Paper The following article is Open access

Buckling Analyses of Edge-cracked Functionally Graded Graphene Reinforced Composite Piezoelectric Beam

, and

Published under licence by IOP Publishing Ltd
, , Citation L J Guo et al 2021 J. Phys.: Conf. Ser. 1906 012042 DOI 10.1088/1742-6596/1906/1/012042

1742-6596/1906/1/012042

Abstract

This paper investigates the buckling behaviors of edge-cracked functionally graded graphene reinforced composite (FG-GRC) beam with piezoelectric actuators. The bending stiffness of the crack section is equivalent to the bending stiffness of massless rotational spring. The modified Halpin-Tsai model and rule of mixture are used to estimate the effective mechanical properties of the FG-GRC beam. The electro-mechanical governing equations of buckling behaviors for the edge-cracked FG-GRC beam are derived by Timoshenko beam theory, von Kármán strain displacement relationship and Ritz method. Along the thickness of the beam, both functionally graded (FG) and uniformly distributed graphene nanoplatelets (GPLs) are considered. The influences of GPL mass fraction, GPL distribution patterns, GPLs geometry, crack depth, crack location and thickness of piezoelectric layer on the buckling characters of the FG-GRC beam are studied in this paper.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1906/1/012042