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Abstract. The concepts G-g-closedness and G-g-openness were used to popularize presented
modern classes of separation axioms in grill topological spaces. Many relationships between
multiple kinds of these classes are summarized, too.

1. Introduction
A nonempty collection G of nonempty subsets of a topological space X is named a Grill if
ii Ae GandAcS B € XthenB € G
ii. AB c XandA U B € GthenA € GorB € G[1]. Let X be anonempty set. Then the
following families are grills on X. [1-3]
{0} and P(X)\{@} are trivial examples of grills on X.
G, the grill of all infinite subsets of X.
G, the grill of all uncountable subsets of X.
G, ={ A: A €P(X), p € A } is a specific point grills on X.
o Gup={ % BEPXK), BNA D}, and
If (X,t) is a topological space, then the family of all non-nowhere dense subsets called G_.={ A < X:
int, cly(A) # @}. Is the one of kinds of grill on X.
Let G be a grill on a topological space(X,t). The operator ¢: P(X)—>P(X) was defined by ¢ (A)={x€ X
\ UNA€G, for all U'et(x)}, t(x) denotes the neighborhood of x. A mapping ¥: P(X)—>P(X) is defined as
Y (A)=A U o (A) for all A € P(X) [4-6].
The map W satisfies Kuratowski closure axioms: [3,4]
i Y@=09,
(i) IfAc B, then¥ (A) S V¥ (B),
(ili) IfA <X then ¥ (¥ (A) =Y (4),
(iv) IfA, #BcX thenW(AUB)=Y (A)UVY (B).

In this research, we presented G-g-closed set and it is complement G-g-open set some notions
have been presented by new kinds of separation axioms like: G-g-T,-space, G-g-T,-space, G-g-T,-
space. m
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2. Separation Axioms with Grill-Topological Open Set

Definition 2. 1: In grill topological space (X, t, G), let D € X. D is said to be grill-g-closed set denoted
by "G-g-closed", if (D - U) ¢ G then, (cl(D) - U) € G where every, U< X and U € t.

Now, D€ is a grill-g-open set denoted by "G-g-open™ .The family of all "G-g-closed" sets denoted by
GgC(X). The family of all "G-g-open" sets denoted by GgO(X).

Example 2. 2: Consider the space (X, t, G), where X = { {1, 2, £z}, t = {X, 0, { f1}, { £z}, { {1, {2}}, and
G={X {fi}, { fu, 2}, { f1, fs}} So,

PX)={X% 0, { i}, { 2}, { =}, { {1, ©2}, { {1, Bz}, { £, fs}}

ch(x) = {X1 Qv { fl}i { fz}! { f3}1 { flv fz}’ { flv f3}’ { fzv f3}}l GgO(X) = {X’ Q)v { fl}’ { fz}v { 53}1 { flv
fz}v { flv f3}! { fzv f3}}

Remark 2. 3: For any (X, t, G) then

i. Every closed set is a G-g-closed set.

ii. Every open set is a G-g-open set.

The converse of Remark 2. 3 is not true. See Example 2. 2.
{f1} is a G-g-closed set, but {f1} is not closed set.

{f1, f3} is a G-g-open set, but {f1, f3} is not open set.

Definition 2. 4: The space (X, t, G) is a G-g-T,-space shortly “Gg-T,-space” if for each m = n and m, n
€ X, there exist U € Gg-o(X) whenever,m € Uandn € U orm € U and n € U’

Example 2. 5: Consider the space (X,t, G), where X={ f1, 2 }, t = {X, @, { fi}} and G = {X, { &2}}.
GgC(X) ={X, 0, { 2}}, GgO(X) = { X, @, { f1}}. Hence (X, t, G) is a Gg-T,-space.

Proposition 2. 6: If (X, t ) is a T,-space then (X, t, G) is a Gg-T,-space.
Proof: By Remark 2. 3. (ii).For each U’ € t, then U’ is a Gg-open set ,so the proof is over.

Definition 2. 7: The space (X, t, G) is a G-g-T;-space shortly “Gg-T;-space” if for each m, n € X and
m # n. Then there are Gg-open sets U'; U, wheneverm € Uy ,n € U'; andn € U, , m & U',.

Example 2. 8: A space (X, t, G) when X = N, where N is the set of all natural numbers, t=tef = { U <
N, U¢ is a finite set} U @ and G =PX)\{0}. So (X, t, G) is a Gg-T,-space. Since for each m, n € X
and m # n. Then there are Gg-open sets (N - {n}), (N - {m}) whenever {n} and {m} are two finite sets
such that (m € (N - {n})), (B € (N - {n})) and (m & (¥ - {m})), (b € XN - {m})).

Proposition 2. 9: If (X, t ) is a T,-space then (X, t, G) is a Gg-T,-space.
Proof: By Remark 2. 3.(ii).For each U’ € t, then U’ is a Gg-open set ,so the proof is over.

Proposition 2. 10: If (X, t, @) is a Gg-T,-space then it is a Gg-T,-space.

Proof: Let m, n € X such that m # n since (X, t, G) is a Gg-T,-space, then there exists U'; U, € Gg-o(X)
suchthat, m e U'; ,n € U; andn € U, , m & U’,. Then there exist U’ € Gg-o(X) whenever, m € U, n &
Uandm & U ,nelU.

The converse of proposition 2. 10 is not true for example 2. 11.

Example 2. 11: The grill topological space (X,t, G) is a Gg-T,-space, where X = {f1, £2}, t = {X, 0, {
3} and G = {X, { f1}}. GgCX) = { X, 0, { f1}}, GgO(X) = { X, 0, {f2}}. The grill topological space
(X, t, G) is not Gg-T,-space, since for any elements f1 # f>, there is no Gg-open set U’ containing f1 which
does not contain f>.
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Definition 2. 12: The space (X, t, G) is a G-g-T,-space shortly “Gg-T,-space” if for each m # n. There
are Gg-open sets U’; , U, wheneverm € U, ,n € U, and U; " U, = 0.

Example 2. 13: Consider the space (X, t, G), where X = { {1, 2, f}, t = {X, @, { f1}, {2}, { f1, 2}}, and
G={X {fi}, {f, 2}, {1, f3}}. So, GgC(X) = P(X) = GgO(X). Hence (X, t, G) is a Gg-T,-space.

Proposition 2. 14: If (X, t ) is a T,-space then (X, t, G) is a Gg-T,-space.
Proof: By Remark 2. 3. (ii).For each U’ € t, then U is a Gg-open set ,so the proof is over.
Proposition 2. 15: If (X, t, G) is a Gg-T,-space then it is a Gg-T,-space.

Proof: Let m, n € X whenever, m # n since (X, t, G) is a Gg-T,-space, then there are Gg-open sets U'; U,
suchthatm e U, n eV, and U; n U, =@. Impliesm e W'y andn € U, orn € U, andm € U, .

The converse of proposition 2. 15 is not true see example 2. 8.

A space (X, t, @) is a Gg-T,-space. Which is not Gg-T,-space, since there is no two Gg-open sets,
Uy U, suchthat 'y n U, = @.

Remark 2. 16: We have formerly noted that (X, t, G) is a Gg-T;-space whenever, it is a TF;-space (for
everyi€{0,1,2}).
The converse of Remark 2. 16 is not true in general for example 2. 17.

Example 2. 17: Consider the space (X, t, G), where X = { {1, 2, 3}, t = {X, 0}, and G = P(X)\{@}. So,
GgC(X) =P(X) = GgO(X). Then the space (X, t, G) is a Gg-T;-space (for every i € {0, 1, 2 }). But the
space (X, t) is not T;-space (for every i € { 0,1, 2 }).

The following diagram shows the relations between the various kinds of concepts of our formerly
mentioned.

Diagram (2. 1)

T,-space Gg-T,-space
T,-space
Gg-T,-space

| 1

T,-space Gg-F,-space
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Relationships among T;-space and Gg-T;-space

3. Separation Axioms with Some Types of Open Functions

Definition 3. 1: The function B: (X, £, G) —( ¥, 1, G) is called

i. G-g-open function, shortly "Ggo-function” if § (U’) € Gg-o(¥) whenever, U € Gg-0(X).
ii. G*-g-open function, shortly "G*go-function" if  (U") € Gg-o(¥) whenever, U’ € t.

iii. G**-g-open function, shortly "G**go-function" if (") € t whenever, U’ € Gg-o(X).

Proposition 3. 2: If (X, t, @) is a Gg-T;-space and | is an onto, Ggo-function from (X,t,G) to (¥, t, G
) then ¥ is a Gg-T;-space (foreveryi € {0, 1,2}).

Proof: If i = 0: Let m, n € ¥ such that m # n. Since | is an onto function, then H~(m) # @ # 5~ 1(n) and
5 1(m), 5~ 1(n) € X and F~1(m) # H~1(n). Since (X, t, G) is a Gg-T,-space, then there exist U € Gg-
o(X) whenever F™1(m) e ', ~1(n) € U or ~1(m) & U, H1(n) € U Since | is a Ggo-function, then
B(U) is a Gg-open set such that m € H(U) andn € H(U) or m € B(U’) and n € H(U’). Hence ¥ is a Gg-
To-space. If i = 1: Let m, n € ¥ such that m # n. Since F is an onto function, then §~1(m) # @ # 5~ 1(n)
and 5~'(m), 5~1(n) € X and 5~1(m) =B (n). So (X, t, G) is a Gg-T;-space, then there exists U; U,
€ Gg-o(X) such that 5~Y(m) € U; , F~(n) € Uyand 5~ 1(n) € U, , F1(m) ¢ U,. By the condition |
is a Ggo-function, B(U’;), B(U’,) are Gg-open sets in ¥ such thatm € 5(U’;) ,n € H(U;) and n € K(U’,)
,m & B(U,). Hence (¥, t, G) is a Gg-T,-space.

If i = 2: The same proof above, but 5(U’;) N B(U’,) = @. Hence (¥, t, G) is a Gg-T,-space.

Corollary 3. 3: If (X,t ) is a T;-space and | is an onto, G*go-function from (X, t, G) to ( ¥, t, G ) then
(¥,t,G) is a Gg-T;-space, wherei € {0,1,2 }.

Proof: Follows from B(U’) is a Gg-open in ( ¥, t, G ) for all open set U in X .

Corollary 3. 4: If (X, t, @) is a Gg-T;-space and | is an onto, G**go-function from (X,t,G) to (¥, t, G
) then ¥ is a T;-space, where i € {0, 1, 2 }.

Proof: Follows from B(U) is an open set in ¥ for all Gg-open set U’ in (X, t, G).

Corollary 3. 5: If | is an onto and open function from (X,£ ) to (¥, t) and (X, t) is a T;-space, then ( ¥,
t, G ) is a Gg-T;-space, where i € {0, 1,2 }, for any grill Gon (¥, t, G).

Definition 3. 6: The function B: (X, £, G) —( ¥, t, G ) is called

i. G-g-continuous function, shortly "Gg-continuous function” if 5~1(U’) € Gg-o(X) for all U’ € 1.

ii. Strongly-G-g-continuous function, shortly "Strongly-Gg-continuous function” if 5~1(U") € t for
every, U € Gg-o(¥).

iii. G-g-irresolute function, shortly "Gg-irresolute function" if 5~1(U") € Gg-o(X) for every, U € Gg-
o(¥Y).

Proposition 3. 7: If (¥, §) is a T;-space and B: (X,£,G) — ( ¥, t, G ) is an injective, Gg-continuous
function then ( X, t, @) is a Gg-T;-space, wherei € {0, 1,2 }.

Proof: If i = 0: Let m, n € X such that m # n. Since | is an injective function, then F(m) # B(n), where,
B(m), b(n) € ¥. So, (Y, 1) is a Ty-space, then there exist U’ € { whenever, h(m) € U, H(n) € U or H(m)
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¢ U, B(n) € U. By | is a Gg-continuous function, then §~1(U) € Gg-o(X) whenever, m € H~1(U), n
¢ H71(0) orm & H~1(U), n € H~1(1). Hence (X, t, G) is a Gg-T,-space.

Ifi=1: Let m, np € X such that m # n. Since | is an injective function, then §(m) # B(n), where, H(m),
B(») € ¥. So, (¥, 1) is a T,-space, then there exists Uy, U, € t whenever, H(m) € U; , B(n) € U’; and
B(n) € U, , h(m) & U, . Since | is a Gg-continuous function, then §~1(U;) and 5~1(U’,) are Gg-open
sets whenever, m € ~1(U;) ,n € 5~1(U’;) and n € H~3(U’,) , m & 5~ 1(U,). Hence (X, t, G) is a Gg-
T,-space.

If i = 2: The same proof above but H(U’;) n B(U,) = @. Hence ( ¥, t, G ) is a Gg-T,-space.

Remark 3. 8: Let B: (X,t, G) —( ¥, t, G ) is a function
If b is a continuous function, then | is a Gg- continuous function

Corollary 3. 9: If (¥, t) is a T;-space and B: (X, £, G) —( ¥, §, G) is an injective continuous function,
then (X,t, G) is a Gg-T;-space, wherei € {0,1,2}.

Proof: Since every continuous function is a Gg-continuous function by Proposition 3. 7, then Corollary
3. 5, is applicable

Proposition 3. 10: If (¥, t, G ) is a Gg-T;-space and B: (X,t,G) — ( Y, t, G ) is an injective strongly-
Gg-continuous function then (X, t ) is a T;-space, wherei € { 0,1, 2 }.

Proof: Follows from, 5~1(U’) € ¢ for each U’ € Gg-o(¥).

Proposition 3. 11: If (¥, t, G ) is a Gg-T;-space and B: (X, t, G) — (¥, 1, G ) is an injective Gg-irresolute
function then ( X, t, @) is a Gg-T;-space, wherei € {0, 1,2 }.

Proof: Since H~1(U) € Gg-o(X) for each U € Gg-o(¥).

4. Gg-Convergence Sequence

Definition 4. 1: Let (X, t, G) be a grill topological space, where x, € X and (S,), ex be a sequence in
X. Then (S,), e is called Gg-Convergence to x, shortly S, ~ x, if for every Gg-open set U’ where,
%o € U there exist K € ¥ where, S, € U for every n = K. A sequence (S,), e is called Gg-divergence,
if it is not Gg-Convergence.

Theorem 4. 2: If (X, t, G) is a Gg-T,-space then every Gg-Convergence sequence in X has a unique
limit point.

Proof: Let (S,),ex be a sequence in X where, S, ~ x; and S, ~ x,; x; #x, Where, ¥, x, € X. Since
(X, t, G) is a Gg-T,-space then there exists U; U, € Ggo(X) such that x, € U; and x, € U, where
U; U, = 0. Since S, ~ %, and x; € U'; € Ggo(X) implies there exist K, € ¥; S,€ U; for all n = 'K;.
So, S, ~ x, and x, € U, € Ggo(X) implies there exist K, € ¥; S,€ U, for all n» = K,. Hence, U; " U,
# @, that is contradiction.

The prerequisite that a space X is a Gg-T,-space is very necessary to make Theorem 4. 2 is proper.

Example 4. 3: Let (X, t, G) be a grill topological space, where, X = { f1, f>, f3}, t = {X, 8}, and G = {X, {
fob, {1, 3}, {f2, fa}}. Then GgC(X) ={X, 0.{ {3}, { f1, {3}, { {2, s}}, GgO(X) ={X, @, { {1}, { o}, {
f1, ©2}}.The sequence (S,), ex in X, where S, = f; for all n € ®. The sequence (S,), ¢ 5 has one limit point
suchthat §, ~ {5 but (X, t, G) is not Gg-T,-space.

Proposition 4. 4: If a sequence (S,), ex IS @ Gg-convergence to x, in (X, £, G), then it is a convergence
to %;.
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Proof: Let U’ be an open set in X where, x, € U. By Remark 2. 3. (ii). U is a Gg-open set in X where,
%o € U. Since (S,), e n IS a Gg-convergent to x,, then there exist K € ¥ where, S, € U for every n >
K. Hence (S,), e 5 IS a convergent to x,.

The converse of Proposition 4. 4 is not true for example 4. 5.

Example 4. 5: Let (X, t, G) be a grill topological space, where, X =N set of all natural numbers t = {X, 0},
and G = P(X)\{0}, GgC(X) = P(X) = GgO(X). The sequence (S,),ex Where S, =n forallpe ¥Nisa
convergent to n for all o € ¥, which is not Gg-convergence for any element in .

Proposition 4. 6: Let b: (X,£,G) — (¥, t, G ) be an injective and Gg-irresolute function and (S,), ex
be a sequence in X. Then B(S,) ~ B(%y) in ( ¥, t, G ) whenever, S, ~ %, in (X, t, G).

Proof: Let U is a Gg-open set in ¥ where F( %) € U. Since F is a Gg-irresolute function, then 5~1(U)
is a Gg-open set where, x, € H~1(U). Since (S,),cx is @ Gg-convergent to x,, then there exist 'K € ¥
where, S, € H~1(U) for all o > K. Since F is an injective function, then there exist K € ¥ where, 5(S,)
€ U forall » = K. Hence B(S,) is a Gg-convergent to H( x).

Theorem 4. 7: Let B: (X, t, G) — (¥, t, G) be an injective and Gg-continuous function and (S,), e x be
a sequence in X. Then K(S,) — B( xq) in (¥, t, G ) whenever, S, ~ x, in (X, t, G).

Proof: Let U’ is an open set in ( ¥, t, G ) where, B( %) € U. Since § is a Gg- continuous function, then
F~1(U) is a Gg-open set in (X, t, G) where, x, € H~1(U). Since (S,), < x is a Gg-convergent to x,, then
there exist K € ¥ where, S, € 5~1(U) for all » > 'K. Since F is an injective function, then there exist
'K € ¥ where, §(S,) € U for all n = K. Hence B(S,) is a convergent to B( %g).

Proposition 4. 8: Let B: (X,£, G) — ( ¥, 1, G) be an injective and strongly-Gg-continuous function and
(S,), e n be asequence in X. Then K(S,) ~ B(xp) in (¥, t, G) whenever, S, = %, in (X, t, G).

Proof: Let U is a Gg-open set in ( ¥, t, G ) where B(xy) € U. Since | is a strongly-Gg-continuous
function, then 5~1(U) is an open set in X where, x, € H~1(U). Since (S,), ex iS @ convergent to x,,
then there exist 'K € ¥ where, S, € 5~1(U) for all 0 > 'K. Since | is an injective function, then there
exist 'K € ¥ where, |(S,) € U for all o0 > K. Hence K(S,) is a Gg-convergent to 5( %,).
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