PAPER • OPEN ACCESS

A novel approach to determine blocking temperature in bulk materials

To cite this article: A Shukla 2021 J. Phys.: Conf. Ser. 1921 012107

View the article online for updates and enhancements.

You may also like

et al.

- Memory effect in Fe-Ag granular multilayers L F Kiss, J Balogh, L Bujdosó et al.

- External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions Kwan Lee, Jung-tak Jang, Hiroshi Nakano

- Magnetic orders and origin of exchange bias in Co clusters embedded oxide nanocomposite films Hui Li, Changan Wang, Danying Li et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.144.104.29 on 08/05/2024 at 00:10

Journal of Physics: Conference Series

A novel approach to determine blocking temperature in bulk materials

1921 (2021) 012107

A Shukla

Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Dumna Airport Road, Madhya Pradesh-482005, India

E-mail: ashish18081988@gmail.com

Abstract: Blocking temperature (θ_B) holds utmost significance in magnetic devices. A novel approach to ascertain the θ_B for bulk materials has been propounded. The θ_B has been correlated with the magnetic entropy change (ΔS) during zero-field cooled (ZFC) and field cooled (FC) magnetization. The values of ΔS have been calculated in $\mu_B/f.u.K$. The θ_B has been investigated for two distinct cases - (I) with ZFC magnetization reversal and (II) without ZFC magnetisation reversal. Based on the reported experimental approach, a novel definition of θ_B has been propounded for bulk materials. The combined analysis of ZFC and FC magnetization behaviour provides a better approximation of θ_B for bulk materials.

Keywords: Zero-field cooled magnetization, Field cooled magnetization, Blocking temperature, Magnetic entropy change.

1. Introduction

Blocking temperature (θ_B) in a cooling system is formally defined as the temperature at which all single-domain grains of a given shape and size change suddenly from the superparamagnetic state to a stable, permanently magnetized state [3]. The applied magnetic field controls $\theta_{\rm B}$ for magnetite nanoparticles [4]. Magnetic anisotropy energy (MAE) dependence on particle's volume leads to superparamagnetic effect due to which magnetisation starts fluctuating. The temperature at which magnetisation fluctuation occurs is called blocking temperature [5]. Literatures do not provide any standard procedure to deduce blocking temperature for nanoparticles. Antoniak [5] referred inflection point temperature in ZFC as the θ_B . Presa et al. [6] represented temperature corresponding to maximum ZFC magnetization as θ_B for γ -Fe₂O₃ nanoparticles. Micha et al. [7] obtained θ_B for Co/SiO₂ discontinuous multilayers from temperature derivative of the difference between ZFC and FC magnetization curves while simultaneously relating it to the radius of the largest particle and the effective magnetic anisotropy constant. Mamiya et al. [8] theoretically justified the results of Micha et al. [7]. Bruvera et al. [9] further confirmed the results of Micha et al. [7] and termed ZFC maxima point as bad and ZFC inflection point as ugly approximation of blocking temperature. The past studies to ascertain $\theta_{\rm B}$, based on ZFC – FC magnetization values, are confined to nanoparticles.

Superparamagnetism is associated with nanomaterials only but magnetic anisotropy, i.e. the divergence between ZFC and FC curve, is exhibited by both nanomaterials as well as bulk materials. Moreover, the magnetic anisotropy is strongly dependent on the applied magnetic field and temperature. For bulk materials, temperature derivative of magnetization (dM/dT) is a useful approach to ascertain curie temperature (T_c) and the inflection point in dM/dT curve denotes T_c [10,11]. It is

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

ICASSCT 2021

Journal of Physics: Conference Series

IOP Publishing **1921** (2021) 012107 doi:10.1088/1742-6596/1921/1/012107

worth noting that temperature derivative of magnetization (dM/dT) is also an important tool to determine the magnetic entropy change [12]. The mathematical relation for ascertaining magnetic entropy change from M-T data has been proposed by Hussain et al. [13]. In magnetic devices such as spin valve, the coupling or exchange field depends on temperature and vanishes at θ_{B} . Also, the direction of coupling is strongly dependent on $\theta_{\rm B}$ [14]. Hence, it becomes inevitable to determine the $\theta_{\rm B}$. Since blocking temperature is dependent on applied field and temperature for nanomaterials, a sincere effort, in this work, has been made to define blocking temperature based on the same concepts for bulk materials. The concept of entropy change, as suggested in [12,13] has been employed to determine the blocking temperature for samples having micron (µm) size particles. In this work, ZFC and FC magnetization data of $SmFe_{0.5}Co_{0.5}O_3$ [1] and $LnFe_{0.5}Co_{0.5}O_3$ (Ln = Eu & Dy) [2] has been used for experimental prediction of θ_B . Hereafter, SmFe_{0.5}Co_{0.5}O₃ will be denoted as SFCO while EuFe_{0.5}Co_{0.5}O₃ and DyFe_{0.5}Co_{0.5}O₃ will be denoted as EFCO and DFCO, respectively. The blocking temperature has been determined for two different cases – (I) with ZFC magnetization reversal and (II) without ZFC magnetization reversal. Case (I) refers to SFCO while Case (II) pertains to EFCO and DFCO. As far as knowledge from literatures is concerned, nobody has made an effort to define blocking temperature for bulk materials.

2. Results and Discussion

Magnetic entropy change (ΔS) can be correlated with magnetization and temperature as [13]:

$$\Delta S(T,H) = \sum_{i} \left(\frac{M_{i} - M_{i+1}}{T_{i+1} - T_{i}} \right)_{\Delta H}$$
(1)

where, M_i and M_{i+1} are the experimental data of the magnetization at T_i and T_{i+1} , respectively, under the same magnetic field (ΔH). Using equation (1), the values of ΔS_{ZFC} and ΔS_{FC} can be calculated. The lowest applied field for which the ΔS_{ZFC} and ΔS_{FC} have been ascertained is 50 Oe. Fig. 1 illustrates the criticality of low field magnetic entropy change measurement as it gives an indication about the region of existence of θ_B . The magnetic entropy changes for ZFC and FC magnetization, viz. ΔS_{ZFC} and ΔS_{FC} , respectively, (at $\Delta H = 50$ Oe) are shown in Fig. 1. The positive ΔS_{ZFC} peak just before the transition region is in the proximity to either the maxima or inflection point on M-T plot at low field.

Fig. 1: Magnetic entropy change at $\Delta H = 50$ Oe for (a) SFCO (b) EFCO and (c) DFCO.

In the vicinity of this ΔS_{ZFC} peak, ΔS_{FC} also has a peak either in positive or negative direction. Fig. 1 (a), (b) and (c) depict ΔS_{ZFC} and ΔS_{ZFC} peaks adjacent to each other (marked by dashed arrow). Visualising Fig.1 (a), (b) and (c), it is proposed that θ_B may correspond to peak temperature (of ΔS_{ZFC} or ΔS_{FC}) or any temperature between the peaks of ΔS_{ZFC} and ΔS_{FC} .

The sign of $-\Delta S$ Vs. T curve holds significance as it carries information regarding magnetic transition of the material. Under an applied magnetic field, an anti-ferromagnetic transition is represented by a negative sign while ferromagnetic ordering is represented by a positive sign [13]. This condition further confirms the anti-ferromagnetic transition of all the compounds, as indicated in Fig. 2. As the Journal of Physics: Conference Series

1921 (2021) 012107 doi:10.1088/1742-6596/1921/1/012107

applied field increases ($\Delta H = 1$ kOe) (Fig. 2), ΔS_{ZFC} and ΔS_{FC} peaks almost overlap for all the compounds. The temperature (just before the transition temperature) at which the peaks of ΔS_{ZFC} and ΔS_{FC} overlap has been referred as the blocking temperature (θ_B) for a compound in this work. The position of the proposed θ_B is mentioned in Fig. 2 (a), (b) and (c).

Fig. 2: Magnetic entropy change at $\Delta H = 1$ kOe for (a) SFCO (b) EFCO and (c) DFCO.

The direction of overlapped peaks is influenced by the nature of M-T behaviour of a compound. For compounds showing significant negative ZFC magnetisation (SFCO), the ΔS_{ZFC} and ΔS_{FC} peaks signifying θ_B will overlap in negative direction whereas for compounds showing positive ZFC magnetisation (EFCO and DFCO), the ΔS_{ZFC} and ΔS_{FC} peaks signifying θ_B will overlap in positive direction. Table 1 shows the magnitude of θ_B and T_N for SFCO, EFCO and DFCO.

Perovskite compound	$\theta_{B}(\mathbf{K})$	T _N (K)
SFCO	212 ± 2	~ 310
EFCO	285 ± 2	~ 300
DFCO	83 ± 2	~ 300

Table 1: Values of θ_B and T_N for SFCO, EFCO and DFCO.

From Table 1, it can be inferred that at low applied field the compounds depicting large magnetic anisotropy (SFCO and EFCO) have high magnitude of blocking temperature whereas those depicting small magnetic anisotropy (DFCO) will have low magnitude of blocking temperature. Also, a careful analysis of Fig. 1 and Fig. 2 stipulates that the variation of θ_B with applied filed is quite low as θ_B remains within the same range (indicated in Fig. 1) even at higher field value (Fig. 2). So, θ_B is nearly independent of the applied field for these bulk materials which is quite different from the concept reported by Goya et. al. [4] for nanomaterials. Hence, low field as well as high field magnetization study is needed to determine the magnitude of θ_B .

With all the results examined thoroughly, the θ_B has been defined in terms of magnetization as well as magnetic entropy change. The blocking temperature (θ_B) can be defined as "The temperature at which (i) the unblocking of magnetic moments (in M-T behaviour) occur as the applied field is increased, resulting in decrease in magnetic anisotropy and overall increase in magnetization values throughout the temperature range under consideration, and (ii) at high field, the peak of ΔS_{ZFC} and ΔS_{FC} occur simultaneously and the direction of two peaks is also same." It is noteworthy that (i) and (ii) must be satisfied simultaneously.

3. Conclusions

A sincere effort has been made to ascertain and define the blocking temperature (θ_B) for bulk materials based on their entropy change behaviour at different values of applied magnetic field. Influence of applied magnetic field on the magnitude of blocking temperature is quite low and θ_B is nearly independent of the applied field for theses bulk materials. The new definition of blocking temperature Journal of Physics: Conference Series

1921 (2021) 012107 doi:10.1088/1742-6596/1921/1/012107

 (θ_B) has been proposed. The results obtained are consistent for all the three samples considered in this work. Further improvements/modifications to the proposed definition of θ_B are expected in future based on researches that will be carried out by other researchers.

Acknowledgement

The author would like to thank the Science and Engineering Research Board, India for financial support through project grant # EMR/2016/000083.

Conflict of Interest

There is no conflict of interest among authors of earlier work [1,2]. This manuscript is approved by all the authors.

References

- [1]. Shukla A, Singh A, Seikh M M and Kundu A K, "Low temperature magneto-dielectric coupling in nanoscale layered SmFe_{0.5}Co_{0.5}O₃ perovskite" 2019 *J. Phys. Chem. Solids* **127** 164.
- [2]. Shukla A, Lebedev O I, Seikh M M and Kundu A K, "Structural and magnetic characterization of spin canted mixed ferrite-cobaltites: LnFe_{0.5}Co_{0.5}O₃ (Ln = Eu and Dy)" 2019 J. Magn. Magn. Mater 491 165558.
- [3]. Dodson M H and Brown E M, "Magnetic blocking temperatures of single-domain grains during slow cooling" 1980 J. Geophys. Res. 85 2625.
- [4]. Goya G F and Morales M P "Field dependence of blocking temperature in magnetite nanoparticles" 2004 *Journal of Metastable and Nanocrystalline Materials* **20-21** 673.
- [5]. Antoniak C S "X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications" 2015 *Rep. Prog. Phys.* **78(6)** 062501.
- [6]. De la Presa P, Luengo Y, Velasco V, Morales M P, Iglesias M, Verdaguer S V, Crespo P and Hernando A, "Particle interactions in liquid magnetic colloids by zero field cooled measurements: Effects on heating efficiency" 2015 J. Phys. Chem. C 119 (20) 11022.
- [7]. Micha J S, Dieny B, Regnard J R, Jacquot J F and Sort J, "Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO₂ discontinuous multilayers" 2004 J. Magn. Magn. Mater. 272 E967.
- [8]. Mamiya H, Ohnuma M, Nakatani I and Furubayashi T, "Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves" 2005 *IEEE Trans. Magn.* 41(10) 3394.
- [9]. Bruvera I J, Zelis P M, Calatayud M P, Goya G F and Sanchez F H, "Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly" 2015 J. Appl. Phys. 118 184304.
- [10]. Xie Y, Fan J, Xu L, Zhang X, Xu R, Zhu Y, Tang R, Wang C, Ma C, Pi L, Zhang Y and Yang H, "Unambiguous determining the curie point in perovskite manganite with second-order phase transition by scaling method" 2019 *Phys. Lett. A* 383 125843.
- [11]. Zarai E, Issaoui F, Tozri A, Husseinc M and Dhahri E, "Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in Sr_{1.5}Nd_{0.5}MnO₄ compound" 2016 J Supercond Nov Magn 29 869.
- [12]. Ivanov S A, Andersson M S, Cedervall J, Lewin E, Sahlberg M, Bazuev G V, Nordblad P, and Mathieu R, "Temperature-dependent structural and magnetic properties of R₂MMnO₆ double perovskites (R = Dy, Gd; M = Ni, Co)" 2018 J. Mater. Sci.: Mater. 29 18581.
- [13]. Hussain I, Anwar M S, Khan S N, Shahee A, Rehman Z U and Koo B H, "Magnetocaloric effect and magnetic properties of the isovalent Sr^{2+} substituted Ba_2FeMoO_6 double perovskite", 2017 *Ceram. Int.* **43** 10080.
- [14]. Tannous C and Comstock R L, "Magnetic Information-Storage Materials" 2017 Springer Handbook of Electronic and Photonic Materials 118.