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Abstract. A semi-analytical finite element method is used to analyze the stability of composite 

cylindrical shells interacting with a rotating fluid inside them. A mathematical formulation of 

the problem of deformable structure dynamics is based on the variational principle of virtual 

displacements and classical shell theory. The behavior of an ideal compressible fluid is described 

within the framework of the potential theory. The validity of the obtained results is supported by 

comparing them with the known solutions. Numerical experiments were performed for two- and 

three-layer cross-ply shells made of boron-epoxy resin with different boundary conditions and 

geometrical dimensions. It is demonstrated that, for the examined configurations, an increase in 

the fibre angles leads to a significant increase in the critical rotation velocities of the fluid, 

regardless of the conditions for fixing the edges of a thin-walled structure. 

1. Introduction 

It is common knowledge [1–2] that in the process of industrial operation thin-walled elements of 

engineering structures can interact with liquid or gaseous medium. In some cases such medium is in a 

quiescent state, in others it flows inside the body or around it on the outside. In this case, either the axial 

or tangential velocity components or both simultaneously can be other than zero. The rotation of the 

fluid, as well as its axial flow, has a destabilizing effect on the structure, which at significant values of 

the angular velocity lose stability. Despite this fact, the number of publications, studying the effect of 

fluid rotation on the hydroelastic stability boundary, is limited. Analysis of the influence of rotating fluid 

or combined flow (rotation with axial flow) on the dynamic behavior of single and coaxial infinite shells, 

as well as shells of finite length, is carried out in papers [3–17]. In recent works, one of the ways to 

improve the critical parameters of systems is to use modern composite materials. Only a few publications 

[14,17] have focused on studying the influence of physical and mechanical parameters of shells made 

of functionally graded or piezoelectric materials on the critical velocities of fluid rotation. The analysis 

of properties of layered composite materials with different fiber angles is performed in [18–23] for a 

quiescent fluid completely filling the shell. Thus far, the effect of the properties of the layered composite 

on the hydroelastic stability boundary has not been adequately investigated and is the purpose of the 

present work. 

2. Statement of the problem and constitutive relations 

Let us consider an elastic cylindrical shell of length L, radius R and thickness h (figure 1). Inside the 

shell there is a perfect compressible fluid, which rotates with angular velocity . The thin-walled 

structure is made of a unidirectional material (boron-epoxy resin AVCO 5505 [24]) whose layers are 

oriented at the angles of + and − relative to the meridional coordinate (cross-ply composite). We 

consider layered composite packages consisting of two [, −] or three [, 0, −] layers. It is required 

to analyze the effect of the fiber angle  on the hydroelastic stability boundary of shells for different 

boundary conditions and geometric dimensions. 
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Figure1. Computational scheme. 

 

To describe the motion of a rotating fluid in the region Vf , we introduce a perturbation velocity 

potential , which in the cylindrical coordinate system ( ), ,r x  at small perturbations , is described by 

the wave equation [1] 

 
2 2 2 2

2

2 2 2 2 2

1 2
,r

t rc t c c

         
 − = + − 

   
 (1) 

where с is the speed of sound in a liquid. 

The fluid pressure fP  on the wetted surface of the elastic structure f sS S S =   is calculated using 

the linearized Bernoulli's formula 

 .f fP
t

  
= − + 

  
 (2) 

Here f is the specific density of liquid; ,f sS S are the surfaces that bound fluid and shell regions, 

respectively. On the fluid-structure interface, the impermeability condition is prescribed 

 ,
w w

n t

  
= +

  
 (3) 

where n is the normal to the surface, w is the normal component of the vector of shell displacements.  

The perturbation velocity potential obeys the following boundary conditions 

 0 : 0, : 0.х x L
x


= = =  =


 (4) 

The application of the Bubnov – Galerkin method to the partial differential equation for the 

perturbation velocity potential (1) with boundary conditions (3–4) allows us to obtain the following 

integral relation [4]: 
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 (5) 
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Here: ,f sm m  are the number of unknowns (number of nodal values) in the fluid fV and shell sV  regions; 

,al apw  are the coefficients to be determined (nodal values of perturbation velocity potential of the fluid 

and shell displacements); , wF N are the known analytical functions (shape functions for the perturbation 

velocity potential and normal component of the shell displacement vector). 

The shell is considered within the framework of the classical theory, which relies on the 

Kirchhoff – Love hypothesis. The vector components of deformation of the median surface, torsion and 

curvature changes in the coordinate system ( ), ,s z can be written as follows [25]: 

 

1 2 12

2 2 2

1 2 122 2 2

1 1
, , ,

1 1
, , .

u v u v
w

s R R s

w v w v w

R s ss R

    
 =  = +  = + 

    

       
 = −  = −  = −   

       

 (6) 

Here u and v are the meridional and circumferential components of the displacement vector of the shell. 

The physical relationships that link the vector of generalized forces and moments 

 
T

11 22 12 11 22 12, , , , ,T T T M M M=T with the vector of generalized strains  
T

1 2 12 1 2 12, , , , ,2=       , are 

written in the matrix form as 

 ( ) ( )2, , , 1, , , ( , 1,2,3)ij ij ij ij

h

a b c z z Q dz i j
 

= = = = 
  


A B

D
B C

T   , (7) 

where ijQ  are the components of the reduced matrix, which takes into account changes in the properties 

of the unidirectional material in the case when the local coordinate system is rotated by an angle  [26]. 

The elastic properties of the unidirectional material in the natural coordinates are determined in a known 

manner in terms of the elastic moduli 1 2,E E , Poisson's ratio 12 , and shear modulus 12 .G  

A mathematical formulation of the problem of shell dynamics is based on the principle of virtual 

displacements, which, using the expression for the hydrodynamic pressure (2), can be written in the 

matrix form as 

 
T T T

0d d d 0.

s s sS S S

S S S +   −  =  ε T d d d P  (8) 

Here d,  0, 0, fP=P  are the vectors of displacements and surface loads, respectively, 0 s
h

dz =  , s  

is the specific density of the shell material. 

3. Numerical implementation 
Numerical implementation of the problem in the above mathematical formulation was performed using 

a semi-analytical finite element method [27], which is based on the representation of the solution as a 

Fourier series in the circular coordinate  

 
0 0 0 0

0 0 0 0

cos sin , sin cos ,

cos sin , cos sin .

j j j jj j j j

j j a j jj j j j

u u j u j v v j v j

w w j w j j j

   

= = = =

   

= = = =

=  +  =  − 

=  +   =   +  

   

   
 (9) 

Here j is the number of harmonic. 

Expressing the symmetric and antisymmetric unknowns in (9) in terms of the nodal displacements, 

we obtain the following expression for the finite elements of the shell and fluid 

      
T TT

, , , .e e e a e e eu v w    = = = =
   

N NN F FFU = d d d      (10) 
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Here N and F are the matrices of shape functions, ed  and e are the vectors of nodal displacements. For 

the shell, we used the so-called high-precision finite element in the form of a truncated cone, in which 

the displacements are approximated by the Hermite polynomials of different degrees [28]. For the fluid, 

we used a triangular finite element with a linear approximation of the perturbation velocity potential 

2 2
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= =

    
= + = +   

    

   
= + + +  =  

   

 

 

 (11) 

In view of (10), the relationship between the strain vector ε  and the vector of nodal unknowns of the 

shell finite element ed  is given as 

 .e=ε Bd  (12) 

Substituting the value for pressure as defined in (2) into equation (8) and using the standard 

procedures of the finite element method with account of (10–12), we obtain the following matrix relation 

 
T 0,s s f sf a f sf a

+ +  +  =K M C Ad d    (13) 

where 

T T T T
0d , d , d , d

s s s ss s

s s sf w sf w

m m m mS S S S

S S S S
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= =  =  =


      

F
K B DB M N N A N C N F . 

Equation (5), taking into account expressions (10–11), can be written in the matrix form as follows: 

 ( ) 0,f f a f a f a sf a fs a
  + + − − − =K K M C C Aw w    (14) 

where 
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2 2
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 
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  
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F F F
K F F M C F

NF F
K F F A F

  

Thus, the study of stability of the shell, inside which the liquid rotates, is reduced to solving 

simultaneously the two systems of equations (13) and (14) 

 ( )     
T TT

0,a a a+ + + =K A M Cd d d    (15) 

where 

 
( ) 

 

Tdiag , 0 0
, .

0diag ,

s f f f sf sf

f f

sf f fss f f

 

 

= − +    
=  =    

   = −    

K K K K C A
C A

C C AM M M
  

Representing the perturbed motion of the shell and fluid as 

 1 2exp(i ), exp(i ), i 1, i ,at t=  =  = −  =  + d q     

where ,q   is some function of coordinates,  is the characteristic quantity, we finally arrive at 

 ( ) 
T2 i 0.−  +  + =K M C A q   (16) 
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The solution of the problem is reduced to the evaluation and analysis of complex eigenvalues  of 

the system (16). For these purposes, we use an algorithm, which is based on the Muller method [29]. 

Taking into account the selected series expansion (9) and derivatives with respect to  in the matrices 

f


A  and s


A , the symmetric unknowns of the shell are linked to the asymmetric fluid variables and 

symmetric unknowns of the fluid – to the asymmetric variables of the shell. In the matrix f
C , linking 

of the symmetric to the asymmetric fluid unknowns is performed. Note that in this case matrices A and 

f
C  are asymmetric. 

4. Examples of numerical implementation 

The calculations were carried out for several variants of the boundary conditions specified at the edges 

of the shell (R = 1 m, h = 0.01 m): F corresponds to a free edge; S is a simply supported structure 

(v = w = 0); C is clamping ( 0)u v w w s= = =   = . The properties of unidirectional material are taken 

as follows [24]: 1 206.9E = GPa, 2 18.62E = GPa, 12 0.28 = , 12 4.48G = GPa. 

4.1. Algorithm verification 

The verification of the developed finite-element algorithm was performed in the context of two example 

problems. Table 1 shows the natural frequencies Re() (Hz) of vibrations of an empty cylindrical shell 

rigidly clamped at both edges. The frequencies were obtained for different values of the angle  and 

laying patterns of the composite material. The disagreement with the results of work [24], which are 

also presented in the table, does not exceed 2.5%. 

The next example is the hydroelastic stability of an isotropic shell. Figure 2 shows the evolution of 

real Re() and imaginary Im() parts of the dimensionless eigenvalue R=   as a function of the 

dimensionless angular velocity R =   of the fluid for two lower frequencies 

( )
1/2

2

12 1( 1 )m E  =  −
 

. Here, m denotes the number of half-waves in the meridional direction. The 

rotation of the fluid causes the frequency to split into two values, which corresponds to the appearance 

of a forward and reverse wave. An increase in the rotation speed of the liquid leads to an increase in the 

eigenvalues, corresponding to the forward waves (depicted in the figure by solid lines), and a decrease 

in the eigenvalues, corresponding to the reverse waves (dashed lines). At the angular velocity 0

 , the 

real part of reverse wave of the 1st mode is equal to zero and begins to increase with further increase in 

the angular velocity. The real parts of both waves of the first mode coalesce at the angular velocity F



.  

 

Table 1. Comparison of natural vibration frequencies (Hz) of empty layered 

cylindrical shells rigidly clamped at both edges. 

 
Two layers [, −] Three layers [, 0, −] 

Ref. [24] computation Ref. [24] computation 

  0 261.41 261.13 261.41 261.13 

15 351.75 351.01 337.63 337.03 

30 369.56 366.39 397.58 395.95 

45 340.95 332.64 446.24 443.78 

60 359.36 352.56 487.64 485.69 

75 382.24 380.13 465.54 464.63 

90 333.43 332.53 370.71 370.09 

This is accompanied by the appearance of the equal imaginary parts opposite in sign (dashed line), 

which characterizes the onset of instability in the form of coupled-mode flutter. In the case of fluid 

rotation, this type of stability loss does not depend on the type of boundary conditions prescribed at the 

edges of the shell, in contrast to the fluid flow having only an axial component. The figure shows the 
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results of [17], which also demonstrate good agreement between the solutions obtained by different 

methods. 

 

Figure 2. The dependence of the real Re() 

and imaginary Im() parts of dimensionless 

natural frequencies on the dimensionless 

speed of fluid rotation  for the shell, 

simply supported at both edges. 

 

4.2. Study of hydro-elastic stability 

Figure 3 shows the critical angular velocity of the fluid rotation  as a function of the fiber angle  

obtained for two- and three-layered shell (L/R = 2) for different boundary conditions. Here, symbols 

denote changes in the vibration modes as a function of minimum angular velocity of the fluid, and 

figures indicate the number of half-waves in the circumferential direction j. For both reinforcement 

packages, there is a tendency to a growth of the critical angular velocities of fluids with increasing fiber 

angle  up to a threshold value, after which a slight decrease is observed. For shells with any type of 

boundary conditions the growth is almost two-fold for a two-layer package, and even greater for a three-

layer package. 

 

Figure 3. Dependences of the critical angular velocity of the fluid  (rad/s) on the fiber angle  

of the layered cylindrical shell with different boundary conditions and reinforcement package 

(L/R = 2). 

 

Figure 4 shows similar dependencies, but for a longer shell (L/R = 10). Qualitatively, the curves show 

the same behavior with the following exception. First, the transitions to different vibration modes with 

a change in the minimum angular velocity are more pronounced. Second, in the case of certain boundary 

conditions, there is a range of angles, in which the stability boundary decreases even by comparison 

with the non-oriented unidirectional material ( = 0). For example, for a cantilevered structure this 
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range is between 32 and 46 degrees, while for a simply supported structure it is between 26 and 32 

degrees. 

As for other aspects, the results presented in Figures 3 and 4 show the traditional dynamic behavior: 

a decrease in the critical velocities is observed for longer shells; the boundary conditions, which favor 

stiffening of the system, are also responsible for the growth of the angular velocities of the fluid. 

 

Figure 4. Dependences of the critical angular velocity of the fluid  (rad/s) on the fiber angle  

of the layered cylindrical shell with different boundary conditions and reinforcement packages 

(L/R = 10). 

5. Conclusions 

The results of numerical calculations presented in this paper demonstrate that for the examined 

configuration and invariable geometric dimensions it is possible to achieve a significant increase in the 

parameter leading to the loss of stability by selecting an appropriate scheme of reinforcement and fiber 

angle for the layered composite material. 
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