
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

The Influence of a Heterogeneous Surface on the
Free Volume Oscillations of an Oblate Gas Bubble
To cite this article: A A Alabuzhev 2021 J. Phys.: Conf. Ser. 1945 012001

 

View the article online for updates and enhancements.

You may also like
Ultrasound guided electrical impedance
tomography for 2D free-interface
reconstruction
Guanghui Liang, Shangjie Ren and Feng
Dong

-

Analysis of propagation characteristics of
flexural wave in honeycomb sandwich
panel and design of loudspeaker for
radiating inclined sound
Ayaka Fujii, Naoto Wakatsuki and Koichi
Mizutani

-

The axisymmetric oscillations of a
cylindrical bubble in a liquid bounded
volume with free deformable interface
A A Alabuzhev and M I Kaysina

-

This content was downloaded from IP address 3.145.156.250 on 04/05/2024 at 15:56

https://doi.org/10.1088/1742-6596/1945/1/012001
https://iopscience.iop.org/article/10.1088/1361-6501/aa6e23
https://iopscience.iop.org/article/10.1088/1361-6501/aa6e23
https://iopscience.iop.org/article/10.1088/1361-6501/aa6e23
https://iopscience.iop.org/article/10.7567/JJAP.54.07HB08
https://iopscience.iop.org/article/10.7567/JJAP.54.07HB08
https://iopscience.iop.org/article/10.7567/JJAP.54.07HB08
https://iopscience.iop.org/article/10.7567/JJAP.54.07HB08
https://iopscience.iop.org/article/10.1088/1742-6596/929/1/012106
https://iopscience.iop.org/article/10.1088/1742-6596/929/1/012106
https://iopscience.iop.org/article/10.1088/1742-6596/929/1/012106
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvjmKFDHQtngROQXip3StppUrjadCpUQHVSwMjEKMV2zj5_PmH9y3USWKyJObZYyG1l964eEwgk9i0naUL5fJRzXiAuGzwpJiqr_w4e-uuzh-Iri-Mo_CU2zsh06zKmWWI8VlWhkOWGeWWnu6EAWMCcrlUP4kbPsqDCh1VRoEEwPOD9WeQ7Dg8F0eHPhNRKIi4mEQpup1mabjO_FKFqhDMtmsdg7Rfr9qeQ6nTO5cMS1S-4uAgCCEfXyNKZadEK9IgxK1U4T_FvHT7hJidyU_h0gmwrGQWtGimQbPsboliRJ9cE37UR5qxWVIjASXo6zG-hIsRT6JPFmdiZWBPcy4HQgCYdsg&sig=Cg0ArKJSzEYvdXHZUGOR&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

XXII Winter School on Continuous Media Mechanics (WSCMM 2021)
Journal of Physics: Conference Series 1945 (2021) 012001

IOP Publishing
doi:10.1088/1742-6596/1945/1/012001

1

 

 

 

The Influence of a Heterogeneous Surface on the Free Volume 

Oscillations of an Oblate Gas Bubble 

A A Alabuzhev 1,2 

1 Institute of Continuous Media Mechanics UB RAS, Perm 614018, Russia  
2 Perm State University, Perm 614990, Russia 

 

E-mail: alabuzhev@icmm.ru 

 
Abstract. The natural oscillations of a cylindrical gas bubble surrounded by an incompressible 

fluid with free interface are considered. The bubble has an equilibrium cylindrical shape and is 

bounded axially by two parallel solid surfaces. Dynamics of contact lines is taken into account 

by an effective boundary condition: velocity of the contact line is assumed to be proportional to 

contact angle deviation from the equilibrium value. The equilibrium contact angle is right. 

Different Hocking parameters determine individual damping rates, but dissipation in the 

integral system is determined by their total contribution. The frequency of the volume 

(breathing) harmonic of free oscillations can vanish in a certain interval of the values of the 

Hocking parameter for homogeneous plate surface. However, Surface inhomogeneity destroys 

this monotonic damping effect.  

1. Introduction 

Vibrations are one of the most popular fluid control methods [1-5]. Interest is caused not only by the 

great possibilities in the impact on the drops (particles, bubbles), but also by the unusual effects that 

appear with periodic exposure. Also vibration may either result from the action of external sources or 

be used for controlling engineering processes.  

Motion of triple contact line dynamics is one of the important problems in the field of drops (bubble, 

particles) control. Note, that the contact line can appear when liquid films are destroyed due to their 

instability: the formation of dry spots and sessile drops [6-10]. The effective boundary condition is 

widely used at very fast relaxation processes of a contact line motion [11-15]: 

 
*

*

*
k

t





=  


, (1) 

where *  is the deviation of the interface from the equilibrium position, k  is the external normal to 

the solid surface,   is a phenomenological constant (the so-called wetting parameter or Hocking 

parameter) having the dimension of the velocity. There are two important limit of the boundary 

condition(1): (a) 0* =  – the fixed contact line (pinned-end edge condition) [16, 17], (b) 0*k  =  

– the constant contact angle [2].  

There are the several modifications of the condition (1): (a)   is a complex number [18], (b) a 

hysteresis of a contact angle [19-21], (c) different surfaces of plates for cylindrical symmetry [22, 23], 

(d) heterogeneous surface of plate [24, 25], (e) electrowetting-on-dielectric (EWOD) [26, 27]. Other 

models of motion of the line of contact are presented, for example, in [28–31]. 

In the present article, we consider free oscillations of cylindrical bubble which surrounded by a liquid 

with non-deformable interface. We apply the modified condition (1) for heterogeneous plates [24, 25], 

differ in Hocking parameters [22, 23, 32]. Oscillations of cylindrical bubble for are presented in [33, 

34] for case of homogeneous plates. 
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2. Problem formulation 

By analogy [32–34] a gas bubble surrounded by an incompressible liquid with a non-deformable 

external surface are consider (figure 1). The bubble is bounded by two parallel solid plates which 

separated by a distance *h . In equilibrium, the bubble and fluid volume have circle cylindrical with a 

radius 
0

*r  and 
0

*R , respectively, and contact angles *  and *  are 090 . Contact angle *  changes 

during the movement of the contact line, contact angle *  is constant.  

 

 

Figure 1. Problem geometry.  

 

The oscillations amplitude *A  is small compared to the equilibrium bubble radius 
0

*r . The fluid 

motion is assumed to be incompressible: 
0

* *r c  , where *  is fundamental oscillation frequency, 

c  is the sound velocity. However *  is large enough for the viscosity could be ignored: 

0

* *r  =   where   is the boundary-layer thickness. 

Owing to the problem symmetry, it is convenient to introduce cylindrical coordinates *r ,  , *z . The 

azimuthal angle   is reckoned from the x  axis. Let the lateral surface of the bubble be described by 

the following equations 

 ( )0

* * * * *, ,r r z t = + . 

Following [13, 32–34], we use 3

0

* * *

er  , 
0

*r , *h , *A , 2

0

* * *A r , 0

* * * *

eA r   as the scales for 

the time, length, height, deviation of bubble surface and free surface from its equilibrium position, 

pressure, and velocity potential, respectively ( *  is the surface tension and *

e  is the liquid density). 

Thus, the dimensionless boundary value problem is determined by (intermediate steps can be found in 

[13, 32]) 

 e tp = − , =0 , 
0 0

2 * * *

i p gp n P r P  = −  − , (2) 

 
2

2

2

1
r b

r r r z

   
 = + 

   
, 

 1r = : t r = ,   2

zzp b  = + + ,  (3) 

 
1

2
z =  : 0z = ,  (4) 

 0
r R= : 0 = , (5) 

 1r = , 
1

2
z =  : ( ),t u b z  =  , (6) 

where ep  is the liquid pressure,   is potential of liquid velocity, ip  is the gas pressure in the bubble, 

pn  is polytropic (e.g., adiabatic) exponent, *

gP  is dimension gas pressure in the bubble, ,u b  are the 

Hocking parameters at the “upper” and “bottom” plates, respectively, the square brackets denote the 

jump in the quantity at the interface between the surrounding liquid and the bubble. The boundary-

value problem (2)–(6) involves five parameters: the aspect ratio, the radius of free surface, the wetting 

parameter, the frequency and amplitude  
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3. Free oscillations 

Let us consider a particular case of heterogeneous plates: ( ) ( )( ), , sin cosu b u b k   = , where k  

– a real wavenumber of a heterogeneity surface. By the evenness of the natural oscillation modes is 

meant the evenness of the functions under a change of sign of the axial coordinate z . The solution of 

the boundary value problem (2)–(6) in the absence of an external force is written as (the 

eigenfunctions of the Laplace operator (2)) 
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(8) 

where   is Eigenfrequency, 
1

2 1( ) I (( ) )i

mn mR r n br= + , 
1

2 1( ) K (( ) )e

mn mR r n br= + , 
2

( )i m

mnR r r= , 

2
2( ) I ( )i

mn mR r nbr= , 
2 0

( )e m

mR r r −= , 
2

2( ) K ( )e

mn mR r nbr= , Im  and Km  are modified Bessel 

functions of the m –th order.  

Substituting solutions (7)–(8) into (2)–(6), we obtain a spectral-amplitude problem which eigenvalues 

are the values of the natural oscillation frequency  . These complex algebraic equations have 

complex solutions, which lead to damping of oscillations. This attenuation is caused only by the 

condition on the contact line, not by viscosity. We also note that damping times are of the order of 

magnitude comparable with the period of oscillation, i.e. at a finite value of the wetting parameter, the 

droplet is able to execute only a few oscillations.  

The equations of our spectral-amplitude problem were solved numerically by the two-dimensional 

secant method. For convenience we will denote the frequencies of the even harmonics as 2,m k  

( 0 1 2, , ,...k = ), and the frequencies of the odd harmonics as 2 1,m k+  ( 0 1 2, , ,...k = ). Here, the first 

index m is a azimuthal number and the second index 2k  (or 2 1k + ) is wavenumber. Thus, the 

frequencies mn  of the natural oscillations with the odd index n will correspond to the odd harmonics 

and an even index n to the even harmonics. Volume oscillations are more important mode of natural 

oscillations of a compressible bubble. Below we will focus on this radial (breath) harmonic.  

The equations of full spectral-amplitude problem are very cumbersome, so for clarity we give the 

equation of axisymmetrical mode ( 1m = ) for the special case ( ), ,u b u b  =  [32]: 

 ( )( ) ( )( ) 0b u u bM S N C M S N C   − + + − + = ,  (9) 
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where kC  and kS  are the coefficients of the Fourier series expansions of the functions ( )1cos b z−  

and ( )1sin b z− , respectively, 
200

  is the volume oscillations frequency of the compressible bubble 

with freely moving contact line ( → ) [32–34], 
0j k  ( )1 2,j =  are the Eigenfrequencies of the 

shape harmonics of incompressible drop with the same contact line [27, 35].  

If the surfaces are identical, i.e., u b  = =  , then then left-hand side of eq. (9) can be represented as 

a product of two terms: 

 ( )( ) 0M S N C − + = . (10) 

Each of these terms fields the equation for finding the Eigenfrequencies: the solutions of the first 

equation are the frequencies of even harmonics, and the solutions of the second equation are the 

frequencies of odd harmonics. 

 

 

Figures 2–5 show the real part of ( )Re   (oscillation frequency) and imaginary part ( )Im   (damping 

ratio) of the complex natural frequency   for the volume harmonic 00
  (i.e., 0m = , 0k = ). Typical 

dependencies are shown in the figure 2: the frequency decreases monotonically with increasing 

parameter b , and the damping rate is maximum for a finite wetting parameter and decreases in the 

limiting cases of the free or fixed contact line. Note, that changes in the parameter u  (or b ) are 

symmetric relative to each other, i.e. you can change one with a fixed other. The total damping rate is 

determined by the sum of the individual coefficients for each plate. This fact determines the finite 

value of the damping parameter at small b  (see figure 2b).  

The dependencies for the different heterogeneous surfaces are shown in Figure 3 similar to Figure 2. 

Wavenumber k  changes the effective interaction of contact line with the plate surface, i.e., Hocking 

  
(a) (b) 

Figure 2.  Frequency (a) and damping ratio (b) of volume natural oscillations vs wetting parameter 

u  for 00
  ( 0

5R = , 0
5P = , 1b = ) (9). 

u b =  – solid line (10), 0 01.b =  – dashed, 1b =  – dotted, 100b =  – dash-dotted. 
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parameter. Surface inhomogeneity changes the monotonicity of curves and leads to the appearance of 

local extrema. 

 

 

The frequency (figure 2a, figure 4a, figure 5a) and the damping rate (figure 2b, figure 4b,c, figure 5b) 

increase with increasing the bubble volume, i.e., with the growth of b . In a certain range of u , the 

real part of the frequency ( )00
Re   can vanish. It’s depending on the value of the ratio b  and 

Hocking parameter b  (figure 4a). The vanishing of ( )00
Re   corresponds to the bifurcation of the 

branch of the increment ( )00
Im   (figure 4b,c). The dissipation is proportional to the length of the 

contact line in this case, because this is just the interaction between the contact line and the solid plate 

that causes the energy dissipation. Therefore, growing of parameter b  increases the length of the 

contact line at constant drop volume, i.e., it increases the energy dissipation. 

 

 

Surface inhomogeneity destroys this monotonic damping effect (figure 5). It is possible that 

monotonic damping exists in this case, but it could not be detected.  

 

  
(a) (b) 

Figure 3. Frequency (a) and damping ratio (b) of volume natural oscillations vs wetting parameter b  

for 00
  ( 0

5R = , 0
5P = , 1b = , 1u = ). 

u b =  – solid line (10), 0 1.k =  – dashed, 1k =  – dotted, 10k =  – dash-dotted, (9) – 2-dot-

dashed. 

   
(a) (b) (c) 

Figure 4. Frequency (a) and damping ratio (b, c) of volume natural oscillations vs wetting parameter 

u  for 00
  ( 0

5R = , 0
5P = , 3b = ) (9). 

u b =  – dash-dotted line (10), 1b =  – dashed, 2b =  – solid, 3b =  – dotted. 
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4. Conclusions 

The free oscillations of the cylindrical bubble confined between solid plates have been considered 

taking into account the dynamics of the contact line. The heterogeneous solid plates have different 

Hocking parameters. The solid plates have non-uniform surfaces described by the function 

( ) ( )( ), , sin cosu b u b k   = . The boundary condition imposed on the contact line leads to the 

damping of oscillations. Firstly, the wavenumber k  changes the effective interaction of contact line 

with the plate surface, i.e., Hocking parameter. Surface inhomogeneity changes the monotonicity of 

curves and leads to the appearance of local extrema. Secondly, Surface inhomogeneity destroys this 

monotonic damping effect. It is possible that monotonic damping exists in this case, but it could not be 

detected. This requires further research. 
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