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is totally disconnected

3.4. Remark:

In the above theorem, if $\mathrm{k}>2$ and $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$, then there does not exist a soft graph for $K_{1, n}$

3.5. Theorem:

Let $K_{1, n}=\left\{v, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ where v is the central vertex and $\mathrm{A} \subseteq V\left(K_{1, n}\right)$ be any m element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. Then the soft graph

$$
\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right) \text { is }\left\{\begin{array}{lr}
\mathrm{K}_{1, \mathrm{n}} \cup(\mathrm{~m}-1) \mathrm{K}_{2} & \text { if } v \in \mathrm{~A} \\
\mathrm{mK}_{2} & \text { if } v \notin \mathrm{~A}
\end{array}\right.
$$

Proof:

Let $\mathrm{V}\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ where v is the central vertex.
Case 1: A contains v
Corresponding to $v, \mathrm{H}(v)$ is isomorphic to $K_{1, n}$
For all other vertices, each $H_{i}\left(v_{i}\right)$ is isomorphic to K_{2} Then the soft graph $\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $K_{1, n} \cup(\mathrm{~m}-1) K_{2}$
Case 2: A does not contain v
Here each $H_{i}\left(v_{i}\right)$ is isomorphic to K_{2}
Then the soft graph ($K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is isomorphic to $m K_{2}$

3.6. Theorem:

Let $K_{1, n}=\left\{v, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ where v is the central vertex and $\mathrm{A} \subseteq V\left(K_{1, n}\right)$ be any m element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$ where $\mathrm{k}=2$. Then the soft graph ($K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is isomorphic to $m K_{1, n}$

Proof:

Let $\mathrm{V}\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ where v is the central vertex.
Case 1: A contains v
Corresponding to $v, \mathrm{H}(v)$ is isomorphic to $K_{1, n}$
And for all other vertices, each $H_{i}\left(v_{i}\right)$ is isomorphic to $K_{1, n}$
Then the soft graph ($K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is isomorphic to $m K_{1, n}$
Case 2: A does not contain v
Here , each $H_{i}\left(v_{i}\right)$ is isomorphic to $K_{1, n}$
Then the soft graph ($K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) is isomorphic to $m K_{1, n}$

3.7. Remark:

In the above theorem, the soft graph $\left(K_{1, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $m K_{1, n}$ if $\mathrm{k}>2$

3.8. Theorem:

Let $\mathrm{A} \subseteq V\left(K_{m, n}\right)$ be any t element parameter set. Define $\rho: A \rightarrow V$ by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$. Then the soft graph $\left(K_{m, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is totally disconnected if $\mathrm{k}=1,2$ and there is no soft graph for $\mathrm{k}>2$

Proof:

Consider $\mathrm{V}=\{\mathrm{U}, \mathrm{W}\}$ where $\mathrm{U}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{m}\right\}$ and $\mathrm{W}=\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$
Let A be any t element parameter set where r elements from U and s elements from W such that $\mathrm{r}+\mathrm{s}=\mathrm{t}$

Case 1: $\mathrm{k}=1$

If the vertex belongs to U , then each $H_{i}\left(u_{i}\right)$ is isomorphic to $\overline{K_{n}}$
If the vertex belongs to W , then each $H_{i}\left(w_{i}\right)$ is isomorphic to $\overline{K_{m}}$
Then the soft graph $\left(K_{m, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{r} \overline{K_{n}} \cup s \overline{K_{m}}$ and hence totally
disconnected
Case 2: $\mathrm{k}=2$
If the vertex belongs to U , then each $H_{i}\left(u_{i}\right)$ is isomorphic to $\overline{K_{m-1}}$
If the vertex belongs to W , then each $H_{i}\left(w_{i}\right)$ is isomorphic to $\overline{K_{n-1}}$
Then the soft graph $\left(K_{m, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{r} \overline{K_{m-1}} \cup \mathrm{~s} \overline{K_{n-1}}$ and hence totally disconnected

Case 3: k > 2

Then there does not exist a soft graph.

3.9. Theorem:

Let $\mathrm{A} \subseteq V\left(K_{m, n}\right)$ be any t element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$. Then the soft graph $\left(K_{m, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{r} K_{1, n} \cup \mathrm{~s} K_{1, m}$ if $\mathrm{k}=1$ and $\mathrm{t} K_{m, n}$ if $\mathrm{k}>1$ where $1 \leq \mathrm{r} \leq \mathrm{m}$ and $1 \leq s \leq n$
Proof:
Let $\mathrm{V}=\{\mathrm{U}, \mathrm{W}\}$ where $\mathrm{U}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{m}\right\}$ and $\mathrm{W}=\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$
Let A be any t element parameter set where r elements from U and s elements from W such that $\mathrm{r}+\mathrm{s}=\mathrm{t}$
Case 1: $k=1$
If the vertex belongs to U , then each $H_{i}\left(u_{i}\right)$ is isomorphic to $K_{1, n}$ If the vertex belongs to W , then each $H_{i}\left(w_{i}\right)$ is isomorphic to $K_{1, m}$ Then the soft graph $\left(K_{m, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $\mathrm{r} K_{1, n} \cup \mathrm{U} K_{1, m}$
Case 2: $\mathrm{k}>1$
If the vertex belongs to U , then each $H_{i}\left(u_{i}\right)$ is isomorphic to $K_{m, n}$ If the vertex belongs to W , then each $H_{i}\left(w_{i}\right)$ is isomorphic to $K_{m, n}$ The soft graph $\left(K_{m, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $(r+s) K_{m, n}=\mathrm{t} K_{m, n}$

3.10. Observation:

(i)Let $\mathrm{A} \subseteq V\left(P_{n} \odot K_{1}\right)$ be one element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$.

Then the soft graph $\left(P_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is totally disconnected
(ii)Let $\mathrm{A} \subseteq V\left(P_{n} \odot K_{1}\right)$ be singleton parameter set. Define $\rho: A \rightarrow V$ by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$.

Then in the soft graph $\left(P_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is Path or Star or Caterpillar

3.11. Observation:

Let $C_{n} \odot K_{1}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}, w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$ where u_{i} are the vertices of cycle and w_{i} are the end vertices and $\mathrm{A} \subseteq V\left(C_{n} \odot K_{1}\right)$ be any one element parameter set. Define $\rho: A \rightarrow V$ by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$. The soft graph $\left(C_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is depicted in the following table for $3 \leq \mathrm{n} \leq 20$ and $1 \leq \mathrm{k} \leq 12$

k							\checkmark				$\begin{gathered} 0 \\ \text { II } \\ \frac{x}{x} \end{gathered}$						$\begin{gathered} \text { a } \\ \text { II } \\ \underset{\text { x̀ }}{0} \end{gathered}$							
$C_{n} \odot K_{1}$	Soft graphs of $C_{n} \odot K_{1}$ corresponding to the cycle and pendant(end)vertices for different values of k																							
	-	$\begin{aligned} & \vec{E} \\ & \stackrel{\rightharpoonup}{B} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{0}{0} \\ 0 \\ U \end{gathered}$	$\begin{aligned} & \vec{E} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \overrightarrow{\tilde{0}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\Xi}{\tilde{E}} \\ & \stackrel{\text { In }}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{3} \\ & \overrightarrow{0} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{n}} \\ & \stackrel{\rightharpoonup}{0} \\ & \overrightarrow{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{E} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{\|c\|c\|c\|} \hline 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \vec{\Xi} \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	島
$C_{3} \odot K_{1}$	$\begin{array}{\|c\|} \hline K_{2} \\ U \\ K_{1} \\ \hline \end{array}$	K_{1}	$\overline{K_{2}}$	K_{2}																				
$C_{4} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{3}}$	$\overline{K_{2}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}																
$C_{5} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	K_{2} U K_{2}	$\overline{K_{2}}$	$\overline{K_{2}}$	$\begin{gathered} K_{2} \\ \frac{u}{K_{2}} \end{gathered}$	-	$\overline{K_{2}}$																

$C_{6} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}														
$C_{7} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{array}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{u}{K_{2}} \\ \hline \end{array}$	-	$\overline{K_{2}}$														
$C_{8} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}												
$C_{9} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\begin{gathered} K_{2} \\ \mathrm{u} \\ \overline{K_{2}} \\ \hline \end{gathered}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{gathered} \hline K_{2} \\ \mathrm{U} \\ \overline{K_{2}} \\ \hline \end{gathered}$	-	$\overline{K_{2}}$												
$C_{10} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}										
$C_{11} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\begin{gathered} K_{2} \\ \frac{\mathrm{U}}{K_{2}} \end{gathered}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{array}$	-	$\overline{K_{2}}$										
$C_{12} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}								
$C_{13} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\overline{K_{4}}$	$\begin{gathered} K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{gathered}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{array}$	-	$\overline{K_{2}}$								
$C_{14} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}													
$C_{15} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{array}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \mathrm{U} \\ \hline K_{2} \\ \hline \end{array}$	-	$\overline{K_{2}}$													
$C_{16} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}													
$C_{17} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\begin{array}{\|c\|} \hline K_{2} \\ u \\ \frac{U}{K_{2}} \\ \hline \end{array}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \mathrm{U} \\ \hline K_{2} \\ \hline \end{array}$	-	$\overline{K_{2}}$													
$C_{18} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}													
$C_{19} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{array}$	$\overline{K_{4}}$	$\overline{K_{2}}$	$\begin{array}{\|c\|} \hline K_{2} \\ \frac{U}{K_{2}} \\ \hline \end{array}$	-	$\overline{K_{2}}$													
$C_{20} \odot K_{1}$	$\overline{K_{3}}$	K_{1}	$\overline{K_{4}}$	$\overline{K_{2}}$	$\overline{K_{4}}$	$\overline{K_{3}}$	$\overline{K_{4}}$	K_{1}	$\overline{K_{3}}$	-	K_{1}													

From the above table,
we infer that the soft graph is isomorphic to $\overline{K_{4}}$ for $\mathrm{n} \geq 2 \mathrm{k}+2$ and $\mathrm{k}>2$

3.12. Theorem:

Let $\mathrm{A} \subseteq C_{n} \odot K_{1}$ be any t element parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$ where $\mathrm{k}=1$.Then the soft graph $\left(C_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $r K_{1,3} \cup s K_{2}$ where $1 \leq \mathrm{r} \leq \mathrm{m}$ and $1 \leq s \leq n$
Proof:
Let $\mathrm{V}=\{\mathrm{U}, \mathrm{W}\}$ where $\mathrm{U}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}\right\}$ be the vertices of cycle and
$\mathrm{W}=\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$ be the end vertices .Let A be any t element parameter set where r elements from U and s elements from W such that $\mathrm{r}+\mathrm{s}=\mathrm{t}$
Let $k=1$
Case 1: If $v=\mathrm{u}_{\mathrm{i}}$ for some i, then each $H_{i}\left(u_{i}\right)$ is isomorphic to $K_{1,3}$
Case 2: If $v=\mathrm{w}_{\mathrm{i}}$ for some i,, each $H_{i}\left(w_{i}\right)$ is isomorphic to K_{2}
Hence the soft graph $\left(C_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is isomorphic to $r K_{1,3} \cup s K_{2}$

3.13. Theorem:

Let $\mathrm{A} \subseteq C_{n} \odot K_{1}$ be singleton parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$ where $\mathrm{k}=2$.
Then in the soft graph $\left(C_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is $K_{1,3}$ if the vertex is an end vertex and any one of $C_{n} \odot K_{1}$ or $\left(C_{n} \odot K_{1}\right)-\left\{e_{1}\right\}$ or $\left(C_{n} \odot K_{1}\right)-\left\{e_{1}, e_{2}\right\}$ or caterpillar graph if the vertex is vertex on cycle

Proof:

Let $\mathrm{V}=\{\mathrm{U}, \mathrm{W}\}$ where $\mathrm{U}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}\right\}$ be the vertices of cycle and
$\mathrm{W}=\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$ be the end vertices
Let A be any singleton parameter set

Let $k=2$

Case 1: If $v=\mathrm{w}_{\mathrm{i}}$ for some i, each $H_{i}\left(w_{i}\right)$ is $K_{1,3}$
Case 2: If $v=\mathrm{u}_{\mathrm{i}}$ for some i, then the soft graph is
(i) $C_{3} \odot K_{1}$ for $n=3$
(ii) a crown graph with one pendant edge removed for $n=4$
(iii) a crown graph with consecutive pendant edges removed for $n=5$
(iv) a caterpillar for $n>5$

3.14. Theorem:

Let $\mathrm{A} \subseteq C_{n} \odot K_{1}$ be any singleton parameter set. Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$ where $\mathrm{k}>2$.Then in the soft graph $\left(C_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is $C_{n} \odot K_{1}$ or $\left(C_{n} \odot K_{1}\right)-\left\{e_{1}\right\}$ or $\left(C_{n} \odot K_{1}\right)-\left\{e_{1}, e_{2}\right\}$ or caterpillar graph where e_{1}, e_{2} are the consecutive pendant edges.

Proof:

Let $\mathrm{V}=\{\mathrm{U}, \mathrm{W}\}$ where $\mathrm{U}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}\right\}$ be the vertices of cycle and
$\mathrm{W}=\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\} \quad$ be the end vertices
Let A be singleton parameter set
Case 1: $k=3$
Case 1 a: If $v=\mathrm{u}_{\mathrm{i}}$ for some i, then the soft graph is
(i) $C_{n} \odot K_{1} \quad$ for $n \leq 5$
(ii) a crown graph with one pendant edge removed for $n=6$
(iii) a crown graph with two consecutive pendant edges removed for $n=7$
(iv) a caterpillar graph for $\mathrm{n}>7$

Case 1 b: If $v=\mathrm{w}_{\mathrm{i}}$ for some i, each $H_{i}\left(w_{i}\right)$ is
(i) $C_{3} \odot K_{1} \quad$ for $n=3$
(ii) a crown graph with one pendant edge removed for $n=4$
(iii) a crown graph with two pendant edges removed for $n=5$
(iv)a caterpillar graph for $n>5$

Case 2: $k=4$
Case 2 a: If $v=\mathrm{u}_{\mathrm{i}}$ for some i, then each $H_{i}\left(u_{i}\right)$ is
(i) $C_{n} \odot K_{1} \quad$ for $n \leq 7$
(ii) a crown graph with one pendant edge removed for $n=8$
(iii) a crown graph with two consecutive pendant edges removed for $n=9$
(iv) caterpillar graph for $\mathrm{n}>9$

Case 2 b: If $v=\mathrm{w}_{\mathrm{i}}$ for some i, each $H_{i}\left(w_{i}\right)$ is
(i) $C_{n} \odot K_{1}$ for $n \leq 5$
(ii) a crown graph with one pendant edge removed for $n=6$
(iii) a crown graph with two pendant edges removed for $n=7$
(iv) a caterpillar graph for $\mathrm{n}>7$

As analysing above for any $\mathrm{k}>2$, in the soft graph $\left(C_{n} \odot K_{1}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is $C_{n} \odot K_{1}$ or $\left(C_{n} \odot K_{1}\right)-\left\{e_{1}\right\}$ or $\left(C_{n} \odot K_{1}\right)-\left\{e_{1}, e_{2}\right\}$ or caterpillar graph where e_{1}, e_{2} are the consecutive pendant edges.

3.15. Observation:

Consider a friendship graph F_{n}. Let $\mathrm{A} \subset \mathrm{V}\left(F_{n}\right)$ be any one element parameter set.
(i) Suppose $\rho: A \rightarrow V$ defined by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=1$. Then in the soft graph ($F_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) each H_{i} is either isomorphic to $n K_{2}$ or K_{2}
(ii) Suppose $\rho: A \rightarrow V$ defined by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Then in the soft graph ($F_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}$) , each H_{i} is isomorphic to ($\mathrm{n}-1$) K_{2} if exist
(iii) Suppose $\rho: A \rightarrow V$ defined by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$ where $\mathrm{k}>2$. Then there does not exist a soft graph $\left(F_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$
(iv) Suppose $\rho: A \rightarrow V$ defined by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$.Then in the soft graph $\left(F_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is either isomorphic to F_{n} or C_{3}
(v) Suppose $\rho: A \rightarrow V$ defined by $\mathrm{x} \rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$ where $\mathrm{k}>2$. Then in the soft graph $\left(F_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is isomorphic to F_{n}

3.16. Observation:

Consider a bistar graph $B_{n, n}$. Let $\mathrm{A} \subset \mathrm{V}\left(B_{n, n}\right)$ be any one element parameter set.
(i) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$. Then the soft graph $\left(B_{n, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ is totally disconnected.
(ii) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. Then in the $\operatorname{soft} \operatorname{graph}\left(B_{n, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is isomorphic to K_{2} or $K_{1, n+1}$
(iii) Define $\quad \rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 2$. Then in the $\operatorname{soft} \operatorname{graph}\left(B_{n, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is isomorphic to $K_{1, n+1}$ or $B_{n, n}$
(iv) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$ where $\mathrm{k}>2$. Then in the $\operatorname{soft} \operatorname{graph}\left(B_{n, n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ each H_{i} is isomorphic to $B_{n, n}$

3.17. Observation:

Consider a wheel graph W_{n}. Let $\mathrm{A} \subset \mathrm{V}\left(W_{n}\right)$ be any one element parameter set.
(i) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=1$. Then in the soft graph $\left(W_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is isomorphic to C_{n-1} or P_{3} if $\mathrm{n}>4$
(ii) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Then in the soft graph $\left(W_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, each H_{i} is P_{n-4} if exist where $\mathrm{n}>4$
(iii) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{k}$ where $\mathrm{k}>2$. Then there does not exist a soft $\operatorname{graph}\left(W_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$
(iv) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq 1$. Then in the soft graph $\left(W_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$, , each H_{i} is isomorphic to W_{n} or $K_{4}-\{\mathrm{e}\}$ where e is any edge.
(v) Define $\rho: A \rightarrow V$ by x $\rho y \Leftrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{k}$. Then in the $\operatorname{soft} \operatorname{graph}\left(W_{n}, \mathrm{~F}, \mathrm{~K}, \mathrm{~A}\right)$ each H_{i}, is isomorphic to W_{n} where $k>1$

References:

[1] Akram M and Nawaz S, Operation on soft graphs, Fuzzy Information and Engineering, volume 7, issue 4 (2015) 423-449.
[2] Bondy J A and Murty U S R, Graph Theory with Application, Macmillan Press, New York, NY, USA, 1976.
[3] Harary F, Graph Theory, Addison-Wesley Publishing Company, Inc., (1969).
[4] Maji P K, Biswas R, and Roy A R, Soft set theory, Computers \& Mathematics with Applications, vol. 45, no. 4-5, pp. 555-562, 2003.
[5] Molodtsov D, "Soft set theory—first results, Computers \& Mathematics with Applications, vol.
37, no. 4-5, pp. 19-31, 1999.
[6] Rajesh K. Thumbakara and Bobin George, Soft Graphs, ICSRS Publication, Vol. 21 ,no 2, April 2014, pp. 75-86.

