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Abstract. In the course of a construction project, the project manager’s task is to ensure timely 

and cost-effective execution of the job. However, it is common that delays and over-budgeting 

to be experienced during the project execution. This schedule acceleration requires resource 

planning to account for the project’s limited resources. Therefore, this study proposes an 

integrated method that allows for joint consideration of project scheduling and resource planning 

while accounting for activity splitting. The objective is to determine the project’s optimal cost 

and duration while considering some input parameters such as the crew’s size and project’s 

activities’ cost and duration. The proposed method utilized the Genetic Algorithm (GA) to 

optimize the project duration and cost. Accordingly, the Weighted Sum was used as a multi-

criteria decision support method to choose an optimal solution from the optimization results. The 

developed scheduling and optimization method is coded in Python as a stand-alone, automated, 

computerized tool to facilitate its application. A numerical example, utilizing the developed 

method, is employed to show the method’s robustness and assess its performance against other 

previously developed methods. Results indicated the developed method’s dominance in finding 

optimal solutions in a reasonable time avoiding local minima entrapment. 

 

1. Background 

One technique that has been explored both in academia and industry to overcome construction delays is 

schedule compression. Unwanted arguments between contractors and clients stem most likely from 

construction delays. Many of the World Bank-funded construction projects (1120 out of 1778) surpass 

their proposed budgets [1]. The actual time and cost for many construction projects in developing nations 

often surpass the projected plan for both parameters [2]. The time-cost optimization problem (TCO) is 

typically referred to as accelerating the project’s completion time. TCO models’ objective is to reduce 

the time for a project and maintain its allotted budget [3]. The relation between time and cost is linear. 

The use of additional resources leads to lesser work time and higher costs. Finding the duration with 

minimal cost to be incurred has always been a topic of interest (Figure 1). Existing literature has 

proposed various methodologies and algorithms, including objective functions similar to the project’s 

defined objectives, to tackle the schedule optimization problem. The proposed algorithms include exact 

methods (linear/integer or dynamic programming), heuristic algorithms, and meta-heuristic or 

evolutionary algorithms. Objective functions can be classified as time-based, cost-based, and quality-

based objective functions. Metaheuristics and evolutionary algorithms have been extensively studied 

due to the increased size of the TCO problem, project activities and execution modes. Metaheuristics 

mailto:abobakr.alsakkaf@concordia.ca


ICoFAST 2021
Journal of Physics: Conference Series 1900 (2021) 012016

IOP Publishing
doi:10.1088/1742-6596/1900/1/012016

2

 
 
 
 
 
 

 

algorithms, in the face of incomplete information or reduced computation capacity, are tasked to seek 

out, generate or choose a heuristic to solve the optimization problem.  

 

 

 

Figure 1. Time and cost trade-off [4]. 

 
Examples of the metaheuristics method include Genetic Algorithm (GA), Ant Colony Optimization 

(ACO), and Particle Swarm Optimization (PSO). Aminbakhsh and Sonmez [5] developed a particle 

swarm optimization for medium and large-scaled TCTPs. Their efficiently developed methodology 

proved to outperform the previously proposed methods in solution quality and computation time, 

especially for large-scale projects. Toğan and Eirgash [6] used a Teaching- Learning Based Optimization 

incorporated with the Modified Adaptive Weight method to find a set of Pareto front time-cost trade-

off solutions. According to the authors, the proposed algorithm effectively generates optimal or 

suboptimal solutions for TCTP in the construction engineering and management field than the 

previously proposed metaheuristic methods. Another difficulty that contractors face during schedule 

compression is accounting for the limited resources, otherwise known as resource-constrained project 

scheduling. To reduce cost and project length, several methods have been explored both in academia 

and industry. In the late 1950s, Morgan Walker and James Kelley developed the critical path method 

(CPM) to improve cost-related aspects of scheduling. This technique has been employed for project 

scheduling in many construction projects. Although CPM accounts for time usage and identifies ways 

to reduce the project’s length, it does not consider the limited resources available for the project. 

Accordingly, resource-constrained scheduling models were developed to overcome this limitation. The 

aim of scheduling models that involve limited resources is to develop optimal schedules that depend on 

available resources and minimal or approved length of time [7]. The assumption in the primary form of 

the resource-constrained project scheduling problem is that every activity can be performed by one 

method within a determined processing time with one renewable resource. The more elaborate form of 

RCPSP is the multi-mode resource-constrained project scheduling problem (MMRCPSP) in which 

several techniques (alternatives) are available to execute project activities. Each execution mode has its 

unique duration and resource needs [8]. MMRCPSP was first introduced by Elmaghraby [9] where the 

author assumed that an activity j must be performed and analyzed by a mode 𝑚∈ 𝑀𝑗 until completion. 

Resources categories were first defined by Slowinski [10] as renewable and non-renewable resources 

based on their availability. Renewable resources represent labor, machinery, equipment, and non-
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renewable resources represented as money. A resource is renewable if its quantity stays the same 

throughout the entire period of the project, while a non-renewable resource is one whose availability 

during the project period is limited [11,12]. Li and Zhang [13] considered the renewable and non-

renewable resources in an ant colony optimization algorithm to solve the resource-constrained 

scheduling problem. Azizoglu, Çetinkaya, and Pamir [14] developed a linear programming relaxation-

based heuristic solution algorithm involving a nonrenewable resource. The algorithm was implemented 

in a project scheduling problem. Altintas and Azizoglu [15] discussed the multi-mode resource-

constrained and discrete time-cost trade-off problem. They optimized activity execution modes 

progressively using a non-renewable resource. Chaleshtarti and Shadrokh [16] studied both renewable 

and non-renewable resources as an extended form of the resource-constrained scheduling problem. They 

proposed a branch and cut algorithm with some techniques that shorten the size of the models related to 

the nodes and some fathoming rules that lessen the number of nodes. The developed method specifies 

the lower bounds for the problem in any middle stage of the solving process that is useful to deal with 

large instances, where solving processes take a long time. The basic assumption in the traditional 

resource-constrained project scheduling problem (RCPSP) is that activities cannot be interrupted once 

started. Therefore, the number of resources needed by activity A will be held during that activity and 

cannot be used for other activities until activity A finishes. In reality, interruptions could occur due to 

equipment repairs or insufficient resources at any period of the project. The activity splitting was raised 

for the first time in 1988 by Kaplan. He stated that construction activities could be stopped and resumed 

without additional costs. Activity splitting is employed for project improvement in the face of limited 

or unavailable resources [17,18]. Peteghem and Vanhoucke [19] solved the pre-emption multi-mode 

resource-constrained project scheduling problem by applying a bi-population genetic algorithm that uses 

two populations and extends the serial schedule generation scheme and introduces a mode improvement 

procedure. Preemption without a penalty was discussed by Moukrim, Quilliot and Toussaint [20]. An 

effective branch-and-price algorithm was used to minimize the project duration based on minimal 

interval order enumeration involving column generation and constraint propagation. On the other hand, 

preemption with a penalty and the earliness-tardiness cost were introduced by Afshar-Nadjafi [21]. The 

author developed a mixed integer programming model to minimize the total project cost, considering 

earliness-tardiness and preemption penalties. The model assumed an activity could be restarted after 

being interrupted in a discrete point in time with a constant setup penalty and without setup time. On the 

contrary, Li, Lai and Shou [22] proposed a hybrid particle swarm optimization model that permits 

activities to be interrupted only once during the whole project. The model consisted of two schedule 

generation schemes that decode the four designed types of particle representations. Cheng, Fowler, 

Kempf and Mason [23] introduced the non-preemptive activity splitting to deal with the varying capacity 

of renewable resources. In their method, an activity can be interrupted one or more times after starting 

whenever the resource levels are insufficient and will resume in the next eligible processing period. 

Table 1 presents a critique of relevant literature, and it is evident that existing scheduling methods:  

1. Doesn’t consider the project limited resources.  

2. Doesn’t account for activity splitting.  

3. Doesn’t consider the impact of delay penalties.  

To address the above needs, a schedule compression method that considers the availability of limited 

resources is proposed for activity splitting, project scheduling and resource planning. The method aims 

to reduce the project duration and cost, including direct and indirect cost, delay penalty, and activity 

splitting cost.  
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Table 1. Capabilities and limitations of the most recent and relevant references. 

 

 

2. Methodology  

This study provides a solution to resolving the resource-constrained project scheduling problem that 

permits the user to select an optimal solution from the resulted set of non-dominated solutions. The 

developed method design relies on the integration of four modules: scheduling module using a modified 

critical path method that considers the project resources; cost calculation module that takes into account 

all costs, direct and indirect, delay penalty, and splitting cost; multi-objective optimization module using 

the elitist non-dominated sorting genetic algorithm (NSGA-II); and decision-support module. The 

developed method is programmed in Python as a computer application to facilitate project activities’ 

rescheduling (in an iterative way) and project schedule optimization. The steps employed to generate an 

optimal schedule and project cost using the developed modules are summarized in the flow chart, shown 

in Figure 2. 

 
2.1. Scheduling Module 

For this module, the user identifies the activities execution modes that define the normal and crashed 

durations, related resource requirements, and precedence relationships. The developed scheduling 

module uses a Python critical path library, Criticalpath, to define the critical and non-critical activities 

along with their early and late start, and early and late finish. Accordingly, the project duration (T) is 

calculated. The critical path library was then modified to sustain the resource-constrained scheduling 

environment by assigning the required resources to the project activities. Accordingly, it generates a 

Gantt chart for the project that calculates the resource demand for each project period. The developed 

Criteria Reference 

 (1) (2) (3) (4) (5) (6) (7) 

Methods MILP ACO GA PSO  SA  MAWA-

TLBO 

MILP 

Time-Cost 

Optimization 

       

Consider Direct 

Project Cost 

       

Resource-Constrained 

Scheduling 

       

Consider Delay 

Penalty/ Bonus 

       

Allow Activity 

Splitting 

       

NOTES: (TLBO) Teaching-Learning Based Optimization, (ACO) Ant Colony Optimization,  (SA) Simulated 

Annealing Algorithm, (PSO) Particle Swarm Optimization,  (MAWA-TLBO) Modified Adaptive Weight 

Approach and Teaching Learning Based Optimization, (MILP) Mixed Integer Linear Programming; (1)  Azizoglu, 

Çetinkaya and Pamir [14], (2)  Li and Zhang [13] , (3)   Peteghem and Vanhoucke [19], (4) Aminbakhsh and 

Sonmez [5], (5)  Afshar-Nadjafi [21], (6) Toğan and Eirgash [6], (7) Altintas and Azizoglu [15]. 
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module would reschedule the non-critical activities within their floats and perform non-critical activity 

splitting when necessary based on the resource demand calculations and resource availability. 

 

Project Parameters

- Execution modes 

- Activities precedence relationships 

- Contractual duration 

- Number of available resources (RS)  

StartInput-Data 

Randomly Initialize First Population 

Calculate the Fitness of the Generated 

Population 

Project cost Project duration 

Rank Individuals Based on Fitness  Select Parents  

Crossover & Mutation Operators 

Offspring pop. 

reached

Offspring 

Evaluation  

Rank Offsprings & Parents Yes

No

Max Gen. 

reached Set of Non-Dominated Solutions Yes

No

Rank Alternatives Using Weighted 

Sum Method 
Optimal Solution (Project Cost and Duration)

End 

Genetic Algorithm Parameters 

- Population size 

- No of generations 

- Mutation and crossover rates  

Perform critical path method 
Generate project Gantt chart 

with the required resources 

Resource demand 

less than or equal to 

available resources
Perform activity splitting  No

Yes

 
 

Figure 2. Flow chart of the proposed method. 

 

To demonstrate the scheduling module’s splitting function, we will use a similar example, as in Son and 

Mattila [24], when multiple resources are available. A single machine was employed in all activities. 

The input data and project network are shown in Table 2 and Figure 3, respectively. 
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Table 2. Example input data. 

 

 
 

Figure 3. Example project network. 

 
As seen in Figure 3, the non-critical activities are G, H, K, and L, which can be split in case of insufficient 

resources. However, activities A, B, C, D, E, and F are critical activities that should not be interrupted 

to keep the original project duration. The Gantt chart for the previously mentioned example before 

splitting is shown in Figure 4. The project schedule has nine available resources for a 15-day period 

where the resource demand was higher than the available resources in periods 3, 4, and 5. The ones and 

zeros indicate when an activity is active during its total float. For example, activity G has a total float of 

7 days with four days duration, where it is active from periods 1 to 4. However, it can be split within its 

floats based on resource availability on these periods without affecting the project schedule.  

 

 

 

 

 

Activity Duration Resources ES LS EF LF TF 

A 2 2 0 2 0 2 0 

B 3 4 2 5 2 5 0 

C 2 2 5 7 5 7 0 

D 3 1 7 10 7 10 0 

E 3 4 10 13 10 13 0 

F 2 6 13 15 13 15 0 

G 4 4 0 4 3 7 3 

H 3 5 4 7 7 10 3 

K 2 2 2 4 7 9 5 

L 4 2 4 8 9 13 5 
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Figure 4. The example initial Gantt chart. 

 
A Gantt chart for a feasible project schedule with splitting is generated and shown in Figure 5. The 

resource demand was equal to or less than the available resources. As illustrated in the Gantt chart, 

activities G and L were interrupted from periods 3 to 5 and 6 to 9, respectively, since the variable Ytj 

was equal to zero in these periods (binary variable equals to one when activity j is progressing at time t; 

t= 𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗 and zero otherwise). Lastly, it can be noted that activity H was not split; however, its 

starting time was adjusted to start on period 6 rather than period 4 to satisfy resource availability in 

periods 4 and 5. In this case, splitting costs would not be imposed since the activity has not yet started. 

 

 

 

  

Activity/Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 1 1              

B   1 1 1           

C      1 1         

D        1 1 1      

E           1 1 1   

F              1 1 

G 1 1 1 1 0 0 0         

H    1 1 1 1 0 0 0      

K  1 1 0 0 0 0 0        

L    1 1 1 1 0 0 0 0 0 0   
Resources 

Demand 
6 9 10 14 10 9 9 3 3 3 4 4 4 3 3 

Acquired 

Resources 
6 3 1 4 0 0 0 0 0 0 1 0 0 0 0 

Released 

Resources 
0 0 0 0 4 1 0 6 0 0 0 0 0 1 0 

Available 

Resources 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
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Figure 5. The example final Gantt chart. 

 
2.2. Cost Calculation Module 

For this module, the project cost (PC) is calculated using the direct cost, indirect cost, splitting cost, and 

delay penalty/opportunity cost. The direct cost is the summation of the input cost of the project’s 

activities. The indirect cost is the input indirect cost rate multiplied by the duration of the project. The 

splitting cost is the summation of the occurred splits multiplied by the input split cost, representing the 

extra costs associated with shutting down the activity and later restarting it. Finally, the delay 

penalty/Opportunity cost is the difference between the input contractual duration and the actual schedule 

duration multiplied by the input bonus payment or the delay penalty, representing the advantage of 

finishing the project before or after the planned date. 

 

2.3. NSGA-II Multiobjective Optimization Module 

Optimization, an area in operations research, is applied in problem-solving and enables better decision-

making. Optimization utilizes certain constraints to minimize or maximize a set objective and generate 

an optimum solution [25]. The developed optimization method is formulated as a multiobjective 

optimization problem and searches for non-dominated resource-constrained schedules that minimize the 

total duration and total cost. The objective functions can be represented by Equations 1 and 2. 

 

Minimize T = ∑  ∑ YjmDjm;  
𝑁Mj

m=1
NAC
j=1                                                                             (1)                                           

Minimize PC = ∑ [SCjNSj]
NA
j=1 + ∑ ∑ [YjmDCjm] + IC ∗ T + [(T − TC)B]

NMj

m=1
NA
j=1  where;      (2) 

 

• NA = number of activities  

• NAC = number of critical activities  

• N𝑀j = number of modes for executing activity j; j=1,2,…….N under mode m and zero otherwise  

• 𝐷𝑗𝑚 = duration of activity j running in mode m; m=1,2…. 𝑀𝑗 time t; t= 𝐸𝑆𝑗 𝑡𝑜 𝐿𝐹𝑗  
• T = actual project duration  

Activity/Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 1 1              
B   1 1 1           
C      1 1         
D        1 1 1      
E           1 1 1   
F              1 1 

G 1 1 0 0 0 1 1         
H    0 0 1 1 1 1 0      
K  1 1 0 0 0 0 0        

L    1 1 0 0 0 0 1 1 0 0   
Resources 

Demand 
6 9 6 7 7 9 9 6 6 7 8 4 4 3 3 

Acquired 

Resources 
6 3 0 1 0 2 0 0 0 1 1 0 0 0 0 

Released 

Resources 
0 0 3 0 0 0 0 3 0 0 0 4 0 1 0 

Available 

Resources 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
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• B = delay penalty/ Opportunity cost  

• PC = project cost  

• TC = contract project duration   

• 𝑆C𝑗 = Splitting cost of activity j  

• 𝑁S𝑗 = number of times activity j is split.  

• IC = indirect cost  

• D𝐶𝑗𝑚 = direct cost of activity j under mode m  

• Y𝑗𝑚 = binary variable equals to 1 when activity j is performed under mode m and zero otherwise  

The developed method is developed under the following assumptions: 

• Each activity has a constant resource requirement rate over its duration. 

• All non-critical activities can be split with an associated cost. 

• An activity resumes after splitting with the same resource requirement. 

• Every activity has multiple modes but can be executed under one mode during its duration. 

• The precedence relationship for split activities remains unchanged. 

• The project resources are assumed to be interchangeable for the project activities. 

The main reason for using a multiobjective evolutionary algorithm (MOEA) optimization is to generate 

a Pareto optimal set of solutions at each simulation run. Furthermore, NSGA-II was elected by 

researchers over other MOEAs because of its credibility and tested performance in several comparative 

studies [26]. Deb, Pratap, Agarwal, and Meyarivan [27] proposed NSGA-II to improve the NSGA 

complex algorithm, suggested by Goldberg in 1989, by providing a fast, more efficient elitist 

multiobjective algorithm. A genetic algorithm works by encoding parent solutions into chromosomes to 

generate the initial generation. Unlike the traditional genetic algorithm, NSGA-II utilizes two extra 

operators: the fast-non-dominated sorting operator and fast crowded distance operator. NSGA-II utilizes 

these operators in the selection process to rank each individual in the population based on the 

multiobjective functions. On the other hand, the traditional genetic algorithm uses a simple selection 

operator based on selecting the lower fitness function values in the minimization problems. The 

traditional genetic algorithm utilizes the selection, crossover, and mutation operators to generate a new 

population. The developed code for the NSGA-II method utilized some extracted NSGA-II functions 

(i.e., fast non-dominated sorting function, sorting solution, and crowding distance calculation function) 

from a program code written by Khan [28]. The genetic algorithm population structure for the developed 

optimization method is shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Description of the Genetic Algorithm population. 
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2.4. Decision-Support Module 

Multi-criteria decision-making (MCDM) methods are very important techniques that permit considering 

different attributes for ranking the different scenarios and present a systematic approach to help decision-

makers choose the best scenario among the generated ones [29]. The developed decision-support module 

utilizes the weighted sum method as an MCDM method. The developed module would help project 

managers select the most feasible project schedule from the generated NSGA-II Pareto front for time 

and cost solutions. The weighted sum method is based on calculating a preference index for each 

alternative. The highest preference index during maximization (and the lowest during minimization) is 

considered the best alternative. The preference index of each alternative can be computed using Equation 

3.  

𝐏𝐢 =  ∑ 𝐟𝐢𝐣 ∗ 𝐰𝐣(𝟏 ≤ 𝐢 ≤ 𝐦, 𝟏 ≤ 𝐣 ≤ 𝐧),𝐧
𝐣=𝟏                                     (3) 

Where P𝑖 = preference of each alternative, 𝑓𝑖𝑗 = measure of the performance in the normalized matrix, 

𝑤𝑗 = the weight of each criterion, m and n = the number of alternatives and the number of criteria. 

Accordingly, the normalized objective function for the proposed optimization method can be expressed 

with Equation 4.  

Normalized objective function = (
𝐃𝐮𝐫𝐚𝐭𝐢𝐨𝐧∗𝐰𝟏

∑ 𝐃𝐮𝐫𝐚𝐭𝐢𝐨𝐧𝐦
𝟏

) + (
𝐂𝐨𝐬𝐭∗𝐰𝟐

∑ 𝐂𝐨𝐬𝐭𝐦
𝟏

)        (4) 

3. Model Implementation 

The developed method is applied to a numerical example that many researchers have used. Results from 

the performance of other methods [30,  31] were compared to examine the developed method’s 

performance. The activity network and data of the project are shown in Figure 7 and Table 3, 

respectively. The indirect cost is $2200 per day; the maximum labor capacity is ≤ 30 men; and the 

splitting cost is 100$ per split. The delay penalty/opportunity cost was set to zero since the compared 

methods did not utilize it in their results. Furthermore, to illustrate the influence of the developed activity 

splitting function over the optimal project duration and cost and the final generation of the genetic 

algorithm optimization, the numerical example was solved under two different conditions. 

  
 

 
Figure 7. Numerical sample network (Chen and Weng, 2009). 
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Table 3. Activity execution modes (Chen and Weng, 2009). 

 

Activity ID Execution Mode Duration Cost Resources requirements 

1 1 5 7500 15 

2 1 4 6400 16 

2 6 6000 10 

3 8 5600 7 

4 9 5400 6 

3 1 6 7800 13 

2 8 7200 9 

3 10 7000 7 

4 1 12 19200 16 

2 15 15000 10 

3 18 14400 8 

5 1 22 39600 18 

2 24 38400 16 

3 26 36400 14 

4 28 33600 12 

6 1 14 28000 20 

2 18 27000 15 

3 24 19200 8 

7 1 9 15300 17 

2 10 14000 14 

8 1 14 9800 7 

2 15 9000 6 

3 16 6400 4 

9 1 15 7500 5 

2 18 7200 4 

3 20 6000 3 

10 1 3 1200 4 

2 5 1000 2 

 

3.1. Project scheduling with precedence relationships, resource constraints, and activity splitting 

 

The NSGA-II set of non-dominated solutions after 100 generations with a population size of 50, 

mutation rate of 0.6, and a crossover rate of 0.5 is shown in Table 4. The sum weighted method was 

used to find the best solution among the set of non-dominated solutions. Since our optimization problem 

is a minimization case, the lowest preference index (PI) solution is the best alternative. It can be seen 

that the third solution is the best solution, with the lowest PI value of 0.1678564, a duration of 43 days, 

and a cost of $237,900. Simultaneously, the first solution is the most inadequate solution with the highest 

PI value of 0.24662072, a duration of 80 days, and a cost of $245,800. A breakdown of the project cost 

is summarized in Table 5. 
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Table 4. NSGA-II results with constraints and activity splitting.  

 

 

Duration (Days) 

 

Cost ($) 

 

Normalized 

Duration 

 

Normalized 

Cost 

 

Preference 

Index (PI) 

86 245800 0.3028169 0.19042454 0.24662072 

50 245300 0.17605634 0.19003719 0.18304676 

43 237900 0.1514085 0.1843043 0.1678564 

45 241600 0.1584507 0.18717075 0.17281073 

60 320200 0.21126761 0.24806322 0.22966541 

Table 5. Breakdown of project cost.  

Project Cost $237,900 

Direct Cost  $94,600 

Indirect cost  $142,300 

Splitting cost $1,000 

Delay penalty/Oppurinity cost $0 

 

3.2. Project scheduling with precedence relationships and resource constraints 

After running 100 generations of the NSGA-II optimization method using both constraints without the 

splitting function, the non-dominated set of solutions is shown in Table 6. Figure 8 shows the solutions 

for the 100 generations, where the black curve depicts the optimal time-cost trade-off curve with the 

non-dominated set of solutions. From Table 6, it is clear that the fifth solution is the best one since it has 

the lowest PI value of 0.19282, a duration of 55 days, and a cost of $268,117. While comparing the two 

scenarios’ results, it was evident that the project duration and cost increased by 27.9 % and 12.7 %, 

respectively. This can be explained by the fact that the splitting function was not applied in this scenario. 

 

Table 6. NSGA-II results with constraints (no activity splitting). 

 

 

Duration (Days) 

 

Cost ($) 

 

Normalized 

Duration 

 

Normalized 

Cost 

 

Preference 

Index (PI) 

43 404598 0.16996047 0.25390604 0.21193326 

48 330376 0.18972332 0.20732792 0.19852562 

53 301979 0.2094862 0.1895073 0.1994968 

54 288425 0.21343874 0.18100151 0.19722012 

55 268117 0.2173913 0.1682572 0.19282425 
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Figure 8. NSGA-II pareto front with constraints without activity splitting. 

 
3.3. Comparison with other developed methods 

Table 7 shows the applied developed method’s results to the numerical example along with the other 

methods’ results. The results illustrate the dominance of the developed method with its splitting function 

over the other methods. As seen in Table7, the developed method proved its efficiency in generating a 

better global optimum solution (duration and cost) and avoiding local minima entrapment. The proposed 

method’s key advantage is its capability in splitting non-critical activities such that the resource 

constraint is considered, and the project is executed at the least possible duration and cost. The proposed 

method took approximately 5 min to solve the numerical example, with ten activities on a laptop 

machine having a 2.6 GHz processor speed. The developed method’s processing time was higher than 

that of the heuristic method, developed by Hegazy and Menesi [31], and lower than that of the developed 

model by Chen and Weng [30]. The anticipated reason behind higher processing time than that of the 

heuristic method is that the developed method searches the possible solutions extensively before 

converging to a local optimum. Accordingly, it increases the probability of finding a near-optimum 

result. 

Table 7. Comparison between the proposed method and other developed methods. 

Research Case study 

description 

Results 

 

Chen and Weng [30] 

 

 

Ten activities having 

up to four discrete 

options that use 

varying amounts of 

one limited resource 

 

Project cost = $244,000 

Project duration = 56 days  

 

Hegazy and Menesi [31] 

 

Project cost = $245,900 

Project duration = 59 days  

 

Proposed method  

 

Project cost = $237,900 

Project duration = 43 days  
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4. Conclusion 

This study introduced an integrated method for resource-constrained schedule compression that handles 

resource planning and project scheduling. The method was developed in a computational framework 

coded in Python as a stand-alone automated computerized tool to aid in the iterative rescheduling of 

project activities and facilitate project schedule optimization. The method evaluated the NSGA-II 

method for the resource-constrained scheduling optimization problem. The method was tested against 

other methods using a numerical example. It was observed that the developed method outperformed the 

previously developed methods, generating a better global optimum solution and avoiding entrapment in 

local minima during its reasonable processing time. Furthermore, the developed activity splitting tool 

proved its efficiency in obtaining a lower project duration and cost.  Finally, it is anticipated that the 

developed method can help contractors generate an efficient construction schedule and speed up the 

project while ensuring efficient utilization of resources. The developed method can be further extended 

to consider the different types of resources. Finally, besides the genetic algorithm used in the presented 

method, other metaheuristic algorithms such as particle swarm optimization and ant colony optimization 

can also be evaluated to optimize the resource-constrained scheduling for activity crashing. 
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