Journal of Physics: Conference
Series

PAPER « OPEN ACCESS You may also like

- Improved robustness of multi-component

An Efficient Shrinkage Estimators For Generalized auisis nampiiude envelope siausics

using plane waves

Inverse Rayleigh Distribution Based On Bounded Yuki Ujhara, Kazuki Tamra, Shohei Mol
And Series Stress-Strength Models - Warm Jupiters in TESS Full-rame Images:

A Catalog and Observed Eccentricity
Distribution for Year 1

To cite this article: Iman Ghaji Jebur et al 2021 J. Phys.: Conf. Ser. 1897 012054 Jiayin Dong, Clhelsea X. Huang, Rebekah
|. Dawson et al.

- Transmuted of Rayleigh Distribution with
Estimation and Application on Noise
Signal
View the article online for updates and enhancements. Suhad Ahmed and Zainab Qasim

@ N =L DISCOVER
i = how sustainability

The : intersects with
Electrochemical
Society

Advancing solid state &
electrochemical science & technology

[ & 8l

This content was downloaded from IP address 3.138.174.174 on 04/05/2024 at 06:52


https://doi.org/10.1088/1742-6596/1897/1/012054
/article/10.35848/1347-4065/acc749
/article/10.35848/1347-4065/acc749
/article/10.35848/1347-4065/acc749
/article/10.3847/1538-4365/abf73c
/article/10.3847/1538-4365/abf73c
/article/10.3847/1538-4365/abf73c
/article/10.1088/1742-6596/1003/1/012026
/article/10.1088/1742-6596/1003/1/012026
/article/10.1088/1742-6596/1003/1/012026
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstRD5ci1_jnWAuO-mSiT-d1iFFmObOrahIo2rtSP7GxB9p3kZ3shCSP2lrySbeP9U2BfF9LmAIC8MPKAMnaJ0pkxr3Swt_XZx8071xookJGl6aWt5PMkUcZJE14TyXzjHNz0GTLaI8RSGt83-qD978ECZr8sI94qHzQqEuwDMz4yrv0s9l7ZBLw_FkQ9Xx2NyI1_Kp7KWqTf62ZGKhwYCgkykvvCwgE8p1LS3UHku1gcVrYsjXOtG4IseJAMFOOHLHWhOvvubaoIG2tbzD07DkZflJLDtBT2g3aJkTXDeWbsC1l1wK96TTefjJe15G5GCiw30FTcYyD063P7yBHL58foi6yKg&sig=Cg0ArKJSzOFmh7jiJ2wv&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

FISCAS 2021

Journal of Physics: Conference Series

An Efficient Shrinkage Estimators For Generalized Inverse
Rayleigh Distribution Based On Bounded And Series Stress-
Strength Models

Iman Ghaji Jebur?, Bayda Atiya Kalaf?, Abbas N. Salman®

L23pDepartment of Mathematics, College of Education for Pure Sciences, 1bn Al
— Haitham / University of Baghdad, / Baghdad / Iraq

ABSTRACT

In this paper, we investigate two stress-strength models (Bounded and Series) in
systems reliability based on Generalized Inverse Rayleigh distribution. To
obtain some estimates of shrinkage estimators, Bayesian methods under
informative and non-informative assumptions are used. For comparison of the
presented methods, Monte Carlo simulations based on the Mean squared Error
criteria are applied.

1. Introduction

Reliability (R) is a broad term that focuses on the ability of a product to perform its intended
function. for the reliability (R) in the stress- strength (S-S) model was attracted many statisticians for
several years owing to their applicability in different and diverse parts such as engineering, quality
control, economics. In addition, in the previous thirty years, there have been many applications to
medical problems and clinical trials [1,2].
The term stress-strength (S-S) refers to a component which has a random strength X subject to a
random stress Y to evaluate the reliability. The component fails if the stress applied to it exceeds the
strength, while the component works whenever Y less than X (Y< X). Several researchers assuming
various lifetime distributions for the stress-strength random variates [3,4,5].
However, because modern engineering systems may have more than two components [6]. For instant,
bridges, car engines, air-conditioning systems, biological and ecological systems, quality control
systems in manufacturing plants, etc.) may be viewed as assemblies of many interacting elements. The
elements are often arranged in mechanical or logical series or parallel configuration. Similarly, the
blood pressure for each person, there are two border diastolic pressure and systolic pressure should be
in these limits. The stress-strength models of P(Y; < X < Y, ) were studied in many branches of
science such as psychology, medicine, pedagogy, etc.[7]. The probability equation: R=P(Y; < X <
Y, ) of “stress- strength “reliability "describes that if the random variables X that represent the"
pressure "of the components exceed the random variables that represent the" strength "of the
component, the component. statistical studies of stress-strength as the main part of the reliability
system started after it was introduced [8], after that model system P(Y; < X < Y, ) gets great space of
authors studies since the seventies of the last century till now. In addition, for series stress—strength
models P(Y < min (X, X3, ..., Xp)),
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[ 9] proved the sufficient and necessary condition for the exitance of MVUE of R = P(X; =
Y,..,X, =Y)is m>n, also, obtains R's MVUE, where X;, ..., X,lid. ~N (g, 6%), Y~N (0, 1), Y is
independent of X, ..., X, u. ¢ are unknown, Z, ..., Z,, (m > 2) are lid. sample from N (u, o?). [10]
obtained the estimation of system reliability in multi-component series stress—strength models. He
considered the estimation of R = P(X;,; < min (Xq,X5, ..., X)) when Xi, i =1, 2,. .., k + 1, all
follow independent Gamma, Weibull, and Pareto distributions. [11] discussed series stress—strength
models having bivariate Marshall-Olkin exponential strengths subjected to q stresses. The stresses are
independent and exponentially distributed.

On the other hand, Statistical distributions have long been employed in the assessment of
semiconductor device and product reliability. Generalized Inverted Rayleigh distribution (GIRD) is a
very helpful model that can be vastly used in applied statistics reliability analysis, telecommunications
engineering Convergence of biology and it is used to analyze age data, health and the existence of
several Pilot units [12].

Therefore, in this paper, two models bounded and series were considered to estimate the stress-strength
reliability based on two parameters GIRD via different estimation methods. Also, different Bayesian
estimation methods and some Shrinkage estimation methods were used. Since, recently with advances
in computation and methodology, researchers are using Bayesian methods to solve an increasing
variety of complex problems. In many applications, Bayesian methods provide important
computational and methodological advantages over classical techniques [13].  Then, Shrinkage
estimation methods are used.

The rest of the paper is organized as follows: Section 2. clarifying Generalized Inverse Rayleigh
distribution. Section 3. Models Description with Mathematical Formulation.Section4. Maximum
likelihood Estimation. Section 5. Bayesian Estimator.Section 6. Shrinkage Estimation Methods.
Section 7. Simulation study. Section 8. demonstrates the effectiveness of the suggested method through
numerical results. In the end, in section 9, a conclusion is presented.

2. Generalized Inverse Rayleigh distribution

Generalized Inverted Rayleigh distribution presents a flexible family in the varieties of shapes and
is suitable for modeling data with different types of hazard rate function: increasing, decreasing, and
upside-down bathtub shape. It is widely used in communication engineering, reliability analysis, and
applied statistics. Various applications of this distribution are given [14]. The probability density
function (p.d.f.) of the GIRD with scale parameter (17 is:

290’2 —0-2—9 2
flx)= el 2 forx >0,60, 0° >0
oy
The cumulative distribution function (c.d. f) is given as follows:
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Figure 1:Generalized Inverse Ralyeigh Distribution(p.d.f)
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Figure 3:Generalized Inverse Rayleigh Distribution(Reliability)

3. Models Description with Mathematical Formulation
In this section, two models (bounded and series) system reliability were considered as follows:

3.1 Stress-Strength Reliability For The Bounded System

In the S-S model the formula of system reliability (R,) which defined as R = P(Y; < X <Y,),
where X be independent random strength variable such that X ;~ GIRD ( 6,, 6®)and Y;,Y, are
two independent random stress variables such that Y;~ GIRD ( 6,, ¢2), Y,~ GIRD ( 85, ¢2) with
known parameter o, respectively. Therefore, S-S reliability is defined as below:
Ry,=PY,<X<Y,)

Therefore ,
= I3 0y I FOm)dys £ ) dyaf (x)dx
= [y By ()R, (x) f)dx

—0'291

F(x)=e »?

—626,
Fyl(x) =e

-0203
Fyz(x) =e ;2 , ,

026, —-02%03 29, _9°01
Ry =f0°°e 2 (l-e #2 ) 2‘;31 e % dx

29 2(01+6
s 3 2029, -9°(01+62)
= fo (1 — e x2 ) 1o x2 dx

x3
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o 2020, _0%01+82) o 2020, _02(01+02+63)
=J, —Hre ¥ dx-[5 —te Pz dx
6, A

T 0,46, 6,460,465

Consequently, by simplifications, we get

6,63
Rb -
(62+6,) (62+6,+63)

@)

3.2 Stress-Strength Reliability For Series System
Another important application of random events is the practically important case of a system

composed of statistically independent components, arranged logically in series. Additionally, the series
systems function properly only when all their components function properly.
In this paper, we used series system reliability (Ry) in S-S model contain three series components,
where Xi be independent random strength variable such that X;~ GIRD ( 6;, %), X ,~ GIRD (
0,, 62), X3~ GIRD (85, o?) and Y is a stress variable such that Y~ GIRD ( 8,, ¢2), with known
parameter ¢ which has strengths subject to common stress
Ry = P(Y < min (X1, X5,X3))
Let Z = min (X1, X5, X3),
Therefore ,
Ri=p(y<Z) 0<y<Z<o
Re= [y Jy FOf @)dz dy
EZ)=P(Z<2)=1-p(Z =2)

=1—[P(x; > 2)P(x; > 2)P(x3 > z)]

-026; -026, —026,
=1—[(1—e 22 Y(1—e 22 )(1—e 22 )]

-028, -0%6, -0%6,+6, —026,
=1—-||l1—e 22 —e z* +e z* (1—e 22 )

-020, -0%6, —020,+6, —026, —02%0,+6; -0260,+6; —020,+0,+0;
—_ —_ —_ 2 —_ 2 2 —_ 2 2 2 —_ 2
=1 l—e z e z2 +e z e z +e z +e z e z
—026, —026, —026146, 0263 —0260,+03 —026,463 —02601+60,463
=e 22 +e 22 —e 222 +e 2 —e 22 —e 22 +te 22
f(z) c%0, =90, %0, =901 g%(6, +6,) =0’6:1+6:) 29, =005
= — z2 4+ e z2 ——4— 8 ——p¢ z2 + e z2
0z z3 z3 z3 z3
02(0; +03) =9%(0:463)  g2(0, +65) —0%(61+65)
_— ¢ z2 _— ¢ z2
z3 , z3
%0, + 6, +035) =0%(0:1+6,465)
+ e z?
2 Z3 2 2 2
2 —0“0 2 —0“0 2 —-04(61+63) 2 —0“0
_ (®©0%6; 7 040, 2 g%(0:+6,) —=——1772°  0°0; e
Rs - fo 73 e z + 73 e - ;3 z 3 € ° -
2 2 2 2
2 -0%(62+63) 2 -0“(01+63) 2 —0%(61+0,+603), —0°64
o (19;:193)6—22 _ o (9;3+63) e 2+ o (914;2 +03)e 2 )e —

000-202 m 0'291 m 0-2(91 + 02) _02(91+92 +64) 0'293 _0263+94
= e z?° + e z? —_—— "¢ 72 e zZ
o z° 23 23 23
0%(0, +6;) 0°(0:463+6,) G?(0; +605) —0°(81+6;+6,)
-——e z _—e z
z3 z3
02(01+ 6, +03) —0%(01+6,+65+0,)
+ 3 e z? do
z

Therefore,
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0, 0, 0, +6, 05 0, +0; 0, +6; 01+6, +63 @

T 0,+0, + 0, +0, 0, +0,+0, ' 03+8, 0,+05+0, 01+0;+0, ' 0,46, +65+6,

Maximum Likelihood Estimator (MLE)
The Maximum likelihood method was important and commonly since it contained properties for
good estimate [15]. The likelihood function is given as;
L(x1, %5, e, X, 8;, 02)

n
lzlf(xl.)
When x;, x5, ..... x, be a strength random sample of Xfrom GIRD ( 8;, ¢?).
[Ti=1 f (i)
204
n 20,0 — 3
i=1 x;3 ¢

oo x e ?=191(x—i)
Take In to both sides will be
2

=nin2+ 2nlno + ninb; — 3lnx; — zg;lel( )

g
Xi
The partial derivative of In [ with respect to 6;and equate to zero is given by

_n N 052 dlnL _

A Zi=1(xi) To0e, 0

g

Z?=1(X—i)2
Hence, in the case of the bounded model the MLE estimator for the unknown shape parameter 6, will
be:

_ n
T yn (952
MLEb i=1(xi)

where i=1, 2,...,n (%)

In the same way, let y,, ¥1,, -, ¥1,,, and ¥2,,¥2,, -, ¥2,,, b€ stress random variables from GIRD(6;,
and GIRD (8;, a?) respectively, and the MLE for the unknown shape parameter 8,, 85 will be

MLEb = ,::162 (6)
Zj:le
MiED = Tz Wherej=12,.,m; ,t=12,..,m, (7)
t_1yT
And in the case of the Series model
n .
MLES = m where 1:1, 2,. ., Ny (8)
MLEs = nznizgz where t=1, 2,0 ny (9)
21:=1 Xot
MLEs = 2”3:(1# where w=1, 2,...,n3
w= 3w
(10) i
MLEs = - p=) ] = 1,2, e, m (11)
21‘=1y_§

. Bayesian Estimator
We have studied Bayesian analysis of the parameter is using Jeffrey’s Prior Information and
Gamma priors under two error loss functions namely; squared error loss function (SELF), and Linear
Exponential (LINEX).

Posterior Function of The Parameter Based on Jeffrey’s Prior Information
We must find Fisher information since we want to find Jeffrey’s Prior Information,

8)x J1(0)

Hence, 1(9)=§ then g)=c

n
62
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g(6)=5vn

Then we present the posterior density function is:
H(x1,%,...,%n;0)

61(9|x1,x2,...,xn) = P(x X X 6)
1,X2, 0y Xy,

When,
H(xq,%p, .., Xn360) =L( x1,%3,...,x,;6) g(6)
Then the marginal probability density function of ( x;,x,, ..., x,, ) is given by

P(xy,%5,.,%0;0) =J- L( x1,%5,..,%;0) g(@) dO
0
Therefore,

where  w = Z?zl(%)z and letz=6w ,0=
L
C\/Y_l angn-1 z2ni H?=1X1_3 e—Gw
cvnan o2 [, X, 73 [P (Eyn-1 ez &
Hence, the posterior density function for 8 based on Jeffery’s prior information will be
Wn 0 n—1e—z
r(n)
n
LG o
r(n)
We can be identified the posterior density in the equation as a density of Gamma distribution
6 ~ Gamma (n,%) with E(0) =£ and var (0) = 12

w

Gl(g |x1,x2,...,xn) =

-1 -3R 0,02
e “i=1 1 X;

Gl(g |x1,x2,...,xn) =

In the case of the bounded model.
6, ~ Gamma (n,%) with E(6;) ==~ and var (6;) = 12

w w
6, ~ Gamma (m1 ,%) with E(8,) == and var (6,) = —=

w w2
6; ~ Gamma (mz,%) with E(03) = % and var (03) = %

In the case of the Series model

6; ~ Gamma (n1 ,%) with E(0,) = % and var (0,) = %
6, ~Gamma (ny,>) with E(6;) =22 and var (6,) =%
6; ~ Gamma (ng,%) with E(03) = % and var (03) = %
0, ~Gamma (m, %) with E(8,) = % and var (0,) = %

5.2 Posterior Function of The Parameter Based on Gamma Prior Information
_ ﬂ595—le—9[§ )

92(0)="—F— 0 >0,>0,0>0

_ H(x1,%5, .., % 60)

TP (X1,Xp, .0, %n;0)

Gy (0] xq,%5, .0 X))

p865-1¢-08

ngn ;2n rn =3 ,—6w
29" o M [[io1 X " e @

5
on g2n H?:lxi_3 %fo‘” gn+s-1o-0(W+B) 49
Thus

pn+8 9n+6—1 e—ep
G, (0| x1,%5, .0, xp) =———— , whereP=(w + )

r(n+6)
This can easily be seen
This can be seen easily
1 . n+§ n+6
0 ~Gamma(n+5,;) with E@) = - , var(0) = e
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Therefore, in the case of bounded model
61 ~ Gamma(n + 6,%) with E(0,) = 16 , var (91)@

0, ~ Gamma ( m, +6 ,%) with E(0,) = m1 S var (6,) ™ +6

03 ~ Gamma ( my, +96 ,%) with E(63) = +6 , var (93) mz +6

in the case of the Series model

6, ~ Gamma(n1 +4 l) with E(0,) = n1+6 , var (91) L +8
~ Gamma ( n, +6, ) with E(8,) = ™2 o , var (8,) nz +6
~ Gamma( ) with E(05) = = 2, var (6;) 2 +6
~ Gamma ( m+4, ) with E(0,) = m—+6 , m+6

5.3 Bayes Estimator Under Considered Error Loss Functions

5.3.1 Bayes Estimator Under Squared Error Loss Function
By using squared error loss function I (8 ,6) which is:
1(6,0)=(0—0)2
the mathematical expectation for the loss function (Risk function) is given as follows:
R(#.,6) =E[L(8,0)] = [, 1(6,0) G, (Olx;) db

B by differentiating R (8 , 6 ) with respect to & and equating the derivative to zero to get

05 = E(6|x;)
(12)

5.3.1.1 The Jeffrey s prior information case
The Bayes standard estimator for the parameter (0) is the estimator that makes the risk function as
low as possible
O15; = E(6]x;)
To find 8,, 8, and 65 , we apply equation (5), In the case of bounded

e151 = 2 (13)
(%)

PN m

9251 = 16 2
(%)

(14)

O3s) = mzmza
)

(15)

Then in the case of series we get 8, 8, ,8;and 0,

G)151 :#
224(5%)

(16)

b2s) =75
t21<X2t)

(17)

By = o (18)
mia(esy)

a m

945/ = N\ (19)
24(5)
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5.3.1.2 The Gamma prior information case
The Bayes estimator of Gamma prior information for the parameter (6) makes the risk function as
low as possible
6= E®©|x)
then apply equation (6) For the condition of the bounded we get

é15(; = n:62
a(2) +
In the same way, find 0, and 03,
éz = m1+6z and§3 = m2—+62 )
¥ gm(e Ton(n) e
2f=1(y_1j> +B t=1\yz¢
And using equation (6) For the condition of the series we get
B _m+s n;+6 n,+6
1 - - - Nz
SG P (w+pB) Z:;ll(xiu) +B
By the same way find 6, and 63,
~ +68 ~ nz+8 a m+§
B2y =— 2 03, =m— andb,, =—5—
2 () () 2a(z) +
J

5.3.2 Bayes Estimator Under Linear Exponential Function
The linear error loss function [ (8, 8) as follows:

1(0,0)=e®—~A—1, whereA=(@— 6)

The form of the risk function is:

R(6,0)= [, [eC9)-(0-0)-1]G@®Ix)ds
=0 [ e=9G(01x)d0— 0 [, G(Ox)d0 + [, 0 G(O]x)d6—
f, G@Ixde

Differentiating R (8, #) with respect to 8 and setting the result to zero, we get

dR(0,0) _
ae

e [ e ? G@OIxNdo — [, G@OI)do =0
Which implies that
e?f, e ?G@BIxdE =1

Hence,

9 _ 1
Jp e ? G@OIx)de
Thus, the Bayesian estimator of 8 establish on LINEX loss function is

e

6,=-Inf, e ? G(Olx)do

5.3.2.1 The Case of Jeffrey s Prior Information Case
0,y= —Inf e %G (8lx)do
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n n-1,-6w

R ~6 W'
lnf e o)

- -lrn(r‘l’;" f0°° gn-1 o= 0(1+w) 4 g

- ['(n), where p = (14 w), forthe condition of the bounded
o n

A w\" _ Z?=1(X_i)z

0, = —ln(T) = —ln<—(1+w)

Thus, for the condition of the bounded

N SO
91L] = _ln( (1+w) )
(20)

By the same way find ~ ,,;and 85,

R T2 \™
021 = —ln<7j Y1) )

(1+w)
(21)
A SRAGE)?
031y = —ln<—(1+3‘:)f )
(22)
And For the condition of the series
2\ nl
n1 <L)
~ =1\ x i
91L] = —ln —(1+M/1)
(23)
2
~ i 1 X
021y = ( (1+Wz)t (24)
e 2 n3
X w
O31) = = < (1+w3) )
(25)
R oy 1G )2
Oary = — (1+w)
(26)

5.3.2.2 The Gamma Prior Information Case

bren = _lnfgme_e G2 (Blx)d o

pn+6 9 n+8-1 e—ep

(™ __g
= lnf(9 e —o de

n+8 g n+d-1 ,—6 (1+p)

— _n [P e
=—In [, re) deo

n 0 (1+p)n+é‘ l’] n+6-1 —9 (1+p)

+5
- (1+p)"+5 f r'(n+6) do




FISCAS 2021

IOP Publishing

Journal of Physics: Conference Series

And after, completing the solution steps to find the product of the integral to get

éLG =—In ((1+p)

Therefore, for the condition of the bounded

A W+B) | n+s
glLG —In ( (1+(W+B)))
(27)

By the same way find 8,,; and 05,
—In ( w+pB) )m1+6

92LG

(1+w+B)
(28)
A _ W+B) | m2+8
Oa6 = ~In(T vy
(29)

, And for the condition of the series
—In( w+B) WPy ni+é
(1

élLG -
(30)

+W+p))

(w+p) ) n2+§

0216 = —1In ((1+(w+B))
(31)

5 w+B) 346
93LG = —In ( (1+(W+B))) "
(32)

A (w+pB) +6
94LG - 1 ( (1+(W+ﬁ))) m
(33)

6. Shrinkage Estimation

)n+6 _

1897(2021) 012054  doi:10.1088/1742-6596/1897/1/012054

) n+é

Shrinkage is where extreme values in a sample are “shrunk” towards a central value like the sample

mean. Shrinking data can result in:
o Better, more stable, estimates for true population parameters,

¢ Reduced sampling and non-sampling errors,

e Smoothed spatial fluctuations.
Thompson gave the shape of the shrinkage estimator as follows:

Osn = @(©)0pLe + (1 - (p(é))éLen

(34)

Where the unbiased estimator 8,,

, suchthat0 < p(®) <1

was applied as usual MLE estimator of 8 and 6, is a very closed

value of 6 as prior information (initial estimate) and ¢(8) denote the shrinkage weight factor as we
mentioned above such that 0< ¢(8) < 1, which may be a function off,,, ; a function of sample size
or may be constant or may be found through minimizing the mean square error of 8, (ad hoc basis).

See [16,17,18].

6.1 Constant Shrinkage Weight Factor (Sh1)

Two models bounded and Series used the constant shrinkage in this subsection.
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6.1.1 Constant Shrinkage Weight Factor For Bounded Model

The constant shrinkage weight factor (Sh1) for the bounded system will be assumed as ¢ (8;) = e =%t
,i=1,2,3

6.1.1.1 Constant Shrinkage Weight Factor In Square Jeffry

élshl = @(©01)01m + (1 - €0(§1))61Len,

(35)

024, = ©(02)02m1r + (1 - <p(92))62Len1

(36)

035, = ©(03)B3mie + (1 - <p(é3)) 03,0 37)
where 8; are prior information of 8; in Bayes estimator under Linear Exponential Function

lLenj
, (i=1,2,3) and then apply to the following shrinkage capabilities

Then we substitute (35), (36), and (37) in equation (3) we infer the estimation of S-S reliability (R)
which consist of the abounded component using shrinkage estimation as below:

o 814, O3
RShl = 7= = sf/v.\l Sh,l\ = (38)
(elshl +ezsh1)(elsh1 +925h1 +e3sh1)

6.1.1.2 Constant Shrinkage Weight Factor In Square Gamma
O10 = (OB + (1= 0(B))By,,,,

(39)
ézshl = 9(02)0mr + (1 - <P(éz))62Leng
(40)
é3sh1 = @(©03)03m1e + (1 — ‘P(é3))é3Leng
(41)

where giLeng are prior information of 8; in Bayes estimator under Linear Exponential Function

, (i=1,2,3) and then apply to the following shrinkage capabilities
Then we substitute (39), ( 40), and (41 ) in equation (3 ) we infer the estimation of S-S reliability (R)
which consist of the abounded component using shrinkage estimation as below

~ 0., 05
Rsnic = 72 —— 3 (42)
(elshl+925h1)(elsh1+ezsh1+e3sh1)

6.1.2 Constant Shrinkage Weight Factor For Series Model

p®)=e0% i=1234

6.1.2.1 Constant Shrinkage Weight Factor In Square Jeffry

é1sh1 = @(®)01me + (1 - <P(§1))61Len,

(43)
02, = ©(02)02m1E + (1 - <p(92))62Len1
(44)
035, = ¢(83)0amir + (1 - (p(é3)) 03,0
(45)

11
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é4sh1 = 9(04)04m1E + (1 - ¢(§4))64Len1
(46)

Then we substitute (43), (44), (45) and(46) in equation (4) we infer the estimation of S-S reliability (R)
which consist of a series component using shrinkage estimation as below:

R 1y = 62shl 91shl _ 61shl +ezsh1 93shl _ 62shl+e3sh1
S

ezshi-'-e“slll 61shl-‘-e“sll\l ejsh1+efsh1+e4sh1 e?’shl-‘-e“shl 62shl+e3sh1+e4shi

6, +6; 0, .+6, 40,

shi shi shi1 shi sh1

elsh1+e3shl+e4sh1 elshl+ ezshl +e3sh1+e4sh1

(47)

6.1.2.2 Constant Shrinkage Weight Factor In Square Gamma
B1g = @@DB1MLe + (1 — 0 (B))0y,,,,

(48)

ézshl = @(02)0m1e + (1 - Qo(éz))ézLeng

(49)

ésshl = 0(03)03p1e + (1 - §0(§3))63Leng

(50)

é4sh1 = 9(04)04m1e + (1 - (p(§4))é4Leng (51)

Then we substitute (48), (49),(50) and (51) in equation (4 ) we infer the estimation of S-S reliability (R)
which consist of a series component using shrinkage estimation as below

R\ hiG = ezshl 91shl _ 91shl_*—ezshl e3sh1 _ ezsh1+e3shl
s = = = = = = = = = = = = =
ezsﬁl+e4sﬁl 915h1+e4sfi1 e}}sh1+efsh1+e4sh1 e3sh1+e‘*sh1 ezShl_'—esshl_'—e‘*shl
O15p1 t935py O15py +025, 035,

elsh1+93sh1+e45h1 91shl+ 92shi +e3sh1+e4sh1

(52)

6.2 Shrinkage Weight Function (Sh2)
6.2.1 Shrinkage Weight Function For Bounded Model

We suggested the shrinkage weight factor as a function of ns m;and m,, respectively in equation ()
as follows:

y(®;) = e % ,wherei=1,2,3

6.2.1.1 Shrinkage Weight Function With Square Jeffry

The shrinkage estimator should be:

élshz = y(01)01p1e + (1 - V(é1))é1Len]

(53)
ézshz = y(0)01ms + (1 - V(éz))ézLen,
(54)
03,,, = ¥(03)03p1z + (1 —¥(83))03,.,,
(55)

Upon replacement in equation (53), (54) and (55) in equation (3), the estimate of the squared shrinkage
of the reliability S-S for bounded component becomes:

12
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" 8, 03
R = — - 5}12 shz - 56
2 (elsh2+ezsh2)(elsh2+ezsh2+93sh2) ( )

6.2.1.2 Shrinkage Weight Function With Square Gamma

élshz = y(01)01pm1e + (1 - V(él))é1Leng

(57)
ézshz = y(©0)01pm1 + (1 - Y(éz))ézLeng
(58)
ésshz = y(03)03pm15 + (1 - Y(és))é3Leng
(59)

Upon replacement in equation (57), (58) and (59) in equation (3), the estimate of the squared shrinkage
of the reliability S-S for bounded component becomes:

~ 6,.,. 03
Repo = 7= —sha “sha = (60)
(elshz +925h2)(615h2 +ezsh2 +e3sh2)

6.2.2 Shrinkage Weight Function For Series Model

y(6) = e Yis ,wherei=1,2, 34

6.2.2.1 Shrinkage Weight Function With Square Jeffry

élshz = y(01)01pm1e + (1 - V(é1))é1Len,

(61)

ézshz = y(0)0:1me + (1 - V(éz))ézLen,

(62)

03,,, = ¥(03)03p15 + (1 —¥(83))03,.,,

(63)

§4sh2 = y(0)04pre + (1 - V(§4))é4Len, (64)

Then replacement in equation (61), (62),(63) and (64) in equation ( 4), the estimate of the squared
shrinkage of the reliability S-S for series component becomes:

ﬁ n2G = ezshz elshz _ e1sh2+ezshz e3shz _ 925h2+93sh2
s = = L2 = L = L L = L = L e
ezsﬁz+e4sﬁz elsh2+e4sth 915112+925112+e45h2 e3shz+e45hz 925h2+e3sh2+e4sh2
615h2+635h2 61£hz+ezshz+e3shz
O1gpa 03, t0agy,  Ougy 02, +05, +0ag,
(65)

6.2.1.2 Shrinkage Weight Function With Square Gamma
é1sh2 = y(0)01pue + (1 - V(é1))é1Leng
(66)

02, = Y (02)01p1e + (1 - V(éz))ézLeng
(67)

13
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ésshz = y(03)03p16 + (1 - Y(§3))63Leng (68)
04, = Y(04)04me + (1 - V(94))94Leng

(69)

Then replacement in equation (66), (67),(68) and (69)in equation ( 4), the estimate of the squared
shrinkage of the reliability S-S for series component becomes:

Ronag = 5 St G Sl = gy
2sh2 " 4sh2 Ish2 " V4sh2 1sh2 ™ “2sh2 " 4sh2 3sh2 " “4sh2 2sh2 " “3sh2" V4sh2
_ elshAz +e3si’z\2 - 91£h2+92.ih2+e35112 (70)
elshz +93Sh2+645h2 elshz + 92shz +93sh2 +e4shz

6.3 Squared Shrinkage Weight Factor
This subsection relates to the shrinkage amount based on the squared shrinkage weighting function
defined as follows:

6.3.1 Squared Shrinkage Weight Factor For Bounded Model

_ [§1MLE—E(§1)]2 _ [ézMLE_E(éz)]z _ [§3MLE_E(§3)]2

¥(®,) = e L P(8,) = T ar®) ¥(B3) = var(d:)

Where
- ©) A 6) .ra 62)
E(8,) =" E(6,) =% () = 2202
A _ [n(91)]2 A _ [ml(gz)]z A _ [m2(93)]2
var(81) = S ey V0 (82) = G Seimemsy nd var(8:) = T

6.3.1.1 Squared Shrinkage Weight Factor With Square Jeffry

é1sh3 = P(©01)01p1e + (1 - lp(éﬂ)élwn,

(]1) o o
02, = W(02)02m1E + (1 - w(ez))ezmj
(]2) o o
935}13 = lp(e3)e3MLE + (1 - ¢(93))93Len1
(73)

The corresponding S-S reliability estimation was used using the equation for the bounded component
as follows;

_ 8, 8,
R = e e 74)
(elsh3+ezsh3)(elsh3+ezsh3+e3sh3)

6.3.1.2 Squared Shrinkage Weight Factor With Square Gamma

élsh3 = (01)01p1e + (1 - ¢(él))é1wng

(75)
ézsh3 = P(0)0om1e + (1 - Eb(éz))ézwng
(76)
ésshg = (03)03pmr + (1 - 1/)(@3))@3“3@
(77)

The corresponding S-S reliability estimation was used using the equation for the bounded component
as follows;

~ 6,.,. 63
Rsh3 = 7= = 5}13 Sh,?i = (78)
(elsha +625h3)(615h3 +625h3 +e3sh3)

14
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6.3.2 Squared Shrinkage Weight Factor For Series Model

_ [Bumie—E(®,)] _ [Bomie—E(8)]° _ [Bamie—E(®5)]”

Yo, = ey P(8) = @) P(®3) = (@)

[§4MLE_E(§4)]2

lp(éﬂf) = var(0,)

Where
A (61) A (62) A (63) A (64)
E(el) = T:.l_—ll , E(ez) = rzz_i ,E(93) = TZ__:; and E(94) = T:Ln_;

A _ [n1(91)]2 A _ [n, (92)]2 A _ [n3(93)]2 A _
var(8,) = —(nl_l)z(nl_z),var(ez) = D ,var(8;) = D7t =2 4 var(8,) =
_m@)?

(m-1)2(m-2)

6.3.2.1 Squared Shrinkage Weight Factor With Square Jeffry

é15,13 = P(©01)01p1e + (1 - ¢(é1))é1Len,

(79)

024, = W(02)02m1e + (1- IIJ(GZ))GZL@M

(80)

035, = ¥W(02)83mip + (1~ 1(65))03,.0,)

(81)

B4y, = W(O)Bumre + (1 — ¥(64))84y,,,

(82)

The corresponding S-S reliability estimation was used using the equation for the series component as
follows;

" B 81, 6155 +02,, Bs,5 B2, +05,1s
Rsh3 - - -

625,}\3"'945}}\3 e1sh3+94$h§ e/1\sh3 +eish2+e4sh3 e?’shs-'-e“shs ezsh3 +e3sh3+e4sh3
01,103, 01,102,103

elsh3 +e3sh3+e4sh3 915h3+ e25h3 +e3sh3+94sh3

sh3 sh3 sh3

(83)

6.3.2.2 Squared Shrinkage Weight Factor With Square Gamm

élsh3 = (01)01p1e + (1 - ¢(61))61Leng

(84)
02, = ¥(02)02m16 + (1 - ¥(62))82,,,,
(85)
93sh3 = l/)(eg)egMLE + (1 - ¢(93))63Leng (86)
045 = W(04)0amie + (1 - 1/1(94))94Leng
(87)
Then the corresponding S-S reliability estimation was used using the equation for the series component
as follows:
Rpag = O25n 1 _ O15n3 020 Ossns  _ _ O2ps s,
S B 3 A = = = = = L = h3 h3
ezshg"'e‘*shg elsh3+e4sh§ e§h3+eish2+e4sh3 O35p3+04gps  O2gp3+0355 4045
_ 915’§+e35’i3 _ 915,}\3+925,§+63ShE
elsh3 +e3sh3+e4sh3 elsh3+ 92sh3 +e3sh3+94sh3
(88)
7. Simulation
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In order to check the performance of the estimate, the Monte Carlo simulation was used to
investigate the performance comparison of different reliability estimates. Estimated methods were
performed in S-S models using a variety of samples (30, 60, and 90). The next steps for Monte Carlo
simulations show the statistical results for each sample based on the criteria for mean squared errors for
bounded and series models as following steps:

- For Bounded Model
Stepl:Generate random samples from the uniform distribution defined on the interval (0,1) as
U, Uy, ey Uy, Ve, Vg, ...,vmland W1, Wy, o, Wi, respectively

Step 2: Convert the mentioned random samples into GIRD random samples of X~ GIRD (6,, ¢?),
and by using the cumulative distribution function in the following way

-a? 6 -a? 0
F(x) =e x* , Ui=e X’

x; = [a? Gi/—ln(Ui)]%

by the same method for y;~ GIRD ( 8, , ¢2), y,~ GIRD (85, ¢?), we get
1

yj = [@® 6;/—In(V))]2
1

e = [a? 63/=In(wj)]2

Step3: calling the Ry, for the bounded model from equation (3)

Step4: Apply Shrinkage estimators of reliability for Square Jeffry and Gamma by using equations (38),
(42), (56), (60), (74), and (78)

Step5: Based on L=1000 trials, Calculate the MSE as follows

MSE = % %:1([?\111' - Rb)z

- For Series Models
Step 1: initialize random samples from the uniform distribution defined on the interval (0,1) as
Up1, Ug, s Upn, 3 = 1,2,3 ,and wy, wy, ..., Wy, respectively.
Step 2: Using the cumulative distribution function to convert the uniform random samples to random
samples of X,~ GIRD( 8, , ¢2), fort = 1,2,3 as follow:
-a? 0 -a? 0
F(x,)=e x* Ui, =e *

xi, = [a? 6,/-In(Ui,)z
by the same method for y~ GIRD ( 8, , o2), we get
1

yj = [a® 64/=In(wj)]2

Step3: calling the R¢for the series model from equation (4)

Step4: Compute Shrinkage estimators of reliability using equations (47), (52), (65), (70), (83), and (88)
for Square Jeffry and Gamma

Step5: Based on L=1000 trials, Calculate the MSE as follows

MSE =23k, (Ry; - R,)’

8. Numerical Results

In this section, simulation results were introduced based on three parameters (64, 6, , 85) inbounded
model and four parameters (68,, 6, , 85,8,) in series model, and three samples problems size 30, 60,90
that have been implemented 1000 duplicated. In addition, Tables (1to 8) explained the results of the
proposed estimation methods. The simulation results used to determine the best outcome of the
proposed estimation methods (MLE, MSE, Sh1, Sh2, and Sh3) for two kinds of system reliability (R}, ,
and R, ) in S-S models construct on one parameter Generalized Inverted Rayleigh distribution. The
following explanation of the proposed methods for each model is independently discussed.
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In the case of estimation, system reliability (R, = P(Y; < X < Y;)) of the first stress - strength
model, the simulation results of the proposed estimation methods are illustrated in tables (1,2,3,4)
Tables 2 and 4 offer the simulation results for MSE of all the proposed estimation methods. Based on
the simulation results, the shrinkage estimator using Shrinkage weight function with Square Jeffry as
shown in these tables was the best one and had less MSE for the (R, = P(Y; < X < Y,)) of the
Generalized Inverted Rayleigh distribution. While Constant Shrinkage Weight Factor in Square Jeffry
had the second rank and followed by Shrinkage weight function with Square Gamma, and MLE,
respectively. The following tables (1-4) will be presenting the simulation results.

On the other hand, in the case of estimation for the series system reliability
(Ry = P(Y < min (X1, X5, X3)))of the second stress-strength model, the simulation results of the
proposed estimation methods are illustrated in tables (5,6,7,8), we have been presented simulation
results for MSE through tables 6 and 8. Based on the simulation results, the shrinkage estimator using
Shrinkage weight function with Square Gamma as shown in these tables was the best one and had less
MSE for the (Ry = P(Y < min (X, X,, X3)))of the Generalized Inverted Rayleigh distribution. While
Constant Shrinkage Weight Factor in Square Jeffry had the second rank and followed by Shrinkage
weight function with Square Gamma, and MLE, respectively. The following tables (5-8) will be
presenting the simulation results.

Table 1-Estimation value of R, when 6; = 1, 6, = 2.5 and 65 = 1.5

Shl Sh2 Sh3

(n,my, my) Shiiny Shying Shainy Shyine Shainy Shaing

(30,30,60) 0.094725 0.100860 0.094752 0.100723 0.092313 0.093713
(60,30,30) 0.095399 0.100931 0.095543 0.101080 0.093836 0.096050
(90,30,60) 0.095149 0.102073 0.095068 0.101660 0.092542 0.094832
(60,30,60) 0.095655 0.102367 0.095601 0.102021 0.093182 0.095171
(30,30,90) 0.094405 0.100998 0.094369 0.100700 0.091485 0.092775
(60,30,90) 0.094629 0.101773 0.094511 0.101263 0.091993 0.094228
(90,90,90) 0.093103 0.094919 0.093181 0.095039 0.092499 0.092766
(60,60,90) 0.092548 0.095626 0.092600 0.095648 0.091692 0.092616

Table 2- MSE value of R = 0.085714285714286 when 6, = 1, 8, = 2.5and 6; = 1.5

Shl Sh2 Sh3

(n,my, m;) Shanl Shyng ShZLn] Shoing Sh3Ln/ Shaing

(30,30,30) 0.000548 0.000565 0.000547 0.000565 0.000692 0.001024
(60,30,30) 0.005294 0.005414 0.005266 0.005338 0.006727 0.009338
(90,30,60) 0.004669 0.005470 0.004616 0.005244 0.005083 0.006571
(60,30,60) 0.004152 0.004630 0.004113 0.004463 0.005038 0.006785
(30,30,90) 0.004655 0.005299 0.004618 0.005139 0.005294 0.006860
(90,90,90) 0.001739 0.001741 0.001738 0.001740 0.001956 0.002525
(60,30,90) 0.004064 0.004913 0.004015 0.004680 0.004680 0.006250

(60,60,90) 0.002657 0.002779 0.002652 0.002759 0.002938 0.003672
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Table 3- Estimation value of R, when 8, = 2.3, 6, = 3.2 and 65 = 1.6

Shl Sh2 Sh3

(n,my, my) Shiing Shying Shainy Shying Shainy Shaing

(30,30,30) 0.097694 0.103549 0.097951 0.104162 0.095667 0.097460
(60,30,30) 0.096427 0.103168 0.096643 0.103671 0.094402 0.097279
(90,30,60) 0.097523 0.106304 0.097537 0.106246 0.094264 0.097035
(60,30,60) 0.098196 0.106687 0.098223 0.106666 0.095301 0.098280
(60,60,60) 0.095209 0.098405 0.095342 0.098724 0.094351 0.095359
(30,30,90) 0.097622 0.105913 0.097630 0.105842 0.094281 0.096039
(60,30,90) 0.097642 0.106775 0.097606 0.106571 0.094149 0.096753
(90,60,90) 0.095726 0.099785 0.095781 0.099884 0.094470 0.095744

Table 4- MSE value of R = 0.094238156209987when 6, = 2.3, 8, = 3.2 and ; = 1.6

Shl Sh2 Sh3

(n,my,my) S han/ Shying S hZLnl Shorng S h3LnJ Shaing

(30,30,30) 0.000488 0.000496 0.000487 0.000502 0.000644 0.001000
(60,30,30) 0.000504 0.000510 0.000503 0.000514 0.000749 0.001239
(90,30,60) 0.004086 0.004956 0.004059 0.00486 0.005207 0.007747
(60,30,60) 0.003992 0.004927 0.003966 0.004844 0.004990 0.007795
(60,60,60) 0.002254 0.002255 0.002252 0.002270 0.002723 0.003955
(30,30,90) 0.003648 0.004497 0.003617 0.004390 0.004385 0.006317
(60,30,90) 0.003732 0.004755 0.003699 0.004617 0.004644 0.006698
(90,60,90) 0.002036 0.002197 0.002032 0.002191 0.002358 0.003274

Table 5- Estimation value of R, when 8, =1, 6, =2.5,0; =1.5and 4, =

1.7
(e 1y 10,1 sh1 sh2 sh3
Shiing Shying Shaing Shiing Shying Shaing

(60,30,60,60)  0.211514 0.211511 0.211127 0.211514 0.211511 0.211127
(30,30,60,60) 0.213102 0.213090 0.212085 0.213102 0.213090 0.212085
(90,30,60,90) 0.212015 0.211997 0.210915 0.212015 0.211997 0.210915
(30,30,30,30) 0.211854 0.211878 0.212771 0.211854 0.211878 0.212771
(60,90,90,30) 0.209807 0.209880 0.213562 0.209807 0.209880 0.213562
(90,90,30,60) 0.211470 0.211478 0.211646 0.211470 0.211478 0.211646
(60,60,30,90) 0.211721 0.211702 0.210500 0.211721 0.211702 0.210500

(30.60.90.90) 0.211993 0.211985 0.211222 0.211993 0.211985 0.211222
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Table 6- MSE value 0fR=0.210557718044953 when 8, =1, 6, =2.5,0; = 1.5and 6, = 1.7

Shl Sh2 Sh3
(ny,n,n3,m) Shiing Shying Shaing Shoing Shaing Shaing
(60,30,60,60) 0.001007 0.001006 0.000970 0.000908 0.001174 0.001595
(90,90,90,90) 0.005424 0.005422 0.005346 0.005294 0.006169 0.008502
(30,30,60,60) 0.001049 0.001048 0.000995 0.000883 0.001236 0.001674
(90,30,60,90) 0.000725 0.000724 0.000695 0.000631 0.000879 0.001258
(30,30,90,90) 0.000801 0.000800 0.000755 0.000661 0.000925 0.001226
(60,30,60,90) 0.000720 0.000719 0.000687 0.000619 0.000868 0.001236
(60,60,30,90) 0.0007119 0.0007112 0.000678 0.000604 0.000791 0.001026
(30,60,90,90) 0.000707 0.000706 0.000678 0.000611 0.000803 0.001074
Table 7- Estimation value of R, when 6, = 2.6, 8, = 1.4,0; = 2.3and 6, = 3.1
Shi Sh2 Sh3
(ny,ny,n3,m) Shan] Shiing ShZLn] Shaing Sh3Ln] Sh3ing
(60,30,60,60) 0.144992 0.145023 0.146134 0.150122 0.145339 0.146951
(90,90,90,90) 0.144106 0.144138 0.145393 0.148938 0.144283 0.145204
(30,30,60,60) 0.146552 0.146563 0.146634 0.148442 0.146453 0.146543
(90,30,60,90) 0.143930 0.143937 0.143896 0.145270 0.144158 0.144769
(30,30,90,90) 0.145961 0.145948 0.144859 0.144016 0.145665 0.144847
(60,30,60,90) 0.144952 0.144951 0.144553 0.145154 0.145205 0.145700
(60,60,30,90) 0.145189 0.145183 0.144545 0.144332 0.145052 0.144666
(30,60,90,90) 0.145010 0.145011 0.144663 0.144928 0.145039 0.144951
(ny, My, 11z, M) Shl Sh2 Sh3
Shiing Shying Shaing Shiing Shying Shaing
(60,30,60,60) 0.001395 0.001394 0.001354 0.001251 0.001497 0.001748
(30,30,60,60) 0.001583 0.001582 0.001521 0.001387 0.001750 0.002104
(90,30,60,90) 0.000998 0.000997 0.000970 0.000911 0.001062 0.001235
(30,30,30,30) 0.002518 0.002515 0.002398 0.002116 0.002917 0.003588
(60,90,90,30) 0.002234 0.002232 0.002165 0.002030 0.002600 0.003238
(90,90,30,60) 0.001372 0.001371 0.001333 0.001235 0.001532 0.001861
(60,60,30,90) 0.001110 0.001110 0.001074 0.000998 0.001244 0.001516
(30,60,90,90) 0.001148 0.001147 0.001113 0.001040 0.001261 0.001500

Table 8- MSE value of R = 0.143392225122712when 8, = 2.6, 6, = 1.4 6; = 2.3and 6, = 3.1
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9.Conclusion

Reliability of the supported system of the stress strength model was presented when the general
parameter pressure and force followed the General Inverse Rayleigh Distribution using two different
loss functions, such as the squared error loss function, linear exponential loss function, Jeoffrey presets
information, pre-gamma, and the method of shrinkage estimation (constant shrinkage, squared
shrinkage, and Shrinkage weight function). Model (R, = P(Y; <X < Y,)) and model (R; =
P(Y < min (X1, X,, X3)))were used to evaluate and verify the performance of methods using different
samples (30, 60, and 90).We an attempt has been made to estimate(R, = P(Y; < X < Y, ))and (R, =
P(Y < min (X3, X5, X3))) for stress-strength followed the general inverse Rayleigh distribution.
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