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Abstract. The concepts 𝔾-g-closedness and 𝔾-g-openness were used to popularize presented 

modern classes of separation axioms in grill topological spaces. Many relationships between 

multiple kinds of these classes are summarized, too. 

1. Introduction  

A nonempty collection 𝔾 of nonempty subsets of a topological space Ӿ is named a Grill if 

i. ᾉ ∈  𝔾 and ᾉ ⊆  ℬ ⊆  Ӿ then ℬ ∈  𝔾  
ii.  ᾉ, ℬ ⊆  Ӿ and ᾉ ∪  ℬ ∈  𝔾 then ᾉ ∈  𝔾 𝑜𝑟 ℬ ∈  𝔾 [1]. Let Ӿ be a nonempty set. Then the 

following families are grills on Ӿ. [1-3] 

• {∅} and P(Ӿ)\{∅} are trivial examples of grills on Ӿ. 

• 𝔾  ͚   the grill of all infinite subsets of Ӿ. 

• 𝔾𝑐𝑜  the grill of all uncountable subsets of Ӿ. 

• 𝔾𝑝 ={ Λ: Λ ∈ P(Ӿ), 𝑝 ∈ Λ } is a specific point grills on Ӿ.  

• 𝔾ᾉ ={ ℬ: ℬ ∈ P(Ӿ), ℬ  ᾉ𝑐≠ ∅}, and 

    If (Ӿ,ȶ) is a topological space, then the family of all non-nowhere dense subsets called  𝔾 ={ ᾉ ⊆  Ӿ: 

intȶ clȶ(ᾉ) ≠ ∅}. Is the one of kinds of grill on Ӿ. 

Let 𝔾 be a grill on a topological space(Ӿ,ȶ). The operator φ: P(Ӿ)→P(Ӿ) was defined by  𝜑 (ᾉ)={ӿ∈ Ӿ  

\ Ư ᾉ∈𝔾, for all Ư∈ȶ(ӿ)}, ȶ(ӿ) denotes the neighborhood of ӿ. A mapping : P(Ӿ)→P(Ӿ) is defined as 

 (ᾉ)=ᾉ ∪ φ (ᾉ) for all ᾉ ∈ P(Ӿ) [4-6]. 

The map  satisfies Kuratowski closure axioms: [3,4] 

        (i)        (∅) = ∅, 

(ii) If ᾉ ⊆   ℬ, then  (ᾉ) ⊆    (ℬ), 

(iii) If ᾉ  ⊆ Ӿ, then  ( (ᾉ)) =  (ᾉ), 

(iv) If ᾉ, ℬ ⊆ Ӿ, then  (ᾉ ∪ ℬ) =  (ᾉ) ∪  (ℬ). 

 

         In this research, we presented 𝔾-g-closed set and it is  complement 𝔾-g-open set some notions 

have been presented by new kinds of separation axioms like: 𝔾-g-Ŧ0-space, 𝔾-g-Ŧ1-space, 𝔾-g-Ŧ2-

space. ■ 

mailto:ranamumosa@yahoo.com
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2.  Separation Axioms with Grill-Topological Open Set 
Definition 2. 1: In grill topological space (Ӿ, ȶ, 𝔾), let ⅅ ⊆ Ӿ. ⅅ is said to be grill-g-closed set denoted 

by "𝔾-g-closed", if (ⅅ - Ư) ∉ 𝔾 then, (𝑐𝑙(ⅅ) - Ư) ∉ 𝔾 where every, Ư ⊆ Ӿ and Ư ∈ ȶ. 

Now, ⅅ𝑐  is a grill-g-open set denoted by "𝔾-g-open" .The family of all "𝔾-g-closed" sets denoted by 

𝔾𝐠C(Ӿ). The family of all "𝔾-g-open" sets  denoted by 𝔾𝐠O(Ӿ).  

 

Example 2. 2: Consider the space (Ӿ, ȶ, 𝔾), where Ӿ = { ᶂ1, ᶂ2, ᶂ3}, ȶ = {Ӿ, ∅, { ᶂ1}, { ᶂ2}, { ᶂ1, ᶂ2}}, and 

𝔾 = {Ӿ, { ᶂ1}, { ᶂ1, ᶂ2}, { ᶂ1, ᶂ3}}.  So,   

P(Ӿ) = { Ӿ, ∅, { ᶂ1}, { ᶂ2}, { ᶂ3}, { ᶂ1, ᶂ2}, { ᶂ1, ᶂ3}, { ᶂ2, ᶂ3}} 

𝔾gC(Ӿ) = { Ӿ, ∅, { ᶂ1}, { ᶂ2}, { ᶂ3}, { ᶂ1, ᶂ2}, { ᶂ1, ᶂ3}, { ᶂ2, ᶂ3}}, 𝔾gO(Ӿ) = { Ӿ, ∅, { ᶂ1}, { ᶂ2}, { ᶂ3}, { ᶂ1, 

ᶂ2}, { ᶂ1, ᶂ3}, { ᶂ2, ᶂ3}}. 

 

Remark 2. 3: For any (Ӿ, ȶ, 𝔾) then  

i. Every closed set is a 𝔾-g-closed set.  

ii. Every open set is a 𝔾-g-open set. 

The converse of Remark 2. 3 is not true. See Example 2. 2. 

{ᶂ1} is a 𝔾-g-closed set, but {ᶂ1} is not closed set. 

{ᶂ1, ᶂ3} is a 𝔾-g-open set, but {ᶂ1, ᶂ3}   is not open set. 

 

Definition 2. 4: The space (Ӿ, ȶ, 𝔾) is a 𝔾-g-Ŧ0-space shortly “𝔾g-Ŧ0-space” if for each ꬺ  ꬻ and ꬺ, ꬻ 

∈ Ӿ, there exist Ư ∈ 𝔾g-o(Ӿ) whenever, ꬺ ∈ Ư and ꬻ ∉ Ư or ꬺ ∉ Ư and ꬻ ∈ Ư. 

 

Example 2. 5: Consider the space (Ӿ, ȶ, 𝔾), where Ӿ = { ᶂ1, ᶂ2 }, ȶ = {Ӿ, ∅, { ᶂ1}} and 𝔾 = {Ӿ, { ᶂ2}}. 

𝔾gC(Ӿ) = { Ӿ, ∅, { ᶂ2}}, 𝔾gO(Ӿ) = { Ӿ, ∅, { ᶂ1}}. Hence (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ0-space. 

 

Proposition 2. 6: If (Ӿ, ȶ ) is a Ŧ0-space then (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ0-space. 

Proof: By Remark 2. 3. (ii).For each Ư ∈ ȶ, then  Ư is a 𝔾g-open set ,so the proof is over. 

 

Definition 2. 7: The space (Ӿ, ȶ, 𝔾) is a 𝔾-g-Ŧ1-space shortly “𝔾g-Ŧ1-space” if for each ꬺ, ꬻ ∈ Ӿ and 

ꬺ  ꬻ. Then there are 𝔾g-open sets Ư1,Ư2 whenever ꬺ ∈ Ư1 , ꬻ ∉ Ư1 and ꬻ ∈ Ư2 , ꬺ ∉ Ư2. 

 

Example 2. 8: A space (Ӿ, ȶ, 𝔾) when Ӿ = ₦, where ₦ is the set of all natural numbers,  ȶ= ȶcof = { Ư  

₦, Ư𝑐 is a finite set}  ∅  𝑎𝑛𝑑 𝔾 = P(Ӿ)\{∅}. So (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ1-space. Since for each ꬺ, ꬻ ∈ Ӿ 

and ꬺ  ꬻ. Then there are 𝔾g-open sets (₦ - {ꬻ}), (₦ - {ꬺ}) whenever {ꬻ} and {ꬺ} are two finite sets 

such that (ꬺ ∈ (₦ - {ꬻ})) , (ꬻ ∉ (₦ - {ꬻ})) and (ꬺ ∉ (₦ - {ꬺ})) , (ꬻ ∈ (₦ - {ꬺ})). 

 

Proposition 2. 9: If (Ӿ, ȶ ) is a Ŧ1-space then (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ1-space. 

Proof: By Remark 2. 3.(ii).For each Ư ∈ ȶ, then  Ư is a 𝔾g-open set ,so the proof is over. 

 

Proposition 2. 10: If (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ1-space then it is a 𝔾g-Ŧ0-space. 

 

Proof: Let ꬺ, ꬻ ∈ Ӿ such that ꬺ  ꬻ since (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ1-space, then there exists Ư1,Ư2∈ 𝔾g-o(Ӿ) 

such that, ꬺ ∈ Ư1 , ꬻ ∉ Ư1 and ꬻ ∈ Ư2 , ꬺ ∉ Ư2. Then there exist Ư ∈ 𝔾g-o(Ӿ) whenever, ꬺ ∈ Ư , ꬻ ∉ 

Ư and ꬺ ∉ Ư , ꬻ ∈ Ư . 

The converse of proposition 2. 10 is not true for example 2. 11. 

 

Example 2. 11: The grill topological space (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ0-space, where Ӿ = {ᶂ1, ᶂ2}, ȶ = {Ӿ, ∅, { 

ᶂ2}}  and 𝔾 = {Ӿ, { ᶂ1}}. 𝔾gC(Ӿ) = { Ӿ, ∅, { ᶂ1}}, 𝔾gO(Ӿ) = { Ӿ, ∅, {ᶂ2}}. The grill topological space 

(Ӿ, ȶ, 𝔾) is not 𝔾g-Ŧ1-space, since for any elements ᶂ1  ᶂ2, there is no 𝔾g-open set Ư containing ᶂ1 which 

does not contain ᶂ2. 
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Definition 2. 12: The space (Ӿ, ȶ, 𝔾) is a 𝔾-g-Ŧ2-space shortly “𝔾g-Ŧ2-space” if for each ꬺ  ꬻ. There 

are 𝔾g-open sets Ư1 , Ư2 whenever ꬺ ∈ Ư1 , ꬻ ∈ Ư2  and Ư1  Ư2 = ∅. 

 

Example 2. 13: Consider the space (Ӿ, ȶ, 𝔾), where Ӿ = { ᶂ1, ᶂ2, ᶂ3}, ȶ = {Ӿ, ∅, { ᶂ1},  {ᶂ2}, { ᶂ1, ᶂ2}}, and 

𝔾 = {Ӿ, { ᶂ1}, { ᶂ1, ᶂ2 }, { ᶂ1 , ᶂ3}}.  So, 𝔾gC(Ӿ) = P(Ӿ) =  𝔾gO(Ӿ). Hence (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ2-space. 

 

Proposition 2. 14: If (Ӿ, ȶ ) is a Ŧ2-space then (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ2-space. 

 

Proof: By Remark 2. 3. (ii).For each Ư ∈ ȶ, then  Ư is a 𝔾g-open set ,so the proof is over. 

 

Proposition 2. 15: If (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ2-space then it is a 𝔾g-Ŧ1-space. 

 

Proof: Let ꬺ, ꬻ ∈ Ӿ whenever, ꬺ  ꬻ since (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ2-space, then there are 𝔾g-open sets Ư1,Ư2 

such that ꬺ ∈ Ư1, ꬻ ∈ Ư2 and Ư1  Ư2 = ∅. Implies ꬺ ∈ Ư1 and ꬻ ∉ Ư1 or ꬻ ∈ Ư2 and ꬺ ∉ Ư2 . 

The converse of proposition 2. 15 is not true see example 2. 8. 

 A space (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ1-space. Which is not 𝔾g-Ŧ2-space, since there is no two 𝔾g-open sets, 

Ư1,Ư2 such that Ư1  Ư2  = ∅. 

 

Remark 2. 16: We have formerly noted that (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ𝑖-space whenever, it is a Ŧ𝑖-space (for 

every 𝑖 ∈ { 0, 1, 2 }). 

The converse of  Remark 2. 16 is not true in general for example 2. 17. 

 

Example 2. 17: Consider the space (Ӿ, ȶ, 𝔾), where Ӿ = { ᶂ1, ᶂ2, ᶂ3}, ȶ = {Ӿ, ∅}, and 𝔾 = P(Ӿ)\{∅}.  So, 

𝔾gC(Ӿ) = P(Ӿ) =  𝔾gO(Ӿ). Then the space (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ𝑖-space (for every 𝑖 ∈ { 0, 1, 2 }). But the 

space (Ӿ, ȶ) is not Ŧ𝑖-space (for every 𝑖 ∈ { 0, 1, 2 }).  

The following diagram shows the relations between the various kinds of concepts of our formerly 

mentioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝔾g-Ŧ0-space 

𝔾g-Ŧ1-space 

Ŧ2-space 

Ŧ1-space 

Ŧ0-space 

𝔾g-Ŧ2-space 

Diagram (2. 1) 
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Relationships among Ŧ𝑖-space and 𝔾g-Ŧ𝑖-space 

 

3.  Separation Axioms with Some Types of Open Functions 

Definition 3. 1: The function Ҕ: ( Ӿ, ȶ, 𝔾) →( Ұ, ƫ, Ǥ ) is called 

i. 𝔾-g-open function, shortly "𝔾go-function" if Ҕ (Ư) ∈ Ǥg-o(Ұ) whenever, Ư ∈   𝔾g-o(Ӿ).  

ii. 𝔾∗-g-open function, shortly "𝔾∗go-function" if Ҕ (Ư) ∈ Ǥg-o(Ұ) whenever, Ư ∈  ȶ. 

iii. 𝔾∗∗-g-open function, shortly "𝔾∗∗go-function" if Ҕ (Ư) ∈ ƫ whenever, Ư ∈ 𝔾g-o(Ӿ). 

 

Proposition 3. 2: If (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ𝑖-space and Ҕ is an onto, 𝔾go-function from ( Ӿ, ȶ, 𝔾) to ( Ұ, ƫ, Ǥ 

) then Ұ is a Ǥg-Ŧ𝑖-space (for every 𝑖 ∈ { 0, 1, 2 }). 

 

Proof: If 𝑖 = 0: Let ꬺ, ꬻ ∈ Ұ such that ꬺ  ꬻ. Since Ҕ is an onto function, then Ҕ−1(ꬺ)  ∅  Ҕ−1(ꬻ) and 

Ҕ−1(ꬺ),  Ҕ−1(ꬻ) ∈ Ӿ and Ҕ−1(ꬺ)  Ҕ−1(ꬻ). Since (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ0-space, then there exist Ư ∈ 𝔾g-

o(Ӿ) whenever Ҕ−1(ꬺ) ∈ Ư , Ҕ−1(ꬻ) ∉ Ư or Ҕ−1(ꬺ) ∉ Ư, Ҕ−1(ꬻ) ∈ Ư. Since Ҕ is a 𝔾go-function, then 

Ҕ(Ư) is a Ǥg-open set such that ꬺ ∈ Ҕ(Ư) and ꬻ ∉  Ҕ(Ư) or ꬺ ∉ Ҕ(Ư) and ꬻ ∈  Ҕ(Ư). Hence Ұ is a Ǥg-

Ŧ0-space. If 𝑖 = 1: Let ꬺ, ꬻ ∈ Ұ such that ꬺ  ꬻ. Since Ҕ is an onto function, then Ҕ−1(ꬺ)  ∅  Ҕ−1(ꬻ) 

and Ҕ−1(ꬺ),  Ҕ−1(ꬻ) ∈ Ӿ and Ҕ−1(ꬺ)  Ҕ−1(ꬻ). So (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ1-space, then there exists Ư1,Ư2 

∈ 𝔾g-o(Ӿ) such that Ҕ−1(ꬺ) ∈ Ư1 , Ҕ−1(ꬻ) ∉ Ư1and Ҕ−1(ꬻ) ∈ Ư2 , Ҕ−1(ꬺ) ∉ Ư2. By the condition Ҕ 

is a 𝔾go-function, Ҕ(Ư1), Ҕ(Ư2)  are Ǥg-open sets in Ұ such that ꬺ ∈ Ҕ(Ư1) , ꬻ ∉ Ҕ(Ư1) and ꬻ ∈ Ҕ(Ư2) 

, ꬺ ∉ Ҕ(Ư2). Hence ( Ұ, ƫ, Ǥ ) is a Ǥg-Ŧ1-space. 

 If 𝑖 = 2: The same proof above , but Ҕ(Ư1)  Ҕ(Ư2) = ∅.  Hence ( Ұ, ƫ, Ǥ ) is a Ǥg-Ŧ2-space. 

 

Corollary 3. 3: If (Ӿ, ȶ  ) is a Ŧ𝑖-space and Ҕ is an onto, 𝔾∗go-function from ( Ӿ, ȶ, 𝔾) to ( Ұ, ƫ, Ǥ ) then 

( Ұ, ƫ, Ǥ )  is a Ǥg-Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }. 

 

Proof: Follows from Ҕ(Ư) is a Ǥg-open in ( Ұ, ƫ, Ǥ ) for all open set Ư in Ӿ . 
 

Corollary 3. 4: If (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ𝑖-space and Ҕ is an onto, 𝔾∗∗go-function from ( Ӿ, ȶ, 𝔾) to ( Ұ, ƫ, Ǥ 

) then Ұ is a Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }. 

 

Proof: Follows from Ҕ(Ư) is an open set in Ұ for all 𝔾g-open set Ư in ( Ӿ, ȶ, 𝔾). 

 

Corollary 3. 5: If Ҕ is an onto and open function from ( Ӿ, ȶ ) to ( Ұ, ƫ ) and (Ӿ, ȶ) is a Ŧ𝑖-space, then ( Ұ, 

ƫ, Ǥ ) is a Ǥg-Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }, for any grill Ǥ on ( Ұ, ƫ, Ǥ ). 

 

Definition 3. 6: The function Ҕ: ( Ӿ, ȶ, 𝔾) →( Ұ, ƫ, Ǥ ) is called 

i. 𝔾-g-continuous function, shortly "𝔾g-continuous function" if Ҕ−1(Ư) ∈ 𝔾g-o(Ӿ) for all Ư ∈ ƫ.   
ii. Strongly-𝔾-g-continuous function, shortly "Strongly-𝔾g-continuous function" if Ҕ−1(Ư) ∈ ȶ for 

every, Ư ∈ Ǥg-o(Ұ). 

iii. 𝔾-g-irresolute function, shortly "𝔾g-irresolute function" if Ҕ−1(Ư) ∈ 𝔾g-o(Ӿ)   for every, Ư ∈ Ǥg-

o(Ұ). 

 

Proposition 3. 7: If ( Ұ, ƫ ) is a Ŧ𝑖-space and Ҕ: ( Ӿ, ȶ, 𝔾) → ( Ұ, ƫ, Ǥ ) is an injective, 𝔾g-continuous 

function then ( Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }. 

 

Proof: If 𝑖 = 0: Let ꬺ, ꬻ ∈ Ӿ such that ꬺ  ꬻ. Since Ҕ is an injective function, then Ҕ(ꬺ)  Ҕ(ꬻ), where, 

Ҕ(ꬺ), Ҕ(ꬻ) ∈ Ұ. So, ( Ұ, ƫ ) is a Ŧ0-space, then there exist Ư ∈ ƫ whenever, Ҕ(ꬺ) ∈ Ư,  Ҕ(ꬻ) ∉ Ư or Ҕ(ꬺ) 
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∉ Ư,  Ҕ(ꬻ) ∈ Ư. By Ҕ is a 𝔾g-continuous function, then  Ҕ−1(Ư) ∈ 𝔾g-o(Ӿ) whenever, ꬺ ∈ Ҕ−1(Ư), ꬻ 

∉ Ҕ−1(Ư) or ꬺ ∉ Ҕ−1(Ư), ꬻ ∈ Ҕ−1(Ư). Hence ( Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ0-space. 

 If 𝑖 = 1: Let ꬺ, ꬻ ∈ Ӿ such that ꬺ  ꬻ. Since Ҕ is an injective function, then Ҕ(ꬺ)  Ҕ(ꬻ), where, Ҕ(ꬺ), 

Ҕ(ꬻ) ∈ Ұ. So, ( Ұ, ƫ ) is a Ŧ1-space, then there exists Ư1, Ư2 ∈ ƫ whenever, Ҕ(ꬺ) ∈ Ư1 , Ҕ(ꬻ) ∉ Ư1 and 

Ҕ(ꬻ) ∈ Ư2 , Ҕ(ꬺ) ∉ Ư2 . Since Ҕ is a 𝔾g-continuous function, then  Ҕ−1(Ư1) and Ҕ−1(Ư2) are 𝔾g-open 

sets whenever, ꬺ ∈ Ҕ−1(Ư1) , ꬻ ∉ Ҕ−1(Ư1) and ꬻ ∈ Ҕ−1(Ư2) , ꬺ ∉ Ҕ−1(Ư2). Hence (Ӿ, ȶ, 𝔾) is a 𝔾g-

Ŧ1-space. 

 If 𝑖 = 2: The same proof above  but Ҕ(Ư1)  Ҕ(Ư2) = ∅.  Hence ( Ұ, ƫ, Ǥ ) is a Ǥg-Ŧ2-space. 

 

Remark 3. 8: Let Ҕ: ( Ӿ, ȶ, 𝔾) →( Ұ, ƫ, Ǥ ) is a function 

If Ҕ is a continuous function, then Ҕ is a 𝔾g- continuous function 

 

Corollary 3. 9: If ( Ұ, ƫ ) is a Ŧ𝑖-space and Ҕ: ( Ӿ, ȶ, 𝔾) →( Ұ, ƫ, Ǥ ) is an injective continuous function,  

then ( Ӿ, ȶ, 𝔾)  is a 𝔾g-Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }. 

 

Proof: Since every continuous function is a 𝔾g-continuous function by Proposition 3. 7, then Corollary 

3. 5, is applicable 

 

Proposition 3. 10: If ( Ұ, ƫ, Ǥ ) is a Ǥg-Ŧ𝑖-space and Ҕ: ( Ӿ, ȶ, 𝔾) → ( Ұ, ƫ, Ǥ ) is an injective strongly-

𝔾g-continuous function then ( Ӿ, ȶ ) is a Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }. 

 

Proof: Follows from, Ҕ−1(Ư) ∈ ȶ for each Ư ∈ Ǥg-o(Ұ). 

 

Proposition 3. 11: If ( Ұ, ƫ, Ǥ ) is a Ǥg-Ŧ𝑖-space and Ҕ: ( Ӿ, ȶ, 𝔾) → ( Ұ, ƫ, Ǥ ) is an injective 𝔾g-irresolute 

function then ( Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ𝑖-space, where 𝑖 ∈ { 0, 1, 2 }. 

 

Proof: Since Ҕ−1(Ư) ∈ 𝔾g-o(Ӿ) for each Ư ∈ Ǥg-o(Ұ). 

 

4. Gg-Convergence Sequence 

Definition 4. 1: Let ( Ӿ, ȶ, 𝔾) be a grill topological space, where  ӿ0 ∈ Ӿ and  (Șꬻ)ꬻ ∈ ₦ be a sequence in 

Ӿ.  Then (Șꬻ)ꬻ ∈ ₦ is called Gg-Convergence to  ӿ0 shortly Șꬻ ⤳ ӿ0 if for every Gg-open set Ư where, 

 ӿ0 ∈ Ư there exist Ҡ ∈ ₦ where, Șꬻ ∈ Ư for every ꬻ ≥ Ҡ. A sequence (Șꬻ)ꬻ ∈ ₦ is called Gg-divergence, 

if it is not Gg-Convergence. 

 

Theorem 4. 2: If (Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ2-space then every Gg-Convergence sequence in Ӿ  has a unique 

limit point. 

Proof:  Let (Șꬻ)ꬻ ∈ ₦ be a sequence in Ӿ where, Șꬻ ⤳ ӿ1 and Șꬻ ⤳ ӿ2; ӿ1 ӿ2 where, ӿ1, ӿ2 ∈ Ӿ. Since 

(Ӿ, ȶ, 𝔾) is a 𝔾g-Ŧ2-space then there exists Ư1,Ư2 ∈ 𝔾go(Ӿ) such that ӿ1 ∈ Ư1 and ӿ2 ∈ Ư2 where 

Ư1  Ư2 = ∅. Since Șꬻ ⤳ ӿ1 and ӿ1 ∈ Ư1 ∈ 𝔾go(Ӿ) implies there exist Ҡ1 ∈ ₦; Șꬻ∈ Ư1 for all ꬻ ≥ Ҡ1. 
So, Șꬻ ⤳ ӿ2 and ӿ2 ∈ Ư2 ∈ 𝔾go(Ӿ) implies there exist Ҡ2 ∈ ₦; Șꬻ∈ Ư2 for all ꬻ ≥ Ҡ2. Hence, Ư1  Ư2 

 ∅, that is contradiction. 

 The prerequisite that a space Ӿ is a 𝔾g-Ŧ2-space is very necessary to make Theorem 4. 2 is proper. 

 

Example 4. 3: Let (Ӿ, ȶ, 𝔾) be a grill topological space, where, Ӿ = { ᶂ1, ᶂ2, ᶂ3}, ȶ = {Ӿ, ∅}, and 𝔾 = {Ӿ, { 

ᶂ3}, { ᶂ1, ᶂ3 }, { ᶂ2 , ᶂ3}}.  Then 𝔾gC(Ӿ) = { Ӿ, ∅,{ ᶂ3}, { ᶂ1, ᶂ3}, { ᶂ2, ᶂ3}}, 𝔾gO(Ӿ) = { Ӿ, ∅, { ᶂ1}, { ᶂ2}, { 

ᶂ1, ᶂ2}}.The sequence (Șꬻ)ꬻ ∈ ₦ in Ӿ, where Șꬻ = ᶂ3  for all ꬻ ∈ ₦. The sequence (Șꬻ)ꬻ ∈ ₦ has one limit point 

such that Șꬻ ⤳ ᶂ3, but (Ӿ, ȶ, 𝔾) is not 𝔾g-Ŧ2-space. 

 

Proposition 4. 4: If a sequence (Șꬻ)ꬻ ∈ ₦ is a Gg-convergence to  ӿ0 in (Ӿ, ȶ, 𝔾), then it is a convergence 

to  ӿ0. 
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Proof:  Let Ư be an open set in Ӿ where,  ӿ0 ∈  Ư. By Remark 2. 3. (ii). Ư is a Gg-open set in Ӿ where, 

 ӿ0 ∈  Ư. Since (Șꬻ)ꬻ ∈ ₦ is a Gg-convergent to  ӿ0, then there exist Ҡ ∈ ₦ where, Șꬻ ∈ Ư for every ꬻ ≥
Ҡ. Hence (Șꬻ)ꬻ ∈ ₦ is a convergent to  ӿ0. 

The converse of Proposition 4. 4 is not true for example 4. 5. 

 

Example 4. 5: Let (Ӿ, ȶ, 𝔾) be a grill topological space, where, Ӿ = ₦ set of all natural numbers ȶ = {Ӿ, ∅}, 

and 𝔾 = P(Ӿ)\{∅},  𝔾gC(Ӿ) = P(Ӿ) =  𝔾gO(Ӿ). The sequence (Șꬻ)ꬻ ∈ ₦  where Șꬻ = ꬻ  for all ꬻ ∈ ₦ is a 

convergent to ꬻ for all ꬻ ∈ ₦, which is not Gg-convergence for any element in ₦. 

 

Proposition 4. 6: Let Ҕ: ( Ӿ, ȶ, 𝔾) → ( Ұ, ƫ, Ǥ ) be an injective and 𝔾g-irresolute function and (Șꬻ)ꬻ ∈ ₦ 

be a sequence in Ӿ. Then Ҕ(Șꬻ) ⤳ Ҕ( ӿ0) in ( Ұ, ƫ, Ǥ ) whenever, Șꬻ ⤳  ӿ0 in ( Ӿ, ȶ, 𝔾). 

 

Proof: Let Ư is a Ǥg-open set in Ұ where Ҕ( ӿ0) ∈  Ư. Since Ҕ is a 𝔾g-irresolute function, then Ҕ−1(Ư) 

is a Gg-open set where,  ӿ0 ∈ Ҕ−1(Ư). Since (Șꬻ)ꬻ∈ ₦ is a Gg-convergent to ӿ0, then there exist Ҡ ∈ ₦ 

where, Șꬻ ∈ Ҕ−1(Ư) for all ꬻ ≥ Ҡ. Since Ҕ is an injective function, then there exist Ҡ ∈ ₦ where, Ҕ(Șꬻ) 

∈ Ư for all ꬻ ≥ Ҡ. Hence Ҕ(Șꬻ) is a Gg-convergent to Ҕ( ӿ0). 

 

Theorem 4. 7: Let Ҕ: ( Ӿ, ȶ, 𝔾) → ( Ұ, ƫ, Ǥ ) be an injective and 𝔾g-continuous function and (Șꬻ)ꬻ ∈ ₦ be 

a sequence in Ӿ. Then Ҕ(Șꬻ) → Ҕ( ӿ0) in ( Ұ, ƫ, Ǥ ) whenever, Șꬻ ⤳  ӿ0 in ( Ӿ, ȶ, 𝔾). 

 

Proof: Let Ư is an open set in ( Ұ, ƫ, Ǥ ) where, Ҕ( ӿ0) ∈  Ư. Since Ҕ is a 𝔾g- continuous function, then 

Ҕ−1(Ư) is a Gg-open set in ( Ӿ, ȶ, 𝔾) where,  ӿ0 ∈ Ҕ−1(Ư). Since (Șꬻ)ꬻ ∈ ₦ is a Gg-convergent to ӿ0, then 

there exist Ҡ ∈ ₦ where, Șꬻ ∈ Ҕ−1(Ư) for all ꬻ ≥ Ҡ. Since Ҕ is an injective function, then there exist 

Ҡ ∈ ₦ where, Ҕ(Șꬻ) ∈ Ư for all ꬻ ≥ Ҡ. Hence Ҕ(Șꬻ) is a convergent to Ҕ( ӿ0). 

 

Proposition 4. 8: Let Ҕ: ( Ӿ, ȶ, 𝔾) → ( Ұ, ƫ, Ǥ ) be an injective and strongly-𝔾g-continuous function and 

(Șꬻ)ꬻ ∈ ₦ be a sequence in Ӿ. Then Ҕ(Șꬻ) ⤳ Ҕ( ӿ0) in ( Ұ, ƫ, Ǥ ) whenever, Șꬻ →  ӿ0 in ( Ӿ, ȶ, 𝔾). 

 

Proof: Let Ư is a Ǥg-open set in ( Ұ, ƫ, Ǥ ) where Ҕ( ӿ0) ∈  Ư. Since Ҕ is a strongly-𝔾g-continuous 

function, then Ҕ−1(Ư) is an open set in Ӿ  where,  ӿ0 ∈ Ҕ−1(Ư). Since (Șꬻ)ꬻ ∈ ₦ is a convergent to ӿ0, 

then there exist Ҡ ∈ ₦ where, Șꬻ ∈ Ҕ−1(Ư) for all ꬻ ≥ Ҡ. Since Ҕ is an injective function, then there 

exist Ҡ ∈ ₦ where, Ҕ(Șꬻ) ∈ Ư for all ꬻ ≥ Ҡ. Hence Ҕ(Șꬻ) is a Gg-convergent to Ҕ( ӿ0). 
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