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Abstract

The paper focuses on the sufficient conditions for oscillatory property to the nonlinear
impulsive differential equation(IDE) of the second order with damping term. We submitted a
suitable impulsive conditions with the nonlinear equation. The obtained new results in this
article generalize and extend some modification results to linear (IDES) with damping term in
the references. We have been given illustrative example to apply the conditions in the main
results.

1. Introduction

Differential equations theory is considered effective tool in modeling many phenomena and
continuous processes in optimal control, population dynamics, industrial robots [1-5] and so forth.
Researchers have searched for many and various methods of finding solutions and stability to
differential equations, whether with fractional order [6-11]. Moreover, the researchers studied the
properties that characterize all solutions with their behavior, and delved into the extraction of those
features of the solutions, analyzing them, giving the scientific meaning to them, and providing
recommendations and observations.

We also know that many scientific phenomena are not always in the form of continuous processes,
but there are moments of change in the behavior of the solutions for certain periods, as this
phenomenon is called impulses. Thus, the (IDEs) are more realistic to represent the phenomenon or
scientific issue as a mathematical formula [12].

Although these periods are in the form of a few moments, they are not neglected. Rather,
conditions are set for them that are compatible with the issue. Therefore, we note that there is great
importance in study of impulsive differential equations and extracting properties to solutions for this
type of equations.

Many authors are investigated qualitative features to solutions of differential equations with
impulses effect such as asymptotic behavior [13-15], oscillation criteria [16-19] and stability [20,21].

The importance of applications of impulsive differential equations with damping term, it paid
attention the authors to published several papers such as Thandapani, Kannan and Pinelas [22]
presented the sufficient conditions to oscillation to forced delay (IDE) with damping term. Zeng; Wen;
Peng and Huang [23] investigated the oscillatory property to second order linear (IDE) with damping
term.

Our research is to consider oscillation criteria to nonlinear (IDE) in form:
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Y0 +706)Y () +a(G)AY () =0, ®x #x, t=12,..
a,AY' () + b, A(Y () = 0, n=x (1)

where a,, b, are sequences of positive real numbers , 3, are the moments of impulses effect.
Let f(x), g(2) € PC([0,0); R), A € C(R,R),YA(Y) > 0and A' (Y (x)) =1 > 0.

The §(3¢), g(3) are piecewise continuous functions from the left and g() is the damping function. We

. . . . M, <K <K
define u(»¢) as the moments to impulses effect in s, ) with u(x¢) = {(; %L <y< %‘“
40 = =11

Definition 1.1 [23]: Let Y (%) =Y (x; »,) be the solution of equation (1), then Y () is
characterized by the following:

(@) If 3 € (3, 2,411, Y (30) satisfies the first equation in (1).
(b) If 2 = 3, Y () satisfies the impulsive condition of (1).

(c) Y'(3) has two side limits with left continuous in impulsive points, where Y'(x,) satisfies the
impulsive condition of (1)

Definition 1.2 [23]: If Y'(3)is a nontrivial solution to eq. (1), then ¥ (3) achieves the non-oscillatory
feature if it satisfies eventually positive feature or eventually negative. Otherwise, Y (3¢) is
oscillatory. The eq. (1) verifies oscillation feature if all nontrivial solutions are oscillatory.

2. Main Results

This section includes some new results to secure sufficient conditions for oscillatory feature for eq.
D).
Theorem 2.1: Let f(%) > 0 and ¢: L > R* be continuous function, where £ = {(3,&):3¢ = & = 1, }.
Assume that ¢ (», &) has continuous with non-positive partial derivative on ¢ for the variable . Let
@: L - R* be continuous function such that:

— 20069 = 906 OVE0D), & Ep @)
And ¢ (s,30) = 0,2 = 3y, p(t,) >0, x> & = x (3)
Jim sup—— x {f,j‘o ( ©)9068) =1 (92069 + 2006 IOV 06 D) + PO E))) dg +

b,
10 20, m)} = (@)
Then eq. (1) has oscillatory property.

Proof. Suppose that Y' () is nonoscillatory, so there isa T = », such that Y (3) # 0, > T.
We define the Riccati Transform as:

5(;{) = M n >
AY ()’ -
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Y G0 A () — (V' GO)*A' (Y ()

§'6) = RETCD)
s 2 X100 (Ye0N
(”)‘h(m))_(r(u)) (G

So, by the first equation of (1):

5700 = 000 —sCIAICD) (100
- AY (30)) Yo
< —f0)S (G0 — a(3) —nS?(3)

S' () +T00)S () + nS2%(%) < —g(x),for » + x,.

2
) A (Y ()

When 3 =, then:
AS(Gt) = SGf) —8Ge)

_Yed) Y
TR AT )

But the function 4 is continuous on [, )
_ Yo Y0
A ()

AY'(x,) —b,

A5G = F7 ey ~ e

The transformation § () satisfies:

S'(0) +10NSG) + 182060 < —g(0),  x#x,

50e) = 2 ®

L
by choosing positive integer n with 3, ; < T <x,. Let m = 4(3x) for large enough » that

means x,, <x <x,,.;. Assuming that 7 denotes to the set of interval [T,] except the points

Hpy i1, 0 My, SO it can see of the first equation of (5):
- fT a0t =~ [ 66100, tf
J
> [ 00065 ©dg 41 [ 900 57 )as
7 7

+ [ 1©900 0 52 ©
Since § () is a piecewise cjontinuous with continuity of ¢, we see that:
0, 0)S00) — P, TIS(T) = P, 1)S () — PGt #)SGH) + PG, 1)SCF) — PG, 2)S ()

+o0t, 17 )SG) — ot )SCGe ) + PGt NS () -
POt )SOt1) + P, 2,1)S(,-1)
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=G, 17 )S G ) + P, )SGe) — P, T)S(T)
uGo)

6
| 35 (@0 DS©) ds + " (90 xISC) = P00 x)SC0))
)

l=n

uGo)

($OuOSEO) e + Y Ge)(S65) = 56e))

Il
Q
Sl

uGo)

(GG OSE) s + ) Pl xIAS G

l=n

Il
~Q
Sl

uGo)

9 b,
- 7[ 5 (600 DS@©) s - Zﬂ - t) %
¢(n, %) =0, and by (7):
u(%)
f 5 (D0 DS@) df = =900 TIST) + Z D ®)

by (6) and (8), and the relationship of ¢ (s, ) and ¢ (x, f) we have

- J a(E)p 0, ) dE > J §(¢(u, O5(©)) dé - J TFP0a DS

1 f (0, £)52(E) dE + f )P0t E)S(E) de
Vi N

uGo)

b
= —pTIST) + Y. L B00x) + [ 90uOVFCDSEO) dE +1 [ $0uDSHE) s
=n 7 J
+ [ 1900056 s
J

uGo)
b
= —4GaTIST)+ ) L 9G0x)
+ [ (#0aOWBCDISE) + 1606 2O +TOB0e SE) ) s
J

u(u)

= —p( IS + Z B %)

+f ((w(% £+ {EVBGe D) VFC DS (©) +nple 7))
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uGx)

by
= —4GTIST+ ) 2 9G0x)
l=f1 )
+ j <4— (9608 + VP06 D)
J
2
(906§ + IOV D) + T 5)5(5)] )dé’

o
So, we have:
- f a(E)p (o, §) dE
7

u(%)

~$(x T)S(T)+Z “906%)
¥ f ( (00e&) +1EOVEERD)
J
+[ \/—(w(% ) + NP0 D) + Vi, €) s@)])otf

u(0)

b, 1
> 0TS+ Y Lben) =5 [ (0608 +€WBED)
=n J

u(%)

- g(é)¢(uf)d€+—f (06e &) +1©FEr D)) e - Z 91
’ ¢>(HT)S(T) 9)

u(Go)
1
[ s©@00a0) 6~ - [ (00a£) +TOVBCD) s+ . 2-900x) < 304 1))
’ 1 ! o #(%)b
| <g(f)¢>(%, O =3 (92000 + 2060 DIOVIGD + (O, f))) 4+ ) 2 90x,)
’ < $(TIST) " o)

S0, we have:
uGo)

‘ 1 B,
| (g(s)cp(a«, O =3 (92000 + 2000 DOV D + @), f))) 45+ ) - p0nx,)

Ao

ﬂ%xg\‘q

n—1
1 b,
(g(w(m ) = 3 (#2000 + 2000 DOV D + @), E))) dE+ ) oo
=1 "

u(Gx)

1
+ (g(f)qb(x, &)= 3 (#2008 + 2060 DIOVIG D) + PO e f))) dE+ Y )
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T n—1
<[ (g(f)qb(z, £~ 5 (07606 + 2000 DIOVBCHD + P()D0e f))) 4+ 90 0)

+ ¢(, T)S(T)

T n—1
= [ (5600600 = 3- (0000 + HOVBED) )t + ). -0 00) + 90 TS

T

]

"o

n—-1
b |
BP0 AE+ ) L P0x,%) +§(0TIST), since 1(0) > 0
=1 t
T

n—1
b,
< f 9(E)p 0, €) dE + Z -0 ) + 01 TS

"o

T n—-1
b,
< ¢(u,uo)< [ls@ias+y 2+ |s<¢)|)
Mo =1 t

the last inequality held by decreasing of ¢ (s, &) with respect to é.
So, we conclude that:

lim sup————
H-0 p¢(”'”o)

¢ 1
x { I (g(f)qs(x, £ = 3 (07006) + 2000 DIOVBERD + P90 E))) at

Ho

u(u)b
+ Z a—‘qb(%,m)} < oo,
=1 L

Which is a contradiction with condition (4). O

In the following result, we proposed two conditions and use the problem (5) to ensure the oscillatory
property.

Theorem 2.2 Assumethat, forp >1,0< 9 <1,

uGo)
1 n b,
Jim supx—g{ L 8(6) (e~ 7dE+ ) e ul)@xﬁ} = (11)
o =1
and

1 "
lim Sup%—a{f (0§ =90t — &) +f(EH)ule — ) (e — 5)9'250'245} <o (12)

H—00

Then eq. (1) has oscillation property.
Proof:
Let Y' () be a non-oscillatory, then there isa T = 3, with Y () = 0 for» > T.

Therefore the Riccati transform S (3) satisfies (5):
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§'00) + 100800 +15%(0) < =900, x # 1,
ASGe) ==

We multiply first inequality of (5) by (2 — £)2&? with integrating it from s to s:

- f 0(6) Gt — E)eul dE

Ho
P

Zf (%—5)95195’(5)45+f f(§) G — 2875 (§)dg

+n [ " - e0e0s2(0)de (13)
BL’J{I "
L (e — 087 (E)dé
u(Go)

b, x
= O — 2)°n? S (x0) + z o= x)o + f (o — £)°E7S(§)dé
=1 " #o

9| G- eSO (19)
Now put (14) in (13), V\(;e get:

- f o(6)0t — )08 g
o 400

b, ”
> eSO + . Gl e | G- 900S ()
=1 *o
—9 f (o — )2EP1S(E)dE + f T(E)(x — £)°05(€) g
+n ] (e — £)0E052()d

71¢3) b
= G = n)OESGro) + ) 20— )%
=1 t

+ f (0 — 90 — &) +f(O)E(x — £) (e — ) 1€ 15 (E)

0 [ G- 000s? @t
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u(Gx)

= G- xo>9x05(uo>+z o O =)
- f (08 —90¢ — &) + ()¢ — ))2(x — 2262
f {ﬁ(x—f)zszsm

o (0f — 90e— ) +f Y- T H}Zd
— — — — 2 2
7 o 90 ©FC— D= 2§72 { df

From above, we get:

f a(6)( — )08 dE
° uGe)

< Gt )OS Cr) = Y. (e = w)n?

th

1 V4

o f (08 — 90t — &) + T(E)E G — £))% (x — £)0-269-2dig
e e 9

- f {ﬁ(x—f)zfzsm

_2 9-2)2
+7(95 90— ) + ()G — )0 — )7 ¢ 22} dg

uGo)

b
<~ = n) SO0 = D e = )e?

L q,
+ %fk (08 — 90 — &) +T(E)E(x — £))2 (3 — £)27289724¢.
uGx)
L a(§) G — )6%dE + Z — (x 2#,)2x?
= 1(%;4 ”0)9”05(%0)
v | (08 = 000 =) QR PG 2E
By dividing the last inequality by »* and take lim sup for two sides:

u(u)
1
lim supﬁ{f ()¢ - s>95%5+2—<z m)%}

p ad

—(— ”0)9”0 5(”0)

s}lfi_r)rolosup @
1
+ﬁ,l‘315“p_{f (0§ =90 = &) +T()E (e — £))*(x — §)2 727~ Zdé’}

= l1m sup —(1 — —)9 %3S ()

1 9-2
+4—11mSUD—{f (0§ =90 = &) +T()E0Ge — ))* (e — §)°7%¢ df}

1N u—>co
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Which is a contradiction with condition (11). O
Corollary 2.1 Let ¢(3,é) = (1 —%)29,9 > 1 and:
f £ 1,2 £ £ &b, x
lim sup{ | ((1 — %@ 3 (AT + - ;)@f%f))) as + Zl =Ty
° (15)

= 00
Then equation (1) is oscillatory.

Proof: Suppose that ¢ (»,&) = (1 — %)29,9 > 1. Then ¢(»,§) = 279 (1- %)9‘1,
The functions ¢ and ¢ verify the conditions (2) and (3) in theorem (2.1).

Furthermore,

IOaa ¢(J{I J""0)
1 (402 ¢
— 1i - - i _ 2\20-2
_}ltl—{rolosup{(l_@)w f n? a }f) 4
n’  x
4g?(1—50y2e!
= lim sup d

e (20 = Dr(1 = 5%

b 4
1
lim sup JQDZ(%, §ag
Ho

I 4ot 0
= 1lm Su =
s P (20 — (% — %0)
1 1
— 1when » » o

$06H0) (1 Z0)20
So, by applying the condition (4) of theorem (2.1):
1

lim sup————
i p¢("f'7'f0)

A 1
x { | (g(aqb(z, §) = 3 (#2008 + 2060 DIOVIGD) + PG s))) 4

= lim sup{ I ((1 ~Sregey - (RS +a- %)Zef%f))) as
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By theorem (2.1), the eq. (1) is oscillatory. m|
In the following example, we applied the conditions in theorem (2.1) to guarantee the oscillation
property.

Example (2.1): Suppose that ¢ (x, &), @ (x, &) are defined as in corollary (2.1) and:

Y' (%) + s Y'(0) +n2A(Y () =0, %#3x, 1=12,..
WY () + (+ 1)%(Y(%L)) =0, x==x
202, w#xn
) ¢ n 4
Where §(x) = {; HH _H}i , g(n) = "1 l,g >2, x=>¢=2xy =21,andq, = 4,
T =, H=xn
3
b, =+ 1. By applying the condition (15):
4
. $ s 1 (49 $ $ )
_2\2¢ R _ 2\20-1 _2\20 2
tim sup? [ ((1 27000 - 4 (20 - D@ + (- DR PEO) |4t
Ho
uGo) b
+ z _L(l E)ZQ
q, n
=1
((2,0, €., 1 (4F ¢ £
. 4 -
— ~ 2 _2N\20 _ [ => _ 2\20-1 2 _2\2¢0
lim sup j(nf a-pe - (Ra-pr+ea-D ))df
o
uGx) +1
: _Mze
Z t a z)
=1
. 2%5 (= 19)%2* (3 — g )20*2 (o — ng )?0*3
= lim sup >
0 n(Ze + e ne+1) nle+1)(2e +3)
1 (2390 — g )29 2(n = n )ZQH Hg(” — XA )ZQH o (= n )ZQ+2
4n n2e (20 + 1)xn?e (20 + 1)x?e 20+ 2
uGo)
_ 20+3 + 1
n (=) +Z‘ (1_”_t)29
(20+2)(20+3) L L x
— i (7n5 — 2)(t — 19 )**" T (ot — 19 )?2+? 70t — 2y)%0*3
Tt P e+ e Sne+1)  8ne+ (20 +3)
uGe)
1 (2300 — 1)@ N Z t+1 1 20
4n n2e L ( }{)
=1
— i Ot =9 )28 (7§ = 2)(t —29) 22 Trg (3 — 29 )?0+? 70 — np)?*3
B ame+1) 4y 81(c+1)  Bne+1)(20+3)
uGx) +1
: _Hzel
Z t a %) ®
=1

10
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So, by corollary (2.1) the eg. (1) is oscillatory.

Conclusion
we obtained appropriate sufficient conditions to oscillation for equation (1) which generalize

and extend some results in [23] to nonlinear case. By formulating appropriate impulsive conditions,
we concluded that the impulses conditions play an important role to consider the qualitative features to
solutions for differential equations.
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