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Abstract. In this paper, the mixing process of two solutions of inorganic salts in a continuous 

flow channel with Y-type micromixer is investigated. Due to different diffusivity rates of solutes 

the double-diffusion convection develops in the channel. To visualize convective flows and the 

distribution of mixing substances the shear interferometer technique and a fluorescent dye are 

used. The latter makes it possible to quantify the mixing degree. The mixing extent for different 

volume flow rates is calculated. The comparison of convection and pure diffusion mechanisms 

of mixing is provided. 

1. Introduction  

Continuous flow reactors find an application in various chemical engineering, pharmaceutical, and 

biological technological processes (see detailed literature review in [1]). In continuous flow reactors, 

the reactants are permanently delivered through inlets into a reaction zone where they mix and react 

completely with each other forming the reaction product at the outlet of the zone. High productivity, 

uniform, and stable conditions, simple control in consumption of reagents and energy, and a possibility 

to increase in output by elements' replication are the main but not exhaustive advantages with respect to 

the traditional batch-reactors. In connection with the needs of pharmaceutical production in flexible and 

reconfigurable flow systems with low product yield, microfluidic systems with reactor zone size in the 

millimeter and submillimeter range have become widespread in recent years [2-7]. The transition to the 

micro-scale led to the problem of reagents mixing. Due to the small transverse dimension of the reaction 

zone, the flow is laminar inside it and the transverse mixing of the reagents becomes possible solely due 

to diffusion. Because of the low rate of the diffusion processes, this needs rather elongated reaction 

zones to provide complete mixing which results in a significant increase in the time required to complete 

the reaction.  

 To reduce the reaction time various mixing systems were proposed. There are two main types of 

mixing systems: active and passive. The former requires the supply of energy from the outside in the 

form of mechanical energy, heat [8], or the energy of electric or magnetic fields [9]. The use of this type 

of mixing system is usually limited in microreactors due to the small size of the reaction zone or the 

immunity of the reacting substances to electromagnetic influences. Passive mixing systems use the 

internal energy of the flow. In addition to the above-mentioned diffusion, convection is an effective way 

to mix the reagents. The most widespread way consists of creating a complex geometry of the reaction 

zone to form chaotic flows that stretch, recombine, and fold the mixing interface between streams 

providing thus the media homogenization, resulting in a considerable increase in the product output [10-

16]. The disadvantage of this type of mixing system is significant pressure has to be applied to pump 

liquid through geometrically complex zones, involving higher energy costs. A more attractive way is to 

create conditions for the development of natural convection in the liquid. A recent study [17] showed 

the possibility of using Marangoni concentration convection to efficiently mix reagents in a flow reactor. 

Moreover, the intensity of the convective motion was adjusted to the concentrations of the supplied 

reagents. The authors have demonstrated that the gravity-dependent convective mechanisms also can be 

used for effective liquids mixing in microchannels.  
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 In this paper, we show in a series of experiments that double-diffusive instability [18] can be an 

effective way to mix two solutions in a reaction zone in a form of a long narrow channel. This type of 

hydrodynamic instability occurs in a two-layer stably stratified system of miscible solutions when the 

solutes have different diffusivity rates. Several optical methods were used to visualize convective flows 

and the distribution of mixing substances, which made it possible to estimate the mixing rate along the 

channel. A significant intensification of mixing is shown in comparison with the purely diffusive case.  

2. Experimental set-up 

The experimental setup is presented in figure 1. The mixing substances come into the reaction zone 

through a Y-type mixer forming a two-layer system at the beginning of the zone. The reaction zone has 

a form of long narrow channel of d=0.25 cm height, h=0.015 cm width, and L=7 cm length. Both inlets 

are connected by transparent tubes with injection syringes (2). The volume flow rate is carefully 

controlled through a syringe pump SPLab 02, UNIX Instruments (3). The pump fills the channel with 

aqueous solutions of two different inorganic salts with equal volume flow rates. Less dense solution of 

copper sulfate CuSO4 with mass concentration 6.55 %, density =1.068 g/cm3, and dynamic viscosity 

=0.013 g/cm·s were injected through the upper inlet of Y-micromixer and a denser solution of 

potassium chloride (KCl) with mass concentration 15.45 %, density =1.1 g/cm3, and dynamic viscosity 

=0.015 g/cm·s were injected through the bottom one. 

 

 

Figure 1. 1 – microchannel with Y-type mixer, 2 – injection syringes connected with 

inlet tubes, 3 – syringe pump, 4 – laser sheet, 5 – CCD camera. 

 

 In order to differentiate the two streams and visualize the mixing process, the fluorescent dye 

Rhodamine B was dissolved in the KCl solution. The mass concentration of Rhodamine in KCl solution 

was 5·10-5 %. Such concentration is so low that it does not influence the physical properties of KCl 

solution. As an illumination source of the channel, we used the laser sheet (4) with wavelength 

=532 nm. It allows us to see the concentration distribution of the Rhodamine that in the light of the 

green spectrum fluoresces in the red one. The quantitative analysis of mixing was carried out based on 

the intensity field of the dye, which is equivalent to its concentration field. 

 The experiments were carried out for several volume flow rates as shown in table 1. The 

investigated region of the channel is equal to 3 cm (12d in calibres) and includes initial segment of the 

mixing channel (the length from the point where two streams combine). During the one test, three 

consecutive images of the channel with an interval of 1 minute were captured by a high-speed colour 

camera Nikon 5200 (5). This was repeated for all volume rates. The first image was taken after 30 
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minutes since the pump started that guaranteed the steady state of fluids flow. To minimize the post-

processing error we got the average image that then was converted into grey scale. This procedure is 

described in detail below. Also in some experiments, the shear interferometry method [19] was used to 

visualize the structure of convective flows. All experiments were performed at room temperature 

(241) C. 

 

Table 1. Parameters of experiments. 

Volume flow rate  

Q (ml/min)  

Fluid velocity  

v (cm/s)  Re = vh/ 

0.002  8.9 ×10-3 0.010 

0.005 22.2 ×10-3 0.026 

0.010 44.5 ×10-3 0.052 

0.015 66.6 ×10-3 0.079 

 

 During the one test, three colour images of the channel were captured at each volume flow rate. 

All images were then converted into greyscale monochromatic images according to the procedure 

described in [10, 20]. To get an image with a higher signal-to-noise ratio all images were then averaged 

to one. Then the background correction was employed. Before each experiment, the image of the empty 

channel illuminated by the laser sheet was taken. This image served as the background, which was 

always subtracted (in grey scale) to correct the inhomogeneity of the light sheet intensity. Based on this 

image, a ready-to-process matrix of gray values was obtained. The Lambert-Beer’s law states that the 

light intensity is linearly depends with the concentration changing i.e. the luminance grey level of the 

pixel can be converted into normalized depth-averaged dye concentration for this pixel. Thus, the two-

dimensional matrix of grey values characterizes the two-dimensional distribution of the Rhodamine 

concentration. However, to estimate the mixing extent of layers with and without dye, it is not necessary 

to get the values of the dye concentration. The degree of mixing at a chosen area 1 pixel width and 500 

height across the channel length can easily be evaluated by calculation of the mixing parameter M [1, 

21]: 
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where  is the standard deviation of the grey luminance, and max is the maximum standard deviation 

over the channel. The value of M varies from 0 to 1, with 1 (100 %) indicating complete mixing and 

values tending to 0 indicating unmixed layers. The standard deviation is calculated using the following 

equation: 
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where N is the number of pixels in the chosen area, Ii is the intensity at pixel i, and I  is the mean 

intensity of the chosen area. Prior to using the equation (2) the value of  was always normalized by 

0.5. 

3. Results  

When the solutes in a two-layer system diffuse at different rates the diffusive instability can develop. 

There are two types of the instability depending on in which layer the solute with a higher diffusion 

coefficient is dissolved. If the faster component is dissolved in the upper layer, then diffusive-layer 

convection (DLC) instability arises. In the opposite case, when the lower species diffuse faster, a double-

diffusive (DD) instability develops. Here we investigate only the DD instability.  
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Figure 2. Visualization of the time evolution of concentration field of Rhodamine at 

Q = 0 ml/min. (Raw images that have not yet been processed). 

 

Figure 2 shows the time evolution of the structure of the DD convection without pumping, i.e. at 

Q = 0 ml/min. The images show the distribution of Rhodamine concentration.  At the initial moment 

(t = 5 s), the image has a high contrast level. The lower layer has a colour close to white, the upper one 

– to black. This indicates that Rhodamine is situated only in the lower layer, which means, the initial 

layers are completely separated. Further, DD convection develops in the form of finger structure 

symmetrically propagating up and down from the initial contact line. Upward and downward convective 

currents redistribute Rhodamine in such a way that its concentration in the lower layer decreases and in 

the upper layer increases.  

 

The process of the changes of the Rhodamine concentration in both layers is accompanied by 

a change in the brightness of its luminescence, which makes it possible to analyse the mixing process. 

Since in this experiment the volume flow rate is zero, the degree of mixing does not change along the 

channel and depends only on time. 

 When pumping is turned on the structure of motion is changed. Figure 3 shows the images of the 

channel obtained for all volume flow rates when the flow was at the steady-state. It is seen that as a flow 

rate increases, the length of the area, where layers are separated becomes longer. This means that the 

mixing length also increases with increasing the flow rate. Due to constant pumping, this visualization 

method does not allow to see the finger structure. For this purpose, we used a shearing interferometry 

technique. 

 

Figure 3. Visualization of the concentration field of Rhodamine for different volume flow rates. 

(Raw images that have not yet been processed). 
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Figure 4. Visualization of the convective structure (a) and the concentration field of 

Rhodamine (b) at Q=0.01 ml/min. (Raw images that have not yet been processed) 

 

Figures 4 (a) and 4 (b) show the images of the channel for Q=0.01 ml/min, obtained by the shear 

interferometer and the dye, respectively. The shear interferometer makes it possible to visualize the 

distribution of the refractive index derivative. In our experiments the refractive index non-uniformity is 

caused by variations of solutes concentration, therefore the interferogram patterns reflect mainly a 

spatial distribution of the derivative of solutes concentration. Since the mass diffusive time is three 

orders of magnitude larger than the viscous time (Schmidt number Sc~O(103)), the derivative 

concentration isolines turn out to be trapped by the moving liquid, and the interference fringes move 

together with the liquid medium. Thus, the study of the interference patterns along the channel allows 

us to visualize the structure of the convective motion. 

 The interferogram clearly shows how exactly the finger structure changes when pumping is turned 

on. Analysis of the shape of the interference fringes allows us to distinguish three characteristic regions 

along the channel (see 1, 2 and 3 in figure 4). The first area (1) is at the beginning of the channel. Here, 

two layers of initial liquids are separated by a narrow diffusion zone, which is visualized in the 

interferogram in the form of many horizontal and not curved fringes. This shape of the fringes indicates 

the absence of convection, therefore, the diffusion mechanism of mass transfer prevails in this zone. The 

number of fringes characterizes the magnitude of the density gradient between the layers. Since all 

fringes are in a very narrow zone it is impossible to count them and quantify the magnitude of the density 

gradient. The second region (2) is the area of existence of the convective structure. The shape of fringes 

has become more complex. Near the boundaries of the channel, we observe chaotic vortex structure, 

which indicate the presence of intense convection. Thus, in this region, convection is the prevailing 

mechanism of mass transfer; therefore, the process of homogenization of the initial layers occurs from 

this region. On the image of the dye concentration field (figure 4 (b)) it is clearly seen how strong the 

difference of the concentration distribution along the vertical axis at the beginning (the layers are 

separated, each with its own colour) and at the end (the layers are mixed, and an intermediate color 

between black and white appeared) of this region. Further, in the region (3), the flow structure changes 

suddenly. On the interferogram we see the one wide horizontal fringe on the background of which a 

weak convective motion that is visualized as periodic sloping stripes exists. In this region the dominant 

mechanism of mass transfer is changed from convective to diffusion. At the beginning of this region the 

homogenization process proceeds very slow, as it is evidenced by minor changes in the interference 

pattern and weak changes of grey luminance on the image of the dye concentration field. Thus, 

comparative analysis of the images obtained with the help of Rhodamine and interferometer made it 

possible to see the flow structure and formally distinguish the areas with convective and diffusive 

mechanism of mass transfer.  

 The change of the mixing extent along the channel length was calculated based on the matrix of 

grey values obtained from image of dye distribution using the equation (2). The mixing parameter M as 

a function of the distance along the channel measured in the channel height d for different inlet flow 

rates is shown on figure 5 (a). Dependencies with different colours correspond to results for different 

flow rates. Experiments have shown that the highest mixing efficiency is achieved at the lowest flow 

rate Q=0.002 ml/min. In this case the convective structure resulting from the formation of the DD 

convection is located at the very beginning of the channel and takes the zone of several calibres in length. 
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The vortex motion existing in this region mixes the initially separated fluids rather quickly, which is 

indicated by a sharp increase in the value of the parameter M. Further, when the convective mixing 

mechanism changes to the diffusion one, the value of M stats change more slowly. The position of the 

region where the convective mixing mechanism is prevailing changes due to an increase of the volume 

flow rate. It also affects the mixing length. Figure 5 (b) shows a dependence characterizing the change 

in the mixing length required to achieve a mixing of 50 % (M=0.5). It is clearly seen that with an increase 

in the volume flow rate, the value of the mixing length for the same pair of liquids also increases.  

  

Figure 5. The dependence of (a) the mixing extent on the channel length for different volume flow 

rates and (b) the mixing length required to achieve 50% mixing, on the volume flow rates. 

  

 For comparison, the dashed lines in figure 5 (a) show the results obtained for the two-layer system 

consisting of aqueous solution of KCl (lower layer) and water (upper layer). In this case, DD instability 

does not form and a mass transfer provided solely due to diffusion. It is clearly seen that the diffusion 

mixing mechanism in the geometry under consideration is almost an order of magnitude weaker than 

the convective one. Also, it worth to note that when the diffusive mechanism is predominant in mixing 

process the change in the brightness of the dye due to mixing is comparable or even less than the 

magnitude of the noise, which results in relatively high data spread in the experiments with diffusion 

mixing.  

4. Conclusion 

The mechanisms of natural convection that are currently underestimated in microfluidics, can be 

successfully used for mixing flows in microfluidic devices. We have shown that the DD convection can 

reduce the mixing length by an order of magnitude in comparison with mixing using a pure diffusion 

mechanism. The effective mixing becomes possible due to the formation of a complex convective 

structure that acts like a local mixing tool. The addition of a fluorescent dye made it possible to quantify 

the mixing degree. It was found that the most mixing efficiency is achieved at the lowest volume flow 

rate. In this paper, we investigated only one pair of solutions with constant concentrations. However, it 

is known that by varying the concentration it is possible to change the intensity of double-diffusion 

convection. In the future, experiments in a more wide range of governing parameters will be performed. 
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