#### PAPER • OPEN ACCESS

# Improving Flower Pollination Algorithm for Solving 0–1 Knapsack Problem

To cite this article: Ghalya Tawfeeq Basheer and Zakariya Yahya Algamal 2021 *J. Phys.: Conf. Ser.* **1879** 022097

View the article online for updates and enhancements.

# You may also like

- <u>An Efficient Heuristic Algorithm for Solving</u> 0-1 Knapsack Problem Hong Yang and Xiong Guo
- <u>Statistical mechanics analysis of</u> generalized multi-dimensional knapsack problems Vitte Nelsonus Talisabi Talisbashi and
- Yuta Nakamura, Takashi Takahashi and Yoshiyuki Kabashima
- <u>Decidability of knapsack problem for</u> <u>Baumslag-Solitar group</u> Fedor Dudkin and Alexander Treier





DISCOVER how sustainability intersects with electrochemistry & solid state science research



This content was downloaded from IP address 3.144.252.140 on 07/05/2024 at 15:32

# **Improving Flower Pollination Algorithm for Solving 0 –1 Knapsack Problem**

# Ghalya Tawfeeq Basheer<sup>1</sup>and Zakariya Yahya Algamal<sup>2\*</sup>

<sup>1</sup>Department of Operations Research and Intelligent Techniques, University of Mosul, Mosul, Iraq

<sup>2</sup>Department of Statistics and Informatics, University of Mosul, Mosul, Iraq

E-mail: zakariya.algamal@uomosul.edu.iq

Abstract: Binary knapsack problem has received considerable attention in combinational optimization. Various meta-heuristic algorithms are dedicated to solve this problem in the literature. Recently, a binary flower pollination algorithm (BFPA) was proposed, which has been successfully applied to solve 0-1 knapsack problem. In this paper, two new time-varying transfer functions are proposed to improve the exploration and exploitation capability of the BFPA with the best solution and short computing time. Based on small, medium, and high-dimensional scales of the knapsack problem, the computational results reveal that the proposed time-varying transfer functions not only to find the best possible solutions but also to have less computational time. Compared to the standard transfer functions, the efficiency of the proposed time-varying transfer functions is superior, especially in the high-dimensional scales.

#### 1. Introduction

The process of optimization is searching and finding the optimal solution of a given problem [1, 2]. In general, based on the nature of the search space and decision variables, an optimization problem can be divided into three main classes: continuous, discrete and mixed integer optimization problem [3, 4]. The binary optimization problems are a set classes of the discrete optimization problem in which the decision variable is a set of bits.

The knapsack problem is an optimization problem that can be modelled as a discrete binary optimization problem. The knapsack problem has widely studied in many real world applications, such as project selection, cutting stock problems, scheduling problems, resource allocation, and investment decision making [5-7].

There are several methods that have been developed to solve knapsack problem which can be divided into two types: exact methods, such as branch and bound method and dynamic programming. These methods can give the exact solution, but it is effective for small sized problems. The second type includes approximate methods that can give an approximate solution, but at reasonable times compared to exact methods [8-10].

In recent years, several meta-heuristic methods were proposed for tackling 0-1 knapsack problem, such as monarch butterfly optimization (MBO)[11], bat algorithm (BA)[12,13], particle swarm optimization (PSO)[14-16], monkey algorithm (MA)[17], ant colony optimization (ACO)[18], amoeboid organism algorithm (AOA)[19], and harmony search (HS)[20].

| Ibn Al-Haitham International Conference for Pu | are and Applied Sciences | (IHICPS)         | IOP Publishing      |
|------------------------------------------------|--------------------------|------------------|---------------------|
| Journal of Physics: Conference Series          | 1879 (2021) 022097       | doi:10.1088/1742 | -6596/1879/2/022097 |

The flower pollination algorithm is a bio-inspired algorithm that mimics the pollination characteristics of flowers in plants. Flower pollination algorithm is first proposed by Yang [21] for solving single objective optimization problems. In (2014) Yang et al. [22] extended flower pollination algorithm for solving multi objective optimization problems. In (2015) Yang [23] proposed a binary flower pollination algorithm to tackle a feature selection problem. Abdel-Basset et al. [9] proposed a binary version of flower pollination algorithm for solving both small and large scale knapsack problem. Compared with some other algorithms, the flower pollination algorithm can perform better in terms of the global convergence and the convergence speed.

In the binary flower pollination algorithm, a transformation function is used to convert the continuous values generated from the algorithm into binary ones, and, therefore it is able to provide a binary flower pollination algorithm a sufficient amount to balance between exploration and exploitation [24].

In this paper, two efficient time-varying transfer functions are proposed to solve the 0-1 knapsack problem. The proposed transfer functions are based on combining the S-shaped and V-shaped transfer functions with time-varying concept.

The remainder of this paper is organized as follows. Section 2 describes the basic 0 - 1 knapsack problem. Section 3 introduces binary flower pollination algorithm. In Section 4, the proposed timevarying transfer functions are presented. Section 5 presents and discusses the experimental results. In section 6, conclusion is drawn.

#### 2. Knapsack problem

Knapsack problem is a NP-hard combinatorial optimization problem and defined as follows [8, 25]:

Given a set of *n* items, each item *i* has a profit  $c_i$  and weight  $w_i$ . The objective is to select a subset of the items such that the total profit is maximized without exceeding the knapsack's capacity M. Mathematically, the knapsack problem can be formulated as follows:

$$Max f(x) = \sum_{i=1}^{n} c_i x_i$$
(1)

$$\sum_{i=1}^{n} w_i x_i \le M \tag{2}$$

where

$$x_i = \begin{cases} 1 & \text{if item i is selected} \\ 0 & \text{otherwise} \end{cases}$$

To solve knapsack problem, we select a subset of the items of the binary vector  $x_i$  such that the optimal solution satisfies the constraint in Eq. (2) and maximizes the objective function in Eq.(1).

In such a constrained optimization problem, the penalty function is used to handle the constrained knapsack problem. As known, the knapsack problem is a maximization problem that can be converted into minimization by multiplying Eq. (1) by -1. As a result, the penalty function can be written as follow:  $Min\phi(x) = -f(x) + \lambda Max(0,h)$ (3)

Where  $h = \sum_{i=1}^{n} w_i x_i - M$  and  $\lambda$  represents the penalty coefficient. In this paper  $\lambda$  set to 10<sup>10</sup> for

all tests. The penalty function can be described in Figure 1.

s.t.



Figure 1: Penalty function

A Repair operator is treated the infeasible solutions which violates the constraint in Eq. (2) by converting them into feasible solutions and also improve the feasible solutions. The repair operator algorithm can be applied in two stages. The first stage is to convert the infeasible solution into feasible by taking out the items of the lower  $c_i / w_i$  ratio so as the constraint in Eq. (2) is not to exceed the knapsack capacity. The second stage is to improve the feasible solution by adding the items of the high  $c_i / w_i$  ratio to the knapsack with the keeping of the constraint.

#### 3. Binary flower pollination algorithm(BFPA)

Yang (2012) proposed a new algorithm for global optimization called flower pollination algorithm [21]. It is a meta-heuristic algorithm that mimics nature, inspired of the pollination process in flowers.

Pollination in flowers can be taken two forms: biotic pollination and abiotic pollination. In the first type, the pollen is transferred by pollination like insects and animals. While the second form based on wind and diffusion in the water.

Pollination can be divided into self-pollination and cross-pollination. Self-pollination is transferring the pollens from one flower to the same flower or different flowers in the same plant. Cross-pollination is transferring the pollens from one flower to another flower of a different plant. A flower and its pollen represented a solution to the optimization problem. In the flower pollination algorithm, four basic rules are used[21, 26, 27]:

- 1. The global pollination includes biotic and cross-pollination, the pollinators move in a way that follows a lévy flight distribution.
- 2. The local pollination includes abiotic and self-pollination.
- 3. Flower constancy can be considered as the reproduction probability that is proportional to the similarity of two flowers involved.
- 4. We use a switch probability  $p \in [0,1]$  to switch between global pollination and local pollination.

Rules 1 and 3 can be expressed mathematically as:

$$x_i^{t+1} = x_i^t + \gamma L\left(\lambda\right) \left(x_i^t - g^*\right) \tag{4}$$

where  $x_i^t$  is the solution vector or the pollen *i* at iteration *t*,  $g^*$  is the current best solution that is found at the current iteration,  $\gamma$  is a scaling factor to control the step size,  $L(\lambda)$  is the step size in the lévy flights which is representing the strength of the pollination. Since pollinators move over a long distance with various distance steps, a lévy flight can be used to mimic this behaviour. That is, L > 0 from a lévy distribution as

$$L \sim \frac{\lambda \Gamma(\lambda) \sin\left(\frac{\pi \lambda}{2}\right)}{\pi} \left(\frac{1}{S^{1+\lambda}}\right) (S \gg S_0 > 0)$$
(5)

Yang (2012) proposed  $\Gamma(\lambda)$ , the standard gamma function, and  $\lambda = 1.5$ . This distribution is valid for large steps S > 0. In (1994), Mantegna used the Gaussian distribution for generating the step size S by generating two random numbers U and V as follows [26]:

$$S = \frac{U}{|V|^{1/\lambda}} \quad U \sim N(0, \sigma^2), \quad V \sim N(0, 1)(6)$$
$$\sigma^2 = \left(\frac{\Gamma(1+\lambda)}{\lambda \Gamma[(1+\lambda)/2]} * \frac{\sin(\pi\lambda/2)}{2^{\frac{\lambda-1}{2}}}\right)^{1/\lambda} \tag{7}$$

For local pollination, rules 2 and 3 can be expressed as:

$$x_{i}^{t+1} = x_{i}^{t} + k \left( x_{j}^{t} - x_{k}^{t} \right)$$
(8)

where  $x_j$  and  $x_k$  are the pollens (solution vectors) from different flowers of the same plant. k is the parameter draws from a uniform distribution in [0,1]. To switch between common global pollination to intensive local pollination, we used rule 4. In 2012, Yang suggested that switch probability or proximity probability p = 0.8 for most applications. The flower pollination algorithm can be presented in Figure 2.

| Flower | Pollination Algorithm                                                                  |
|--------|----------------------------------------------------------------------------------------|
| Begin  |                                                                                        |
| -      | Define the objective function max or min $f(x)$ , and switch probability $p \in [0,1]$ |
| -      | Initialize the population of n random flowers                                          |
| -      | Evaluate each flowers in the population                                                |
| -      | Find the best solution                                                                 |
| -      | while (stopping criterion)                                                             |
| -      | for i=1:n                                                                              |
| -      | if (r≤p)                                                                               |
| -      | New solution $=$ global pollination Eq. (4)                                            |
| -      | else                                                                                   |
| -      | New solution = local pollination Eq. $(8)$                                             |
| -      | end if                                                                                 |
| -      | Evaluate new solution                                                                  |
| -      | If new solution is better, update the population                                       |
| -      | end for                                                                                |
| -      | Find current best solution                                                             |
| -      | end while                                                                              |

Figure 2: Flower pollination algorithm

| Ibn Al-Haitham International Conference for P | ure and Applied Sciences  | (IHICPS)       | IOP Publishing        |
|-----------------------------------------------|---------------------------|----------------|-----------------------|
| Journal of Physics: Conference Series         | <b>1879</b> (2021) 022097 | doi:10.1088/17 | 42-6596/1879/2/022097 |

#### 4. The proposed time-varying transfer functions

The knapsack problem can be modeled as a discrete problem in which the solution vector is binary, where 1 corresponds to that an item will be selected in the knapsack and 0 otherwise. In any binary algorithm, where one uses the step vector to calculate the probability of changing positions, the transfer functions significantly impact the balance between exploration and exploitation[24, 28].

In BFPA, the transfer function is used to map a continuous search space to a binary one, and the updating process is designed to switch positions of pollens between 0 and 1 in binary search spaces. In order to build this binary vector, a transfer function in Eq. (9) can be used after Eq. (8), in which the new solution is constrained to only binary values:

$$x_{i}^{t} = \begin{cases} 1 & if \quad T(x) > r \\ 0 & ow \end{cases}$$

$$\tag{9}$$

where  $r \in [0,1]$  is a random number, T(x) is the transfer function.

Mirjalili and Lewis [29] introduced eight transfer functions and divided them into two families: S-Shaped transfer functions and V-Shaped transfer functions. These transfer functions are listed in Table 1. The transfer function was tested by Mirjalili and Lewis on 25 benchmark functions. The results show that V-shaped transfer functions are useful for the binary particle swarm optimization, especially  $V_4$  function has merit for solving these functions. Teng et al.[30] has demonstrated the effect of V-shaped transfer function using binary particle swarm optimization on the feature selection problem. The experimental tests reveal that the efficiency of the proposed method.

In optimization algorithm, it is expected that the focus of the early stages of the implementation the algorithm will be on exploration to avoid falling into the local point, but in later stages of implementing the algorithm focuses more on exploitation to improve the quality of the solution[24, 28].

In this paper, two dynamic transfer functions are adapted form Mafarja, Aljarah [28] and Islam, Li [24], and proposed to improve the BFPA with the following considerations [24]:

- 1. In the early stages of the implementation, the transfer function should provide a high probability of flipping all the bits of  $x_i$  so that the BFPA can provide a stronger exploration.
- 2. In the intermediate stages of the implementation, the BFPA should start shifting from exploration to exploitation. This can achieved by using a transfer function that can reduce the probability of flipping all the bits of  $x_i$ .
- 3. In the final stages of the implementation, the transfer function should provide a low probability of flipping all the bits of  $x_i$ , so that the BFPA can provide a stronger exploitation capability.

In our proposed time-varying transfer function (TV), a new control parameter  $\tau$  is added in the original transfer function. This  $\tau$  is a time varying variable which starts with large value and gradually decreases over time. Two types of  $\tau$  are proposed as follow:

$$\tau_1 = \left(1 - \frac{t}{T}\right) \tau_{1,\max} + \frac{t}{T} \tau_{1,\min}$$
(10)

and

$$\tau_2 = \tau_{2,\max} - t \left( \frac{\tau_{2,\max} - \tau_{2,\min}}{T} \right) \tag{11}$$

where  $\tau_{\text{max}}$  and  $\tau_{\text{min}}$  are the minimum and maximum values of the control parameter  $\tau$ , and T is the maximum iteration of the BFPA. Table 2 lists the two proposed time-varying transfer functions.

|            | S-Shaped family                                    |            | V-Shaped family                                                       |
|------------|----------------------------------------------------|------------|-----------------------------------------------------------------------|
| <b>S1</b>  | $T\left(x\right) = \frac{1}{1 + e^{-2x}}$          | V1         | $T(x) = \left  erf\left(\frac{\sqrt{\pi}}{2}x\right) \right $         |
| S2         | $T(x) = \frac{1}{1 + e^{-x}}$                      | V2         | $T(x) =  \tanh(x) $                                                   |
| <b>S</b> 3 | $T\left(x\right) = \frac{1}{1 + e^{-\frac{x}{2}}}$ | <b>V</b> 3 | $T(x) = \left  \frac{x}{\sqrt{1 + x^2}} \right $                      |
| <b>S</b> 4 | $T\left(x\right) = \frac{1}{1 + e^{-\frac{x}{3}}}$ | V4         | $T(x) = \left \frac{2}{\pi}\arctan\left(\frac{\pi}{2}x\right)\right $ |

 Table 1: Families of transfer functions

**Table 2:** The two proposed time-varying transfer functions.

|      | Time-varying 1                                  |      | Time-varying 2                                            |
|------|-------------------------------------------------|------|-----------------------------------------------------------|
| T1S1 | $TVS(x) = \frac{1}{1 + e^{\frac{-2x}{\tau_1}}}$ | T2S1 | $TVS(x) = \frac{1}{1 + e^{\frac{-2x}{\tau_2}}}$           |
| T1S2 | $TVS(x) = \frac{1}{1 + e^{\frac{-x}{\tau_1}}}$  | T2S2 | $TVS\left(x\right) = \frac{1}{1 + e^{\frac{-x}{\tau_2}}}$ |
| T1S3 | $TVS(x) = \frac{1}{1 + e^{-\frac{x}{2\tau_1}}}$ | T2S3 | $TVS(x) = \frac{1}{1 + e^{-\frac{x}{2\tau_2}}}$           |
| T1S4 | $TVS(x) = \frac{1}{1 + e^{-\frac{x}{3\tau_1}}}$ | T2S4 | $TVS(x) = \frac{1}{1 + e^{-\frac{x}{3\tau_2}}}$           |

**Table 3:** The two proposed time-varying transfer functions.

| T1V1 | $TVV(x) = \left  erf\left(\frac{\sqrt{\pi}x}{2\tau_1}\right) \right $          | T2V1          | $TVV(x) = \left  erf\left(\frac{\sqrt{\pi}x}{2\tau_2}\right) \right $          |
|------|--------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
| T1V2 | $TVV(x) = \left  \tanh\left(\frac{x}{\tau_1}\right) \right $                   | T2V2          | $TVV(x) = \left  \tanh\left(\frac{x}{\tau_2}\right) \right $                   |
| Г1V3 | $TVV(x) = \left  \frac{x / \tau_1}{\sqrt{1 + x^2 / \tau_1}} \right $           | [2V3          | $TVV(x) = \left  \frac{x / \tau_2}{\sqrt{1 + x^2 / \tau_2}} \right $           |
| Г1V4 | $TVV(x) = \left \frac{2}{\pi}\arctan\left(\frac{\pi x}{2\tau_1}\right)\right $ | Γ <b>2</b> V4 | $TVV(x) = \left \frac{2}{\pi}\arctan\left(\frac{\pi x}{2\tau_2}\right)\right $ |

5. Computational results

| Ibn Al-Haitham International Conference for Pure | e and Applied Sciences ( | (IHICPS)           | IOP Publishing    |
|--------------------------------------------------|--------------------------|--------------------|-------------------|
| Journal of Physics: Conference Series            | 1879 (2021) 022097       | doi:10.1088/1742-6 | 596/1879/2/022097 |

## 5.1. Parameter setting

For the binary flower pollination algorithm, the parameters were setting as follows: the population size =50,  $\lambda = 1.5$ , p = 0.8. In this paper, we use linear decreasing time varying where  $\tau_{\text{max}} = 4$ ,  $\tau_{\text{min}} = 0.1$ , and T represents the maximum number of iterations.

#### 5.2 Comparison results

To verify the feasibility and effectiveness of the proposed time-varying transfer functions method for solving 0–1 Knapsack problem, three scales of the knapsack problem are considered: low, medium, and high-dimensional scales. In this paper, all the results are obtained from 50 independent trials. The best solution, the worst solution, the mean and the standard deviation (SD) values, Mean iterations are reported as evaluation criteria. All of the computational experiments were conducted in Matlab 13a on a PC with an Intel Pentium Core i7-7500 processor (2.9 GHz) with 16GB of RAM in the Windows 10 OS.

#### 5.2.1 Low scale 0-1 KP

The performance of the improved algorithm is investigated to solve ten low scale 0-1 KP instances (kp-1 to kp-10), which are taken from [9, 13]. The dimensions in this case are ranging from 4 to 23. The information dimension, capacity, weights and profits for these ten instances are described in Table S1 (Appendix). Table 4 shows the comparison results for all the used different transfer functions for the kp1 and kp10. The rest instances are listed in Table S2 (Appendix).

As observed from the results in Table 4 and Table S2, for the low scale knapsack problems, there is no difference among the results of using the proposed time-varying transfer functions and the standard transfer functions in terms of the best, worse, mean, and SD values. The major difference among the performance of the proposed time-varying transfer functions and the standard transfer functions in not expected because of relatively small numbered items. Contrary, the proposed time-varying transfer functions give optimal results with less number of iterations. The mean iterations of the proposed timevarying transfer functions are obviously better than the standard transfer functions for kp8, kp9, and kp10 where the number of items is higher than the others. Moreover, comparing between the two proposed transfer function, the required iterations to get the optimal solution using Eq. (11) is less than of Eq. (10) for kp8, kp9, and kp10.

| Instance | Transfer   | Rost | Moon   | Worst | SD | Mean      |
|----------|------------|------|--------|-------|----|-----------|
| Instance | Tunction   | Dest | Wieall | worst | 3D | nerations |
| kp-1     | <b>S</b> 1 | 35   | 35     | 35    | 0  | 1         |
|          | S2         | 35   | 35     | 35    | 0  | 1         |
|          | <b>S</b> 3 | 35   | 35     | 35    | 0  | 1         |
|          | <b>S</b> 4 | 35   | 35     | 35    | 0  | 1         |
|          | V1         | 35   | 35     | 35    | 0  | 1         |
|          | V2         | 35   | 35     | 35    | 0  | 1         |
|          | V3         | 35   | 35     | 35    | 0  | 1         |
|          | V4         | 35   | 35     | 35    | 0  | 1         |
|          | T1S1       | 35   | 35     | 35    | 0  | 1         |
|          | T1S2       | 35   | 35     | 35    | 0  | 1         |
|          | T1S3       | 35   | 35     | 35    | 0  | 1         |
|          | T1S4       | 35   | 35     | 35    | 0  | 1         |

| <b>Table 4.</b> Results obtained by the transfer functions for the low scale $0-1$ R | Table 4: Results | obtained by th | e transfer | functions for | the low | scale 0–1 KP |
|--------------------------------------------------------------------------------------|------------------|----------------|------------|---------------|---------|--------------|
|--------------------------------------------------------------------------------------|------------------|----------------|------------|---------------|---------|--------------|

| Ibn Al-Haitham Interna                | ational Confe | rence for Pu | ire and Appli    | ed Sciences | (IHICPS)    | IOP Publishing           |
|---------------------------------------|---------------|--------------|------------------|-------------|-------------|--------------------------|
| Journal of Physics: Conference Series |               | es           | <b>1879</b> (202 | 21) 022097  | doi:10.1088 | /1742-6596/1879/2/022097 |
|                                       | 771171        | 25           | 25               | 25          | 0           |                          |
|                                       |               | 35           | 35               | 35          | 0           | 1                        |
|                                       | T1V2          | 35           | 35               | 35          | 0           | 1                        |
|                                       | 11V3          | 35           | 35               | 35          | 0           | 1                        |
|                                       |               | 35           | 35               | 35          | 0           | 1                        |
|                                       | 1281          | 35           | 35               | 35          | 0           | 1                        |
|                                       | T2S2          | 35           | 35               | 35          | 0           | 1                        |
|                                       | T2S3          | 35           | 35               | 35          | 0           | 1                        |
|                                       | 1284          | 35           | 35               | 35          | 0           | 1                        |
|                                       | 12V1          | 35           | 35               | 35          | 0           | 1                        |
|                                       | T2V2          | 35           | 35               | 35          | 0           | 1                        |
|                                       | 12V3          | 35           | 35               | 35          | 0           | 1                        |
| 1 10                                  | T2V4          | 35           | 35               | 35          | 0           |                          |
| kp-10                                 | SI            | 9767         | 9767             | 9767        | 0           | 2.28                     |
|                                       | S2            | 9767         | 9767             | 9767        | 0           | 4.44                     |
|                                       | S3            | 9767         | 9767             | 9/6/        | 0           | 9.8                      |
|                                       | <b>S</b> 4    | 9767         | 9767             | 9767        | 0           | 15.64                    |
|                                       | V1            | 9767         | 9767             | 9767        | 0           | 1.2                      |
|                                       | V2            | 9767         | 9767             | 9767        | 0           | 1.2                      |
|                                       | V3            | 9767         | 9767             | 9767        | 0           | 1.24                     |
|                                       | V4            | 9767         | 9767             | 9767        | 0           | 1.12                     |
|                                       | T1S1          | 9767         | 9767             | 9767        | 0           | 4.39                     |
|                                       | T1S2          | 9767         | 9767             | 9767        | 0           | 1.95                     |
|                                       | T1S3          | 9767         | 9767             | 9767        | 0           | 7.19                     |
|                                       | T1S4          | 9767         | 9767             | 9767        | 0           | 15.19                    |
|                                       | T1V1          | 9767         | 9767             | 9767        | 0           | 1.12                     |
|                                       | T1V2          | 9767         | 9767             | 9767        | 0           | 1.08                     |
|                                       | T1V3          | 9767         | 9767             | 9767        | 0           | 1.15                     |
|                                       | T1V4          | 9767         | 9767             | 9767        | 0           | 1                        |
|                                       | T2S1          | 9767         | 9767             | 9767        | 0           | 2.95                     |
|                                       | T2S2          | 9767         | 9767             | 9767        | 0           | 2.17                     |
|                                       | T2S3          | 9767         | 9767             | 9767        | 0           | 8.42                     |
|                                       | T2S4          | 9767         | 9767             | 9767        | 0           | 12.76                    |
|                                       | T2V1          | 9767         | 9767             | 9767        | 0           | 1.15                     |
|                                       | T2V2          | 9767         | 9767             | 9767        | 0           | 1                        |
|                                       | T2V3          | 9767         | 9767             | 9767        | 0           | 1.04                     |
|                                       | T2V4          | 9767         | 9767             | 9767        | 0           | 1                        |

# 5.2.2 Medium scale 0-1 KP

To further evaluate the performance of proposed time-varying transfer functions in medium scale 0-1 Knapsack problem, ten medium size 0-1 KP instances (kp-11 to kp-20) are taken from [9, 13] in which the items are between 30 and 75. The description of these ten instances is described in Table S3 (Appendix). Table 5 summarizes the comparison results for all the used different transfer functions for the kp15 and kp20. The rest instances results are reported in Table S4 (Appendix).

Obviously, it is evident from Table 5 and Table S4 that the proposed time-varying transfer functions obtained the same best, worse, mean, and SD values as the standard transfer functions. From Tables 5 and S4, for the mean iterations, the proposed time-varying transfer functions are superior to the other eight standard transfer functions on kp11 to kp20. This indicates that the proposed time-varying transfer functions is comparatively fast. For example, in kp20, the reduction in mean iteration of T1S2 and T2S2

| Ibn Al-Haitham International Conference for Pur | e and Applied Sciences    | (IHICPS)         | IOP Publishing      |
|-------------------------------------------------|---------------------------|------------------|---------------------|
| Journal of Physics: Conference Series           | <b>1879</b> (2021) 022097 | doi:10.1088/1742 | -6596/1879/2/022097 |

functions was 37.61% and 49.81% lower than that of S2, respectively. On the other hand, the reduction in mean iteration of T1V4 and T2V4 functions was 40.08% and 60.32% lower than that of V4, respectively.

Further, it was noted that the v-shaped transfer functions are usually yielded the least iterations compared to S-shaped transfer functions. On the other hand, comparing between the two proposed transfer functions, the required iterations to get an optimal solution using Eq. (11) is less than of Eq. (10) for all the 0-1 Knapsack problems. Additionally, the number of iterations of T2V1, T2V2, T2V3, and T2V4 are obviously small than T1V1, T1V2, T1V3, and T1V4.

|          | Transfer   |      |      |       |    | Mean       |
|----------|------------|------|------|-------|----|------------|
| Instance | function   | Best | Mean | Worst | SD | iterations |
| kp-15    | <b>S</b> 1 | 2440 | 2440 | 2440  | 0  | 9.72       |
| -        | S2         | 2440 | 2440 | 2440  | 0  | 29.4       |
|          | <b>S</b> 3 | 2440 | 2440 | 2440  | 0  | 21.64      |
|          | <b>S</b> 4 | 2440 | 2440 | 2440  | 0  | 15.6       |
|          | V1         | 2440 | 2440 | 2440  | 0  | 5.56       |
|          | V2         | 2440 | 2440 | 2440  | 0  | 3.4        |
|          | V3         | 2440 | 2440 | 2440  | 0  | 2.44       |
|          | V4         | 2440 | 2440 | 2440  | 0  | 1.8        |
|          | T1S1       | 2440 | 2440 | 2440  | 0  | 19.84      |
|          | T1S2       | 2440 | 2440 | 2440  | 0  | 17.04      |
|          | T1S3       | 2440 | 2440 | 2440  | 0  | 12.12      |
|          | T1S4       | 2440 | 2440 | 2440  | 0  | 8.48       |
|          | T1V1       | 2440 | 2440 | 2440  | 0  | 1.08       |
|          | T1V2       | 2440 | 2440 | 2440  | 0  | 1.16       |
|          | T1V3       | 2440 | 2440 | 2440  | 0  | 1.16       |
|          | T1V4       | 2440 | 2440 | 2440  | 0  | 1.12       |
|          | T2S1       | 2440 | 2440 | 2440  | 0  | 25.16      |
|          | T2S2       | 2440 | 2440 | 2440  | 0  | 16.8       |
|          | T2S3       | 2440 | 2440 | 2440  | 0  | 15.56      |
|          | T2S4       | 2440 | 2440 | 2440  | 0  | 9.92       |
|          | T2V1       | 2440 | 2440 | 2440  | 0  | 1.04       |
|          | T2V2       | 2440 | 2440 | 2440  | 0  | 1.04       |
|          | T2V3       | 2440 | 2440 | 2440  | 0  | 1.04       |
|          | T2V4       | 2440 | 2440 | 2440  | 0  | 1          |
| kp-20    | <b>S</b> 1 | 3614 | 3614 | 3614  | 0  | 48.53      |
| -        | <b>S</b> 2 | 3614 | 3614 | 3614  | 0  | 125.41     |
|          | <b>S</b> 3 | 3614 | 3614 | 3614  | 0  | 115.36     |
|          | <b>S</b> 4 | 3614 | 3614 | 3614  | 0  | 137.4      |
|          | V1         | 3614 | 3614 | 3614  | 0  | 18.54      |
|          | V2         | 3614 | 3614 | 3614  | 0  | 8.46       |
|          | V3         | 3614 | 3614 | 3614  | 0  | 6.82       |
|          | V4         | 3614 | 3614 | 3614  | 0  | 4.89       |
|          | T1S1       | 3614 | 3614 | 3614  | 0  | 50.18      |
|          | T1S2       | 3614 | 3614 | 3614  | 0  | 78.24      |
|          | T1S3       | 3614 | 3614 | 3614  | 0  | 82.13      |
|          | T1S4       | 3614 | 3614 | 3614  | 0  | 92.74      |
|          | T1V1       | 3614 | 3614 | 3614  | 0  | 10.21      |

Table 5: Results obtained by the transfer functions for the medium scale 0-1 KP

| Ibn Al-Haitham International Conference for Pure and Applied Sciences (IHICPS) |      |                   |        |          |             |                  |  |
|--------------------------------------------------------------------------------|------|-------------------|--------|----------|-------------|------------------|--|
| Journal of Physics: Conference Series                                          | 1    | <b>879</b> (2021) | 022097 | doi:10.1 | 088/1742-65 | 96/1879/2/022097 |  |
|                                                                                |      |                   |        |          |             |                  |  |
|                                                                                |      |                   |        |          |             |                  |  |
| T1V2                                                                           | 3614 | 3614              | 3614   | 0        | 4.18        |                  |  |
| T1V3                                                                           | 3614 | 3614              | 3614   | 0        | 4.53        |                  |  |
| T1V4                                                                           | 3614 | 3614              | 3614   | 0        | 2.93        |                  |  |
| T2S1                                                                           | 3614 | 3614              | 3614   | 0        | 46.65       |                  |  |
| T2S2                                                                           | 3614 | 3614              | 3614   | 0        | 62.94       |                  |  |
| T2S3                                                                           | 3614 | 3614              | 3614   | 0        | 91.6        |                  |  |
| T2S4                                                                           | 3614 | 3614              | 3614   | 0        | 69.34       |                  |  |
| T2V1                                                                           | 3614 | 3614              | 3614   | 0        | 7.26        |                  |  |
| T2V2                                                                           | 3614 | 3614              | 3614   | 0        | 3.62        |                  |  |
| T2V3                                                                           | 3614 | 3614              | 3614   | 0        | 3.98        |                  |  |
| T2V4                                                                           | 3614 | 3614              | 3614   | 0        | 1.94        |                  |  |

#### 5.2.3 High-dimensional scale 0-1 KP

concluded.

To further highlight the benefits of our proposed time-varying transfer functions, three cases have been investigated. The first case handles the uncorrelated problem (kp21 – kp25) where the weights  $w_i$  are uncorrelated with the profits  $c_i$ . Each  $w_i$  and  $c_i$  is randomly chosen from 5 to 20 and from 5 to 40, respectively. The second case handles the weakly correlated problem (kp26 – kp30). In this case, the weights  $w_i$  and the profits  $c_i$  can be expressed as follows:  $w_i \in [5, 20]$  and  $c_i \in [w_i - 5, w_i + 5]$ . The third case handles the strongly correlated problem (kp31 – kp35). In this case,  $w_i$  and  $c_i$  can be calculated as:  $w_i \in [5, 20]$  and  $c_i \in [w_i + 5]$ . The knapsack capacity for the kp-21-kp35 can be calculated as  $M = 0.75 \times \sum_{i=1}^{n} w_i$ . The dimension sizes varying from 100 to 2000 items. For all used transfer functions, the maximum iteration is set to 10000. Tables 6 – 8 reports the comparison results for all the used different transfer functions for the kp22, kp25, kp27, kp30, kp32, and kp35. The rest problems are listed in Tables S5 – S7 (Appendix). Based on the obtained results, several points are

- (1) It can be seen that the proposed time-varying transfer functions significantly outperform the standard transfer functions on all evaluation measures including the best, mean, worst, and standard deviations.
- (2) As observed from the results, the proposed time-varying V-shaped transfer functions, T1V1 T2V4, can easily find the optimal values with small SD in all uncorrelated, weakly correlated, and strongly correlated problems.
- (3) It is obvious that there is an improvement for searching the global optimal solution when using T2V1, T2V2, T2V3, and T2V4 compared to T1V1, T1V2, T1V3, and T1V4. This leads to the performance dominance of T2V1, T2V2, T2V3, and T2V4 against those performed on the T1V1, T1V2, T1V3, and T1V4.
- (4) The mean iteration values of time-varying V-shaped transfer functions, T1V1 T2V4, are obviously superior to S1, S2, S3, S4, V1, V2, V3, and V4 for all high-dimensional scale problems. The performance of T2V1, T2V2, T2V3, and T2V4 is better than that of T1V1, T1V2, T1V3, and T1V4.
- (5) Compared to the proposed time-varying V-shaped transfer functions, T2V4 is significantly improving the performance metrics with lower SD and mean iterations.

Table 6: Comparison results of uncorrelated high-dimensional scale 0–1 KP

| Instance | Dimension | Transfer function | Best | Mean | Worst | SD | Mean<br>iterations |
|----------|-----------|-------------------|------|------|-------|----|--------------------|
|----------|-----------|-------------------|------|------|-------|----|--------------------|

| Ibn Al-Haitham International Conference for I |                                       |            | Pure and Ap | plied Sciences            | (IHICPS) IOP Publishing |                                |      |  |
|-----------------------------------------------|---------------------------------------|------------|-------------|---------------------------|-------------------------|--------------------------------|------|--|
| Journal of Physics                            | Journal of Physics: Conference Series |            | 1879 (2     | <b>1879</b> (2021) 022097 |                         | doi:10.1088/1742-6596/1879/2/0 |      |  |
|                                               |                                       |            |             |                           |                         |                                |      |  |
|                                               |                                       |            |             |                           |                         |                                |      |  |
| kp-22                                         | 500                                   | <b>S</b> 1 | 10340       | 10338                     | 10335                   | 2.739                          | 1038 |  |
| -                                             |                                       | S2         | 10338       | 10302.2                   | 10225                   | 25.46                          | 2394 |  |
|                                               |                                       | <b>S</b> 3 | 10338       | 10306.6                   | 10225                   | 26.923                         | 2187 |  |
|                                               |                                       | <b>S</b> 4 | 10338       | 10311                     | 10225                   | 20.01                          | 2541 |  |
|                                               |                                       | V1         | 10345       | 10345                     | 10345                   | 0                              | 185  |  |
|                                               |                                       | V2         | 10345       | 10345                     | 10345                   | 0                              | 103  |  |
|                                               |                                       | V3         | 10345       | 10345                     | 10345                   | 0                              | 161  |  |
|                                               |                                       | V4         | 10345       | 10345                     | 10345                   | 0                              | 94   |  |
|                                               |                                       | T1S1       | 10345       | 10345                     | 10345                   | 0                              | 1074 |  |
|                                               |                                       | T1S2       | 10343       | 10333.4                   | 10319                   | 13.145                         | 1851 |  |
|                                               |                                       | T1S3       | 10343       | 10328.6                   | 10319                   | 13.145                         | 2018 |  |
|                                               |                                       | T1S4       | 10343       | 10323.8                   | 10319                   | 10.733                         | 1932 |  |
|                                               |                                       | T1V1       | 10345       | 10345                     | 10345                   | 0                              | 110  |  |
|                                               |                                       | T1V2       | 10345       | 10345                     | 10345                   | 0                              | 95   |  |
|                                               |                                       | T1V3       | 10345       | 10345                     | 10345                   | 0                              | 104  |  |
|                                               |                                       | T1V4       | 10345       | 10345                     | 10345                   | 0                              | 73   |  |
|                                               |                                       | T2S1       | 10345       | 10345                     | 10345                   | 0                              | 1022 |  |
|                                               |                                       | T2S2       | 10343       | 10325                     | 10319                   | 10.392                         | 1915 |  |
|                                               |                                       | T2S3       | 10343       | 10327.2                   | 10319                   | 9.96                           | 1893 |  |
|                                               |                                       | T2S4       | 10343       | 10328.4                   | 10319                   | 9.044                          | 1801 |  |
|                                               |                                       | T2V1       | 10345       | 10345                     | 10345                   | 0                              | 100  |  |
|                                               |                                       | T2V2       | 10345       | 10345                     | 10345                   | 0                              | 94   |  |
|                                               |                                       | T2V3       | 10345       | 10345                     | 10345                   | 0                              | 99   |  |
|                                               |                                       | T2V4       | 10345       | 10345                     | 10345                   | 0                              | 69   |  |
| kp-25                                         | 2000                                  | <b>S</b> 1 | 40612       | 40598.2                   | 40589                   | 12.674                         | 6285 |  |
|                                               |                                       | <b>S</b> 2 | 40610       | 40554.8                   | 40525                   | 33.945                         | 8136 |  |
|                                               |                                       | <b>S</b> 3 | 40610       | 40549                     | 40525                   | 37.259                         | 7985 |  |
|                                               |                                       | <b>S</b> 4 | 40610       | 40544.9                   | 40525                   | 38.157                         | 7612 |  |
|                                               |                                       | V1         | 40615       | 40611.8                   | 40610                   | 15.375                         | 3485 |  |
|                                               |                                       | V2         | 40615       | 40612.4                   | 40610                   | 14.281                         | 2952 |  |
|                                               |                                       | V3         | 40615       | 40611.2                   | 40610                   | 16.158                         | 3624 |  |
|                                               |                                       | V4         | 40615       | 40612.8                   | 40610                   | 14.825                         | 2531 |  |
|                                               |                                       | T1S1       | 40616       | 40610.6                   | 40595                   | 9.521                          | 4258 |  |
|                                               |                                       | T1S2       | 40614       | 40599.5                   | 40590                   | 20.98                          | 6395 |  |
|                                               |                                       | T1S3       | 40614       | 40611.8                   | 40590                   | 19.353                         | 5927 |  |
|                                               |                                       | T1S4       | 40614       | 40610.2                   | 40590                   | 21.97                          | 6042 |  |
|                                               |                                       | T1V1       | 40616       | 40614.6                   | 40611                   | 8.34                           | 2493 |  |
|                                               |                                       | T1V2       | 40616       | 40615                     | 40611                   | 7.921                          | 2051 |  |
|                                               |                                       | T1V3       | 40616       | 40614.2                   | 40611                   | 8.95                           | 2964 |  |
|                                               |                                       | T1V4       | 40616       | 40615.2                   | 40611                   | 6.56                           | 1950 |  |
|                                               |                                       | T2S1       | 40616       | 40611.2                   | 40595                   | 8.536                          | 4381 |  |
|                                               |                                       | T2S2       | 40614       | 40610.6                   | 40590                   | 19.561                         | 6134 |  |
|                                               |                                       | T2S3       | 40614       | 40611.4                   | 40590                   | 17.562                         | 5630 |  |
|                                               |                                       | T2S4       | 40614       | 40610.8                   | 40590                   | 20.315                         | 6729 |  |
|                                               |                                       | T2V1       | 40616       | 40614                     | 40611                   | 7.65                           | 2654 |  |
|                                               |                                       | T2V2       | 40616       | 40614.8                   | 40611                   | 6.98                           | 1983 |  |
|                                               |                                       | T2V3       | 40616       | 40614.6                   | 40611                   | 6.551                          | 2452 |  |
|                                               |                                       | T2V4       | 40616       | 40615.4                   | 40611                   | 5.439                          | 1875 |  |

 Table 7: Comparison results of weakly correlated high-dimensional scale 0–1 KP

IOP Publishing

| Journal | of Physics:       | Conference | Series |
|---------|-------------------|------------|--------|
| Journar | 01 1 11 9 51 6 5. | Conterence | Derres |

**1879** (2021) 022097 doi:10.1088/1742-6596/1879/2/022097

| Instance | Dimension | Transfer Be | Best          | t Mean  | Worst | SD     | Mean       |
|----------|-----------|-------------|---------------|---------|-------|--------|------------|
| mstunee  | Dimension | function    | function Dest |         | worst | 50     | iterations |
| kp-27    | 500       | <b>S</b> 1  | 5197          | 5185.2  | 5175  | 8.624  | 1002       |
|          |           | S2          | 5190          | 5186.2  | 5184  | 9.943  | 1980       |
|          |           | <b>S</b> 3  | 5190          | 5185.4  | 5184  | 8.67   | 1542       |
|          |           | <b>S</b> 4  | 5190          | 5185.6  | 5184  | 8.24   | 1834       |
|          |           | V1          | 5197          | 5193.4  | 5190  | 4.96   | 162        |
|          |           | V2          | 5197          | 5193    | 5190  | 5.63   | 90         |
|          |           | V3          | 5197          | 5194.2  | 5190  | 5.176  | 166        |
|          |           | V4          | 5197          | 5194.6  | 5190  | 4.641  | 75         |
|          |           | T1S1        | 5197          | 5197    | 5197  | 0      | 995        |
|          |           | T1S2        | 5197          | 5194.8  | 5194  | 2.67   | 1091       |
|          |           | T1S3        | 5197          | 5195.4  | 5194  | 1.954  | 1124       |
|          |           | T1S4        | 5197          | 5194.2  | 5194  | 1.37   | 1387       |
|          |           | T1V1        | 5197          | 5197    | 5197  | 0      | 123        |
|          |           | T1V2        | 5197          | 5197    | 5197  | 0      | 84         |
|          |           | T1V3        | 5197          | 5197    | 5197  | 0      | 98         |
|          |           | T1V4        | 5197          | 5197    | 5197  | 0      | 61         |
|          |           | T2S1        | 5197          | 5197    | 5197  | 0      | 981        |
|          |           | T2S2        | 5197          | 5195    | 5194  | 1.095  | 1192       |
|          |           | T2S3        | 5197          | 5194.8  | 5194  | 2.04   | 1184       |
|          |           | T2S4        | 5197          | 5194.4  | 5194  | 1.93   | 1207       |
|          |           | T2V1        | 5197          | 5197    | 5197  | 0      | 111        |
|          |           | T2V2        | 5197          | 5197    | 5197  | Ő      | 88         |
|          |           | T2V3        | 5197          | 5197    | 5197  | Ő      | 93         |
|          |           | T2V4        | 5197          | 5197    | 5197  | Õ      | 56         |
| kp-30    | 2000      | S1          | 21044         | 21036.5 | 21018 | 20.652 | 6018       |
|          |           | S2          | 21025         | 21005.2 | 20890 | 44.67  | 9820       |
|          |           | <u>S</u> 3  | 21025         | 21004.8 | 20890 | 46.391 | 9453       |
|          |           | <b>S</b> 4  | 21025         | 21005.1 | 20890 | 45.752 | 9572       |
|          |           | V1          | 21068         | 21057   | 21033 | 17.297 | 3091       |
|          |           | V2          | 21068         | 21057.4 | 21033 | 18.632 | 2735       |
|          |           | V3          | 21068         | 21056.8 | 21033 | 15.348 | 3120       |
|          |           | V4          | 21068         | 21057.8 | 21033 | 14.982 | 2493       |
|          |           | T1S1        | 21081         | 21079.2 | 21070 | 12.358 | 5304       |
|          |           | T1S2        | 21078         | 21074   | 21062 | 27.291 | 7659       |
|          |           | T1S3        | 21078         | 21073   | 21062 | 28.9   | 7362       |
|          |           | T1S4        | 21078         | 21074.6 | 21062 | 25.367 | 7710       |
|          |           | T1V1        | 21081         | 21079   | 21075 | 9.452  | 2514       |
|          |           | T1V2        | 21081         | 21079.2 | 21075 | 8.651  | 2183       |
|          |           | T1V3        | 21081         | 21078   | 21075 | 10.12  | 2907       |
|          |           | T1V4        | 21081         | 21079.2 | 21075 | 8.654  | 2061       |
|          |           | T2S1        | 21081         | 21079   | 21070 | 11.92  | 5297       |
|          |           | T2S2        | 21078         | 21074.8 | 21062 | 29.381 | 7640       |
|          |           | T2S3        | 21078         | 21075   | 21062 | 25.648 | 7193       |
|          |           | T2S4        | 21078         | 21074   | 21062 | 28.31  | 7684       |
|          |           | T2V1        | 21081         | 21078   | 21075 | 11.51  | 2761       |
|          |           | T2V2        | 21081         | 21079   | 21075 | 8.372  | 2031       |
|          |           | T2V3        | 21081         | 21078.6 | 21075 | 9.62   | 2897       |
|          |           | T2V4        | 21081         | 21079.4 | 21075 | 8.05   | 2005       |

| Ibn Al-Haitham International Conference for P | ure and Applied Sciences | (IHICPS)         | IOP Publishing      |
|-----------------------------------------------|--------------------------|------------------|---------------------|
| Journal of Physics: Conference Series         | 1879 (2021) 022097       | doi:10.1088/1742 | -6596/1879/2/022097 |

| Instance I | Dimension | Transfer   | Doct  | Moon      | Worst | SD     | Mean       |
|------------|-----------|------------|-------|-----------|-------|--------|------------|
| Instance   | Dimension | function   | Dest  | Mean Wors |       | 20     | iterations |
| kp-32      | 500       | <b>S</b> 1 | 6783  | 6783      | 6783  | 0      | 978        |
| •          |           | <b>S</b> 2 | 6779  | 6775.6    | 6768  | 5.681  | 1862       |
|            |           | <b>S</b> 3 | 6779  | 6776      | 6768  | 6.16   | 1734       |
|            |           | <b>S</b> 4 | 6779  | 6775      | 6768  | 5.935  | 1815       |
|            |           | V1         | 6783  | 6781.5    | 6779  | 3.94   | 138        |
|            |           | V2         | 6783  | 6782      | 6779  | 4.67   | 105        |
|            |           | V3         | 6783  | 6781.9    | 6779  | 4.914  | 133        |
|            |           | V4         | 6783  | 6782.4    | 6779  | 3.952  | 100        |
|            |           | T1S1       | 6783  | 6783      | 6783  | 0      | 1086       |
|            |           | T1S2       | 6783  | 6780      | 6776  | 3.68   | 1273       |
|            |           | T1S3       | 6783  | 6780.2    | 6776  | 2.942  | 1360       |
|            |           | T1S4       | 6783  | 6780.9    | 6776  | 4.37   | 1109       |
|            |           | T1V1       | 6783  | 6783      | 6783  | 0      | 97         |
|            |           | T1V2       | 6783  | 6783      | 6783  | 0      | 57         |
|            |           | T1V3       | 6783  | 6783      | 6783  | 0      | 96         |
|            |           | T1V4       | 6783  | 6783      | 6783  | 0      | 50         |
|            |           | T2S1       | 6783  | 6783      | 6783  | 0      | 1050       |
|            |           | T2S2       | 6783  | 6781.2    | 6776  | 4.518  | 1241       |
|            |           | T2S3       | 6783  | 6780.8    | 6776  | 5.63   | 1293       |
|            |           | T2S4       | 6783  | 6782      | 6776  | 4.09   | 1113       |
|            |           | T2V1       | 6783  | 6783      | 6783  | 0      | 101        |
|            |           | T2V2       | 6783  | 6783      | 6783  | 0      | 55         |
|            |           | T2V3       | 6783  | 6783      | 6783  | 0      | 90         |
|            |           | T2V4       | 6783  | 6783      | 6783  | 0      | 51         |
| kp-35      | 2000      | <b>S</b> 1 | 27285 | 27279.6   | 27246 | 15.162 | 5506       |
|            |           | <b>S</b> 2 | 27292 | 27276     | 27230 | 30.37  | 6931       |
|            |           | <b>S</b> 3 | 27292 | 27277.2   | 27230 | 35.61  | 6654       |
|            |           | <b>S</b> 4 | 27292 | 27276.1   | 27230 | 29.49  | 6837       |
|            |           | V1         | 27356 | 27349     | 27344 | 10.34  | 2741       |
|            |           | V2         | 27356 | 27350     | 27344 | 12.57  | 2652       |
|            |           | V3         | 27356 | 27349.8   | 27344 | 11.31  | 2903       |
|            |           | V4         | 27356 | 27351     | 27344 | 11.94  | 2511       |
|            |           | T1S1       | 27362 | 27359     | 27350 | 9.58   | 6347       |
|            |           | T1S2       | 27362 | 27358     | 27349 | 16.54  | 5028       |
|            |           | T1S3       | 27362 | 27357     | 27349 | 18.36  | 5391       |
|            |           | T1S4       | 27362 | 27357.6   | 27349 | 15.29  | 5727       |
|            |           | T1V1       | 27362 | 27360     | 27358 | 3.67   | 1890       |
|            |           | T1V2       | 27362 | 27361     | 27358 | 2.94   | 1682       |
|            |           | T1V3       | 27362 | 27360.2   | 27358 | 3.05   | 1954       |
|            |           | T1V4       | 27362 | 27361.6   | 27358 | 3.58   | 1509       |
|            |           | T2S1       | 27362 | 27358.2   | 27350 | 10.17  | 3583       |
|            |           | T2S2       | 27362 | 27357.6   | 27349 | 14.89  | 5126       |
|            |           | T2S3       | 27362 | 27358     | 27349 | 16.52  | 6084       |
|            |           | T2S4       | 27362 | 27357     | 27349 | 17.13  | 5737       |
|            |           | T2V1       | 27362 | 27361     | 27358 | 2.34   | 1903       |
|            |           | T2V2       | 27362 | 27360.9   | 27358 | 3.61   | 1530       |
|            |           | T2V3       | 27362 | 27361.4   | 27358 | 2.57   | 1827       |

**Table 8:** Comparison results of strongly correlated high-dimensional scale 0–1 KP

| Ibn Al-Haitham International Conference for Pure | and Applied Sciences      | (IHICPS)           | IOP Publishing    |
|--------------------------------------------------|---------------------------|--------------------|-------------------|
| Journal of Physics: Conference Series            | <b>1879</b> (2021) 022097 | doi:10.1088/1742-6 | 596/1879/2/022097 |

T2V4 27362 27361.8 27358 2.09 1493

## 6. Conclusion

In this paper, two time-varying transfer functions are proposed to improve the exploration and exploitation capability of the binary flower pollination algorithm in solving the 0-1 KP problem efficiently. The experimental results show that the introduction of time-varying parameter in the transfer function can improve the performance of BFPA in solving small, medium, and high-dimensional scales 0-1 KP problems. Additionally, the experimental results show that proposed time-varying V-shaped transfer functions outperform the other S-shaped transfer functions in terms of the best, worse, mean, SD values, and the mean iterations.

## Appendix

| Instance     | dimension | capacity<br>M | weights W                      | profits C                                                                                 |
|--------------|-----------|---------------|--------------------------------|-------------------------------------------------------------------------------------------|
| kp-1         | 4         | 20            | w=[6597]                       | c=[9 11 13 15]                                                                            |
| kp-2         | 4         | 11            | w=[2 4 6 7]                    | $c = [6 \ 10 \ 12 \ 13]$                                                                  |
| kp-3         | 5         | 80            | w=[15 20 17 8 31]              | c=[33 24 36 37 12]                                                                        |
| kp-4         | 7         | 50            | w=[31 10 20 19 4 3 6]          | c=[70 20 39 37 7 5 10]                                                                    |
| 1-m <i>5</i> | 10        | 260           | w=[95 4 60 32 23 72 80 62 65   | c=[55 10 47 5 4 50 8 61 85                                                                |
| кр-5         | 10        | 209           | 46]                            | 87]                                                                                       |
| kp-6         | 10        | 60            | w=[30 25 20 18 17 11 5 2 1 1]  | c=[20 18 17 15 15 10 5 3 1 1]                                                             |
| _            |           |               | w=[56.358531 80.874050         | c=[0.125126 19.330424                                                                     |
|              |           |               | 47.987304 89.596240            | 58.500931 35.029145                                                                       |
|              |           | 275           | 74.660482 85.894345            | 82.284005 17.410810                                                                       |
| Irm 7        | 15        |               | 51.353496 1.498459             | 71.050142 30.399487                                                                       |
| кр-7         | 15        | 5/5           | 36.445204 16.589862            | 9.140294 14.731285                                                                        |
|              |           |               | 44.569231 0.466933             | 98.852504 11.908322                                                                       |
|              |           |               | 37.788018 57.118442            | 0.891140 53.166295                                                                        |
|              |           |               | 60.716575]                     | 60.176397]                                                                                |
|              |           |               | w=[84 83 43 4 44 6 82 92 25 83 | c=[91 72 90 46 55 8 35 75 61                                                              |
| kp-8         | 20        | 879           | 56 18 58 14 48 70 96 32 68     | 15 77 40 63 75 29 75 17                                                                   |
| _            |           |               | 92]                            | 78 40 44]                                                                                 |
|              |           |               | w=[92 4 43 83 84 68 92 82 6 44 | · [44 46 00 72 01 40 75 25 9                                                              |
| kp-9         | 20        | 878           | 32 18 56 83 25 96 70 48 14     | $C = [44 \ 46 \ 90 \ 72 \ 91 \ 40 \ 75 \ 55 \ 8 \ 54 \ 78 \ 40 \ 77 \ 15 \ (1 \ 17 \ 75)$ |
|              |           |               | 58]                            | 54 /8 40 // 15 61 1/ /5]                                                                  |
|              |           |               | w=[983 982 981 980 979 978     | c=[981 980 979 978 977 976                                                                |
|              | 22        | 10000         | 488 976 972 486 486 972        | 487 974 970 485 485 970                                                                   |
| kp-10        | 23        | 10000         | 972 485 485 969 966 483        | 970 484 484 976 974 482                                                                   |
| -            |           |               | 964 963 961 958 959]           | 962 961 959 958 857]                                                                      |

#### Table S1: The description of the low scale 0-1 KP instances

|          | Transfer   |      |      |       |    | Mean       |
|----------|------------|------|------|-------|----|------------|
| Instance | function   | Best | Mean | Worst | SD | iterations |
|          | <b>S</b> 1 | 23   | 23   | 23    | 0  | 1          |
|          | S2         | 23   | 23   | 23    | 0  | 1          |
| less Q   | <b>S</b> 3 | 23   | 23   | 23    | 0  | 1          |
| кр-2     | S4         | 23   | 23   | 23    | 0  | 1          |
|          | V1         | 23   | 23   | 23    | 0  | 1          |
|          | V2         | 23   | 23   | 23    | 0  | 1          |

| Ibn Al-Haitham Int  | ernational Conference                 | ce for Pur | e and Applied Sciences    | (IHICPS) | )               | IOP Publishing |
|---------------------|---------------------------------------|------------|---------------------------|----------|-----------------|----------------|
| Journal of Physics: | Journal of Physics: Conference Series |            | <b>1879</b> (2021) 022097 | doi:10.1 | 5/1879/2/022097 |                |
|                     |                                       |            |                           |          |                 |                |
|                     | V3                                    | 23         | 23                        | 23       | 0               | 1              |
|                     | V4                                    | 23         | 23                        | 23       | 0               | 1              |
|                     | T1S1                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1S2                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1S3                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1S4                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1V1                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1V2                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1V3                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T1V4                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2S1                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2S2                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2S3                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2S4                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2V1                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2V2                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2V3                                  | 23         | 23                        | 23       | 0               | 1              |
|                     | T2V4                                  | 23         | 23                        | 23       | Ő               | 1              |
|                     | S1                                    | 130        | 130                       | 130      | 0               | 1              |
|                     | S1<br>S2                              | 130        | 130                       | 130      | Ő               | 1              |
|                     | S2<br>S3                              | 130        | 130                       | 130      | 0               | 1              |
|                     | 53<br>54                              | 130        | 130                       | 130      | 0               | 1              |
|                     | V1                                    | 130        | 130                       | 130      | 0               | 1              |
|                     | V1<br>V2                              | 130        | 130                       | 130      | 0               | 1              |
|                     | V2<br>V3                              | 130        | 130                       | 130      | 0               | 1              |
|                     | V J<br>V A                            | 130        | 130                       | 130      | 0               | 1              |
|                     | V4<br>T1S1                            | 130        | 130                       | 130      | 0               | 1              |
|                     | T151<br>T152                          | 120        | 130                       | 120      | 0               | 1              |
|                     | T152                                  | 120        | 130                       | 120      | 0               | 1              |
|                     | 1155<br>T184                          | 120        | 130                       | 130      | 0               | 1              |
| kp-3                | 1154<br>T1V1                          | 120        | 130                       | 130      | 0               | 1              |
| -                   |                                       | 130        | 130                       | 130      | 0               | 1              |
|                     | 11V2                                  | 130        | 130                       | 130      | 0               | 1              |
|                     | 11V3                                  | 130        | 130                       | 130      | 0               | 1              |
|                     |                                       | 130        | 130                       | 130      | 0               | 1              |
|                     | 1281                                  | 130        | 130                       | 130      | 0               | 1              |
|                     | 1282                                  | 130        | 130                       | 130      | 0               | l              |
|                     | T2S3                                  | 130        | 130                       | 130      | 0               | l              |
|                     | 1284                                  | 130        | 130                       | 130      | 0               | l              |
|                     | T2V1                                  | 130        | 130                       | 130      | 0               | 1              |
|                     | T2V2                                  | 130        | 130                       | 130      | 0               | 1              |
|                     | T2V3                                  | 130        | 130                       | 130      | 0               | 1              |
|                     | T2V4                                  | 130        | 130                       | 130      | 0               | 1              |
|                     | <b>S</b> 1                            | 107        | 107                       | 107      | 0               | 1              |
|                     | S2                                    | 107        | 107                       | 107      | 0               | 1.08           |
|                     | <b>S</b> 3                            | 107        | 107                       | 107      | 0               | 1.04           |
| kn-4                | S4                                    | 107        | 107                       | 107      | 0               | 1.04           |
| vЪ_д                | V1                                    | 107        | 107                       | 107      | 0               | 1              |
|                     | V2                                    | 107        | 107                       | 107      | 0               | 1              |
|                     | V3                                    | 107        | 107                       | 107      | 0               | 1              |
|                     | V4                                    | 107        | 107                       | 107      | 0               | 1              |

| Ibn Al-Haitham International Conference for Pure and Applied Sciences (IHICPS) IOP |            |     |                           |                                  |        |      |
|------------------------------------------------------------------------------------|------------|-----|---------------------------|----------------------------------|--------|------|
| Journal of Physics: Conference Series                                              |            |     | <b>1879</b> (2021) 022097 | doi:10.1088/1742-6596/1879/2/022 |        |      |
| -                                                                                  |            |     |                           |                                  |        |      |
|                                                                                    |            |     |                           |                                  |        |      |
|                                                                                    | T1S1       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T1S2       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T1S2       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T1S4       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | TIV1       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | T1V2       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T1V3       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T1V4       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | T2S1       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T2S2       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | T2S3       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | T2S4       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | T2V1       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T2V2       | 107 | 107                       | 107                              | 0<br>0 | 1    |
|                                                                                    | T2V3       | 107 | 107                       | 107                              | 0      | 1    |
|                                                                                    | T2V4       | 107 | 107                       | 107                              | Ő      | 1    |
|                                                                                    | S1         | 295 | 295                       | 295                              | 0      | 1.12 |
|                                                                                    | S2         | 295 | 295                       | 295                              | 0      | 1.92 |
|                                                                                    | S3         | 295 | 295                       | 295                              | 0<br>0 | 1.32 |
|                                                                                    | S4         | 295 | 295                       | 295                              | 0      | 1.16 |
|                                                                                    | V1         | 295 | 295                       | 295                              | 0<br>0 | 1.16 |
|                                                                                    | V2         | 295 | 295                       | 295                              | 0      | 1.04 |
|                                                                                    | V3         | 295 | 295                       | 295                              | 0<br>0 | 1.04 |
|                                                                                    | V4         | 295 | 295                       | 295                              | 0      | 1.04 |
|                                                                                    | T1S1       | 295 | 295                       | 295                              | 0<br>0 | 1    |
|                                                                                    | T1S2       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T1S3       | 295 | 295                       | 295                              | 0<br>0 | 1    |
|                                                                                    | T1S4       | 295 | 295                       | 295                              | 0      | 1    |
| kp-5                                                                               | T1V1       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T1V2       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T1V3       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T1V4       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2S1       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2S2       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2S3       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2S4       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2V1       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2V2       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2V3       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | T2V4       | 295 | 295                       | 295                              | 0      | 1    |
|                                                                                    | <b>S</b> 1 | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | S2         | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | <b>S</b> 3 | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | <b>S</b> 4 | 52  | 52                        | 52                               | 0      | 1    |
| 1 6                                                                                | V1         | 52  | 52                        | 52                               | 0      | 1    |
| кр-б                                                                               | V2         | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | V3         | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | V4         | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | T1S1       | 52  | 52                        | 52                               | 0      | 1    |
|                                                                                    | T1S2       | 52  | 52                        | 52                               | 0      | 1    |

| Ibn Al-Haitham Inte | ernational Conferer | ice for Pure | e and Applied Science     | s (IHICPS) |              | IOP Publishing  |
|---------------------|---------------------|--------------|---------------------------|------------|--------------|-----------------|
| Journal of Physics: | Conference Series   |              | <b>1879</b> (2021) 022097 | doi:10.1   | 088/1742-659 | 6/1879/2/022097 |
|                     |                     |              |                           |            |              |                 |
|                     | T1S3                | 52           | 52                        | 52         | 0            | 1               |
|                     | T1S4                | 52           | 52                        | 52         | 0            | 1               |
|                     | T1V1                | 52           | 52                        | 52         | 0            | 1               |
|                     | T1V2                | 52           | 52                        | 52         | 0            | 1               |
|                     | T1V3                | 52           | 52                        | 52         | 0            | 1               |
|                     | T1V4                | 52           | 52                        | 52         | 0            | 1               |
|                     | T2S1                | 52           | 52                        | 52         | 0            | 1               |
|                     | T2S2                | 52           | 52                        | 52         | 0            | 1               |
|                     | T2S3                | 52           | 52                        | 52         | 0            | 1               |
|                     | T2S4                | 52           | 52                        | 52         | 0            | 1               |
|                     | T2V1                | 52           | 52                        | 52         | Ō            | 1               |
|                     | T2V2                | 52           | 52                        | 52         | Ő            | 1               |
|                     | T2V3                | 52           | 52                        | 52         | Ő            | 1               |
|                     | T2V4                | 52           | 52<br>52                  | 52<br>52   | Ő            | 1               |
|                     | S1                  | 481.07       | 481.069                   | 481.07     | 0<br>0       | 1               |
|                     | \$2<br>51           | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | S2<br>S3            | 481.07       | 481.069                   | 401.07     | 0            | 1               |
|                     | 55<br>\$4           | 481.07       | 481.002                   | 481.07     | 0            | 1               |
|                     | 54<br>V1            | 401.07       | 481.009                   | 401.07     | 0            | 1               |
|                     | V1<br>V2            | 401.07       | 481.009                   | 401.07     | 0            | 1               |
|                     | V2<br>V2            | 401.07       | 481.009                   | 401.07     | 0            | 1               |
|                     | V S<br>V A          | 401.07       | 481.009                   | 401.07     | 0            | 1               |
|                     | V4<br>T1C1          | 481.07       | 481.009                   | 481.07     | 0            | 1               |
|                     | 1151<br>T152        | 481.07       | 481.009                   | 481.07     | 0            | 1               |
|                     | 1152<br>T152        | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T153                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
| kp-7                | 1184                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
| 1                   | TIVI                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T1V2                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | TIV3                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | TIV4                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2S1                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2S2                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2S3                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2S4                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2V1                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2V2                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2V3                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | T2V4                | 481.07       | 481.069                   | 481.07     | 0            | 1               |
|                     | <b>S</b> 1          | 1025         | 1025                      | 1025       | 0            | 1.36            |
|                     | S2                  | 1025         | 1025                      | 1025       | 0            | 1.68            |
|                     | <b>S</b> 3          | 1025         | 1025                      | 1025       | 0            | 1.24            |
|                     | S4                  | 1025         | 1025                      | 1025       | 0            | 1.68            |
|                     | V1                  | 1025         | 1025                      | 1025       | 0            | 1.68            |
| In Q                | V2                  | 1025         | 1025                      | 1025       | 0            | 1.56            |
| кр-о                | V3                  | 1025         | 1025                      | 1025       | 0            | 1.52            |
|                     | V4                  | 1025         | 1025                      | 1025       | 0            | 1.28            |
|                     | T1S1                | 1025         | 1025                      | 1025       | 0            | 1.95            |
|                     | T1S2                | 1025         | 1025                      | 1025       | 0            | 1.22            |
|                     | T1S3                | 1025         | 1025                      | 1025       | 0            | 1.15            |
|                     | T1S4                | 1025         | 1025                      | 1025       | 0            | 1.56            |

| Ibn Al-Haitham Int  | ernational Conferenc | Pure and Applied Sciences (IHICPS) |                           |      | IOP Publishing |                 |
|---------------------|----------------------|------------------------------------|---------------------------|------|----------------|-----------------|
| Journal of Physics: | Conference Series    |                                    | <b>1879</b> (2021) 022097 |      | 088/1742-659   | 6/1879/2/022097 |
|                     |                      |                                    |                           |      |                |                 |
|                     |                      |                                    |                           |      |                |                 |
|                     | T1V1                 | 1025                               | 1025                      | 1025 | 0              | 1.49            |
|                     | T1V2                 | 1025                               | 1025                      | 1025 | 0              | 1.23            |
|                     | T1V3                 | 1025                               | 1025                      | 1025 | 0              | 1.07            |
|                     | T1V4                 | 1025                               | 1025                      | 1025 | 0              | 1.04            |
|                     | T2S1                 | 1025                               | 1025                      | 1025 | 0              | 2.14            |
|                     | T2S2                 | 1025                               | 1025                      | 1025 | 0              | 1.02            |
|                     | T2S3                 | 1025                               | 1025                      | 1025 | 0              | 1.04            |
|                     | T2S4                 | 1025                               | 1025                      | 1025 | 0              | 1.32            |
|                     | T2V1                 | 1025                               | 1025                      | 1025 | 0              | 1.59            |
|                     | T2V2                 | 1025                               | 1025                      | 1025 | 0              | 1.14            |
|                     | T2V3                 | 1025                               | 1025                      | 1025 | 0              | 1.04            |
|                     | T2V4                 | 1025                               | 1025                      | 1025 | 0              | 1               |
|                     | S1                   | 1024                               | 1024                      | 1024 | 0              | 1.6             |
|                     | S2                   | 1024                               | 1024                      | 1024 | 0              | 1.72            |
|                     | <b>S</b> 3           | 1024                               | 1024                      | 1024 | 0              | 1.16            |
|                     | <b>S</b> 4           | 1024                               | 1024                      | 1024 | 0              | 1.92            |
|                     | V1                   | 1024                               | 1024                      | 1024 | 0              | 1.92            |
|                     | V2                   | 1024                               | 1024                      | 1024 | 0              | 2               |
|                     | V3                   | 1024                               | 1024                      | 1024 | 0              | 2.04            |
|                     | V4                   | 1024                               | 1024                      | 1024 | 0              | 1.48            |
|                     | T1S1                 | 1024                               | 1024                      | 1024 | 0              | 2.5             |
|                     | T1S2                 | 1024                               | 1024                      | 1024 | 0              | 1.04            |
|                     | T1S3                 | 1024                               | 1024                      | 1024 | 0              | 1.04            |
| lm 0                | T1S4                 | 1024                               | 1024                      | 1024 | 0              | 1.21            |
| кр-9                | T1V1                 | 1024                               | 1024                      | 1024 | 0              | 1.07            |
|                     | T1V2                 | 1024                               | 1024                      | 1024 | 0              | 1.94            |
|                     | T1V3                 | 1024                               | 1024                      | 1024 | 0              | 1.83            |
|                     | T1V4                 | 1024                               | 1024                      | 1024 | 0              | 1.08            |
|                     | T2S1                 | 1024                               | 1024                      | 1024 | 0              | 1.91            |
|                     | T2S2                 | 1024                               | 1024                      | 1024 | 0              | 1.29            |
|                     | T2S3                 | 1024                               | 1024                      | 1024 | 0              | 1.12            |
|                     | T2S4                 | 1024                               | 1024                      | 1024 | 0              | 1.67            |
|                     | T2V1                 | 1024                               | 1024                      | 1024 | 0              | 1.54            |
|                     | T2V2                 | 1024                               | 1024                      | 1024 | 0              | 1.44            |
|                     | T2V3                 | 1024                               | 1024                      | 1024 | 0              | 1.75            |
|                     | T2V4                 | 1024                               | 1024                      | 1024 | 0              | 1               |
|                     |                      |                                    |                           |      |                |                 |

| Table S3: Medium | size 0-1 | KP test | problems |
|------------------|----------|---------|----------|
|------------------|----------|---------|----------|

| Instance | dimension | capacity<br>M | weights W                                                                                                     | profits C                                                                                                            |
|----------|-----------|---------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| kp-11    | 30        | 577           | w=[46 17 35 1 26 17 17 48 38 17<br>32 21 29 48 31 8 42 37 6 9 15<br>22 27 14 42 40 14 31 6 34]                | c=[57 64 50 6 52 6 85 60 70 65<br>63 96 18 48 85 50 77 18 70<br>92 17 43 5 23 67 88 35 3 91<br>48]                   |
| kp-12    | 35        | 655           | w=[7 4 36 47 6 33 8 35 32 3 40 50<br>22 18 3 12 30 31 13 33 4 48 5<br>17 33 26 27 19 39 15 33 47 17<br>41 40] | c=[35 67 30 69 40 40 21 73 82<br>93 52 20 61 20 42 86 43 93<br>38 70 59 11 42 93 6 39 25<br>23 36 93 51 81 36 46 96] |

| Ibn Al-Hai | tham Intern | ational Conf | erence for Pure and Applied Sciences (IHI                                                                                                                                                                                                                                               | CPS) IOP Publishing                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal of | Physics: Co | nference Ser | ies <b>1879</b> (2021) 022097 doi                                                                                                                                                                                                                                                       | :10.1088/1742-6596/1879/2/022097                                                                                                                                                                                                                                                                                                                                                                                        |
|            |             |              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| kp-13      | 40          | 819          | w=[28 23 35 38 20 29 11 48 26 14<br>12 48 35 36 33 39 30 26 44 20<br>13 15 46 36 43 19 32 2 47 24<br>26 39 17 32 17 16 33 22 6 12]                                                                                                                                                      | c=[13 16 42 69 66 68 1 13 77<br>85 75 95 92 23 51 79 53 62<br>56 74 7 50 23 34 56 75 42<br>51 13 22 30 45 25 27 90 59<br>94 62 26 111                                                                                                                                                                                                                                                                                   |
| kp-14      | 45          | 907          | w=[18 12 38 12 23 13 18 46 1 7 20<br>43 11 47 49 19 50 7 39 29 32<br>25 12 8 32 41 34 24 48 30 12<br>35 17 38 50 14 47 35 5 13 47<br>24 45 39 1]                                                                                                                                        | c=[98 70 66 33 2 58 4 27 20 45<br>77 63 32 30 8 18 73 9 92 43<br>8 58 84 35 78 71 60 38 40<br>43 43 22 50 4 57 5 88 87 34<br>98 96 99 16 1 25]                                                                                                                                                                                                                                                                          |
| kp-15      | 50          | 882          | w=[15 40 22 28 50 35 49 5 45 3 7<br>32 19 16 40 16 31 24 15 42 29<br>4 14 9 29 11 25 37 48 39 5 47<br>49 31 48 17 46 1 25 8 16 9 30<br>33 18 3 3 3 4 1]                                                                                                                                 | c=[78 69 87 59 63 12 22 4 45<br>33 29 50 19 94 95 60 1 91<br>69 8 100 32 81 47 59 48 56<br>18 59 16 45 54 47 84 100<br>98 75 20 4 19 58 63 37 64<br>90 26 29 13 53 83]                                                                                                                                                                                                                                                  |
| kp-16      | 55          | 1050         | w=[27 15 46 5 40 9 36 12 11 11 49<br>20 32 3 12 44 24 1 24 42 44 16<br>12 42 22 26 10 8 46 50 20 42<br>48 45 43 35 9 12 22 2 14 50 16<br>29 31 46 20 35 11 4 32 35 15<br>29 16]                                                                                                         | c=[98 74 76 4 12 27 90 98 100<br>35 30 19 75 72 19 44 5 66<br>79 87 79 44 35 6 82 11 1 28<br>95 68 39 86 68 61 44 97 83<br>2 15 49 59 30 44 40 14 96<br>37 84 5 43 8 32 95 86 18]                                                                                                                                                                                                                                       |
| kp-17      | 60          | 1006         | w=[7 13 47 33 38 41 3 21 37 7 32<br>13 42 42 23 20 49 1 20 25 31 4<br>8 33 11 6 3 9 26 44 39 7 4 34<br>25 25 16 17 46 23 38 10 5 11<br>28 34 47 3 9 22 17 5 41 20 33<br>29 1 33 16 14]                                                                                                  | c=[81 37 70 64 97 21 60 9 55<br>85 5 33 71 87 51 100 43 27<br>48 17 16 27 76 61 97 78 58<br>46 29 76 10 11 74 36 59 30<br>72 37 72 100 9 47 10 73 92<br>9 52 56 69 30 61 20 66 70<br>46 16 43 60 33 84]                                                                                                                                                                                                                 |
| kp-18      | 65          | 1319         | $      w = [47\ 27\ 24\ 27\ 17\ 17\ 50\ 24\ 38\ 34 \\ 40\ 14\ 15\ 36\ 10\ 42\ 9\ 48\ 37\ 7\ 43 \\ 47\ 29\ 20\ 23\ 36\ 14\ 2\ 48\ 50\ 39 \\ 50\ 25\ 7\ 24\ 38\ 34\ 44\ 38\ 31\ 14 \\ 17\ 42\ 20\ 5\ 44\ 22\ 9\ 1\ 33\ 19\ 19 \\ 23\ 26\ 16\ 24\ 1\ 9\ 16\ 38\ 30\ 36\ 41 \\ 43\ 6]     $ | $c=[47\ 63\ 81\ 57\ 3\ 80\ 28\ 83\ 69\\ 61\ 39\ 7\ 100\ 67\ 23\ 10\ 25\ 91\\ 22\ 48\ 91\ 20\ 45\ 62\ 60\ 67\ 27\\ 43\ 80\ 94\ 47\ 31\ 44\ 31\ 28\ 14\\ 17\ 50\ 9\ 93\ 15\ 17\ 72\ 68\ 36\\ 10\ 1\ 38\ 79\ 45\ 10\ 81\ 66\ 46\\ 54\ 53\ 63\ 65\ 20\ 81\ 20\ 42\ 24\\ 28\ 1]$                                                                                                                                             |
| kp-19      | 70          | 1426         | w=[4 16 16 2 9 44 33 43 14 45 11<br>49 21 12 41 19 26 38 42 20 5<br>14 40 47 29 47 30 50 39 10 26<br>33 44 31 50 7 15 24 7 12 10 34<br>17 40 28 12 35 3 29 50 19 28<br>47 13 42 9 44 14 43 41 10 49<br>13 39 41 25 46 6 7 43]                                                           | $ \begin{array}{c} c = \begin{bmatrix} 66 & 76 & 71 & 61 & 4 & 20 & 34 & 65 & 22 & 8 \\ 99 & 21 & 99 & 62 & 25 & 52 & 72 & 26 & 12 \\ 55 & 22 & 32 & 98 & 31 & 95 & 42 & 2 & 32 \\ 16 & 100 & 46 & 55 & 27 & 89 & 11 & 83 \\ 43 & 93 & 53 & 88 & 36 & 41 & 60 & 92 & 14 \\ 5 & 41 & 60 & 92 & 30 & 55 & 79 & 33 & 10 \\ 45 & 3 & 68 & 12 & 20 & 54 & 63 & 38 & 61 \\ 85 & 71 & 40 & 58 & 25 & 73 & 351 \\ \end{array} $ |
| kp-20      | 75          | 1433         | w=[24 45 15 40 9 37 13 5 43 35 48<br>50 27 46 24 45 2 7 38 20 20 31<br>2 20 3 35 27 4 21 22 33 11 5<br>24 37 31 46 13 12 12 41 36 44<br>36 34 22 29 50 48 17 8 21 28 2                                                                                                                  | c=[2 73 82 12 49 35 78 29 83<br>18 87 93 20 6 55 1 83 91 71<br>25 59 94 90 61 80 84 57 1<br>26 44 44 88 7 34 18 25 73<br>29 24 14 23 82 38 67 94 43<br>(1 07 27 67 22 80 20 20 01                                                                                                                                                                                                                                       |

61 97 37 67 32 89 30 30 91

| Ibn Al-Haitham International Conference | <b>IOP</b> Publishing       |                      |                 |
|-----------------------------------------|-----------------------------|----------------------|-----------------|
| Journal of Physics: Conference Series   | <b>1879</b> (2021) 022097   | doi:10.1088/1742-659 | 6/1879/2/022097 |
|                                         |                             |                      |                 |
| 2                                       | 44 45 25 11 37 35 24 9 40 4 | 5 8 50 21 3 18       | 31 97 79 68 85  |

| 4 45 25 11 37 35 24 9 40 45 8 | 50 21 3 18 31 97 79 68 85  |
|-------------------------------|----------------------------|
| 47 1 22 1 12 36 35 14 17 5]   | 43 71 49 83 44 86 1 100 28 |
|                               | 4 16]                      |

|          | Transfer   |      |      |       |    | Mean       |
|----------|------------|------|------|-------|----|------------|
| Instance | function   | Best | Mean | Worst | SD | iterations |
|          | S1         | 1437 | 1437 | 1437  | 0  | 2.48       |
|          | S2         | 1437 | 1437 | 1437  | 0  | 7.8        |
|          | <b>S</b> 3 | 1437 | 1437 | 1437  | 0  | 6.96       |
|          | <b>S</b> 4 | 1437 | 1437 | 1437  | 0  | 4.92       |
|          | V1         | 1437 | 1437 | 1437  | 0  | 1.84       |
|          | V2         | 1437 | 1437 | 1437  | 0  | 2.04       |
|          | V3         | 1437 | 1437 | 1437  | 0  | 1.24       |
|          | <b>V</b> 4 | 1437 | 1437 | 1437  | 0  | 1.12       |
| kp-11    | T1S1       | 1437 | 1437 | 1437  | 0  | 5.7        |
| ľ        | T1S2       | 1437 | 1437 | 1437  | 0  | 3.56       |
|          | T1S3       | 1437 | 1437 | 1437  | 0  | 5.81       |
|          | T1S4       | 1437 | 1437 | 1437  | 0  | 4.17       |
|          | T1V1       | 1437 | 1437 | 1437  | 0  | 1.14       |
|          | T1V2       | 1437 | 1437 | 1437  | 0  | 1.94       |
|          | T1V3       | 1437 | 1437 | 1437  | 0  | 1.08       |
|          | T1V4       | 1437 | 1437 | 1437  | 0  | 1.04       |
|          | T2S1       | 1437 | 1437 | 1437  | 0  | 3.87       |
|          | T2S2       | 1437 | 1437 | 1437  | 0  | 3.92       |
|          | T2S3       | 1437 | 1437 | 1437  | 0  | 4.91       |
|          | T2S4       | 1437 | 1437 | 1437  | 0  | 2.55       |
|          | T2V1       | 1437 | 1437 | 1437  | 0  | 1.04       |
|          | T2V2       | 1437 | 1437 | 1437  | 0  | 1.37       |
|          | T2V3       | 1437 | 1437 | 1437  | 0  | 1          |
|          | T2V4       | 1437 | 1437 | 1437  | 0  | 1          |
|          | S1         | 1689 | 1689 | 1689  | 0  | 3.8        |
|          | S2         | 1689 | 1689 | 1689  | 0  | 7.96       |
|          | <b>S</b> 3 | 1689 | 1689 | 1689  | 0  | 4.88       |
|          | <b>S</b> 4 | 1689 | 1689 | 1689  | 0  | 3.76       |
|          | V1         | 1689 | 1689 | 1689  | 0  | 2.2        |
|          | V2         | 1689 | 1689 | 1689  | 0  | 1.92       |
| kp-12    | V3         | 1689 | 1689 | 1689  | 0  | 1.68       |
| _        | V4         | 1689 | 1689 | 1689  | 0  | 1.36       |
|          | T1S1       | 1689 | 1689 | 1689  | 0  | 4.24       |
|          | T1S2       | 1689 | 1689 | 1689  | 0  | 3.6        |
|          | T1S3       | 1689 | 1689 | 1689  | 0  | 3.48       |
|          | T1S4       | 1689 | 1689 | 1689  | 0  | 3.8        |
|          | T1V1       | 1689 | 1689 | 1689  | 0  | 1.04       |

# **Table S4:** Results obtained by the transfer functions for the medium scale 0-1 KP

| Ibn Al-Haitham Interna  | tional Conference | e for Pure | and Applied Sci        | ences (IHICPS | )           | IOP Publishing     |
|-------------------------|-------------------|------------|------------------------|---------------|-------------|--------------------|
| Journal of Physics: Cor | nference Series   |            | <b>1879</b> (2021) 022 | 2097 doi:10.  | 1088/1742-0 | 6596/1879/2/022097 |
|                         |                   |            |                        |               |             |                    |
|                         |                   |            |                        |               |             |                    |
|                         | T1V2              | 1689       | 1689                   | 1689          | 0           | 1.16               |
|                         | T1V3              | 1689       | 1689                   | 1689          | 0           | 1.04               |
|                         | T1V4              | 1689       | 1689                   | 1689          | 0           | 1.04               |
|                         | T2S1              | 1689       | 1689                   | 1689          | 0           | 4.88               |
|                         | T2S2              | 1689       | 1689                   | 1689          | 0           | 3.8                |
|                         | T2S3              | 1689       | 1689                   | 1689          | 0           | 4.64               |
|                         | T2S4              | 1689       | 1689                   | 1689          | 0           | 3.16               |
|                         | T2V1              | 1689       | 1689                   | 1689          | 0           | 1.24               |
|                         | T2V2              | 1689       | 1689                   | 1689          | 0           | 1                  |
|                         | T2V3              | 1689       | 1689                   | 1689          | 0           | 1.08               |
|                         | T2V4              | 1689       | 1689                   | 1689          | 0           | 1                  |
|                         | <b>S</b> 1        | 1821       | 1821                   | 1821          | 0           | 8.28               |
|                         | S2                | 1821       | 1821                   | 1821          | 0           | 37.8               |
|                         | <b>S</b> 3        | 1821       | 1821                   | 1821          | 0           | 22.2               |
|                         | S4                | 1821       | 1821                   | 1821          | 0           | 17.92              |
|                         | V1                | 1821       | 1821                   | 1821          | 0           | 4.56               |
|                         | V2                | 1821       | 1821                   | 1821          | 0           | 3.72               |
|                         | V3                | 1821       | 1821                   | 1821          | 0           | 2.68               |
|                         | V4                | 1821       | 1821                   | 1821          | 0           | 1.96               |
|                         | T1S1              | 1821       | 1821                   | 1821          | 0           | 11.56              |
|                         | T1S2              | 1821       | 1821                   | 1821          | 0           | 22.41              |
|                         | T1S3              | 1821       | 1821                   | 1821          | 0           | 16.63              |
| 1 10                    | T1S4              | 1821       | 1821                   | 1821          | 0           | 12.65              |
| kp-13                   | T1V1              | 1821       | 1821                   | 1821          | 0           | 3.47               |
|                         | T1V2              | 1821       | 1821                   | 1821          | 0           | 2.34               |
|                         | T1V3              | 1821       | 1821                   | 1821          | 0           | 1.94               |
|                         | T1V4              | 1821       | 1821                   | 1821          | 0           | 1.04               |
|                         | T2S1              | 1821       | 1821                   | 1821          | 0           | 9 53               |
|                         | T2S1              | 1821       | 1821                   | 1821          | Ő           | 193                |
|                         | T2S2              | 1821       | 1821                   | 1821          | 0           | 18.66              |
|                         | T2S3              | 1821       | 1821                   | 1821          | 0           | 10.06              |
|                         | T2V1              | 1821       | 1821                   | 1821          | 0           | 1.9/               |
|                         | T2V1<br>T2V2      | 1821       | 1821                   | 1821          | 0           | 1.74               |
|                         | 12V2<br>T2V2      | 1021       | 1821                   | 1821          | 0           | 1.15               |
|                         | 12V3              | 1021       | 1021                   | 1021          | 0           | 1.55               |
|                         | <u>12V4</u><br>S1 | 2022       | 2022                   | 2033          | 0           | 3.28               |
|                         | S1<br>S2          | 2033       | 2033                   | 2033          | 0           | 3.28               |
|                         | S2<br>S3          | 2033       | 2033                   | 2033          | 0           | 22                 |
|                         | S4                | 2033       | 2033                   | 2033          | 0           | 22.88              |
|                         | V1                | 2033       | 2033                   | 2033          | 0           | 3 52               |
| kn-14                   | V2                | 2033       | 2033                   | 2033          | 0           | 2.32               |
| ~r · ·                  | V3                | 2033       | 2033                   | 2033          | Ő           | 2.08               |
|                         | V4                | 2033       | 2033                   | 2033          | 0           | 1.48               |
|                         | T1S1              | 2033       | 2033                   | 2033          | 0           | 5.19               |
|                         | T1S2              | 2033       | 2033                   | 2033          | 0           | 14.55              |
|                         | T1S3              | 2033       | 2033                   | 2033          | 0           | 20.12              |

| Journal of Physics: Conference Series         1879 (2021) 02207         doi:10.1088/1742-6596/1879/2/022097           TIV3         2033         2033         0         1.9.49           TIV1         2003         20033         0         1.42           TIV2         2003         20033         0         1.42           TIV3         2003         20033         0         1.42           TIV4         2003         20033         0         1.94           T2S1         2003         20033         0         3.92           T2S2         2003         20033         0         1.94           T2V1         2003         20033         0         1.04           T2V2         2003         20033         0         1.04           T2V2         2003         20033         0         1.04           T2V2         2003         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V4         2033         2033         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ibn A | Al-Haitham Interna  | ational Conferenc | e for Pure | r Pure and Applied Sciences (IHICPS) |              |             | <u>IOP</u> Publishing |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|-------------------|------------|--------------------------------------|--------------|-------------|-----------------------|--|
| $k_{p-16} = \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Journ | nal of Physics: Con | nference Series   |            | <b>1879</b> (2021) 022               | 2097 doi:10. | 1088/1742-6 | 596/1879/2/022097     |  |
| TiS4         2033         2033         2033         0         19.49           TiV1         2033         2033         2033         0         1.42           TiV2         2033         2033         2033         0         1.42           TiV2         2033         2033         0         1.19           TiV4         2033         2033         0         3.92           T2S2         2033         2033         0         3.92           T2S2         2033         2033         0         1.94           T2V1         2033         2033         0         1.95           T2S2         2033         2033         0         1.14           T2V2         2033         2033         0         1.14           T2V2         2033         2033         0         1.04           S1         2651         2651         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |                   |            |                                      |              |             |                       |  |
| TIS4         2033         2033         2033         0         19.49           TIV1         2033         2033         0         1.42           TIV2         2033         2033         0         1.42           TIV3         2033         2033         0         1.42           TIV3         2033         2033         0         1.04           TSE         2033         2033         0         1.04           TZS2         2033         2033         0         1.295           T2S2         2033         2033         0         1.788           T2V1         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V3         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V3         2033         2033         0         1.04           V3         2651         2651         0         1.56 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                     |                   |            |                                      |              |             |                       |  |
| trivi         2033         2033         2033         0         1.42           TiV2         2033         2033         2033         0         1.42           TiV3         2033         2033         0         1.19           TiV4         2033         2033         0         1.42           T2S1         2033         2033         0         3.92           T2S2         2033         2033         0         12.95           T2S3         2033         2033         0         1.494           T2V1         2033         2033         0         1.08           T2V2         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           V2         2651         2651         2651         0         423.53           S4         2651         2651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                     | T1S4              | 2033       | 2033                                 | 2033         | 0           | 19.49                 |  |
| kp-16         T1V2         2033         2033         2033         0         1.42           T1V3         2033         2033         2033         0         1.04           T2S1         2033         2033         2033         0         1.04           T2S2         2033         2033         2033         0         1.295           T2S3         2033         2033         0         1.494           T2V1         2033         2033         0         1.494           T2V2         2033         2033         0         1.08           T2V2         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           S2         2651         2651         2651         0         13.56           S2         2651         2651         2651         0         3.23         360.6           V1         2651         2651         2651         0         9.12         3.23         360.6           V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                     | T1V1              | 2033       | 2033                                 | 2033         | 0           | 1.42                  |  |
| kp-16         T1V3         2033         2033         2033         0         1.19           T1V4         2033         2033         2033         0         3.92           T2S1         2033         2033         2033         0         1.295           T2S2         2033         2033         2033         0         1.7.88           T2S4         2033         2033         2033         0         1.4.94           T2V1         2033         2033         2033         0         1.04           T2V2         2033         2033         2033         0         1.04           T2V3         2033         2033         0         1.04         1.22           T2V4         2033         2033         0         1.04         1.356           V1         2651         2651         2651         0         1.356           V2         2651         2651         2651 <td></td> <td></td> <td>T1V2</td> <td>2033</td> <td>2033</td> <td>2033</td> <td>0</td> <td>1.42</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                     | T1V2              | 2033       | 2033                                 | 2033         | 0           | 1.42                  |  |
| TIV4         2033         2033         2033         0         1.04           T2S1         2033         2033         2033         0         12.95           T2S2         2033         2033         2033         0         17.88           T2S4         2033         2033         0         14.94           T2V1         2033         2033         0         1.04           T2V2         2033         2033         0         1.04           T2V3         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           S3         2651         2651         0         13.56           S2         2651         2651         2651         0         13.56           V2         2651         2651         2651         0         3.2           T18         2651         2651         2651         0         3.2           T18 </td <td></td> <td></td> <td>T1V3</td> <td>2033</td> <td>2033</td> <td>2033</td> <td>0</td> <td>1.19</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                     | T1V3              | 2033       | 2033                                 | 2033         | 0           | 1.19                  |  |
| T2S1         2033         2033         2033         0         3.92           T2S2         2033         2033         2033         0         12.95           T2S4         2033         2033         2033         0         17.88           T2S4         2033         2033         2033         0         1.494           T2V1         2033         2033         0         1.12           T2V2         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           S2         2651         2651         0         1.04           S3         2651         2651         2651         0         1.356           S4         2651         2651         2651         0         3.2           V1         2651         2651         2651         0         3.2 <t< td=""><td></td><td></td><td>T1V4</td><td>2033</td><td>2033</td><td>2033</td><td>0</td><td>1.04</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                     | T1V4              | 2033       | 2033                                 | 2033         | 0           | 1.04                  |  |
| T2S2         2033         2033         2033         0         12.95           T2S3         2033         2033         2033         0         17.88           T2V1         2033         2033         2033         0         14.94           T2V1         2033         2033         0         1.08           T2V2         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           S1         2651         2651         0         13.56           S2         2651         2651         2651         0         3.23           V1         2651         265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     | T2S1              | 2033       | 2033                                 | 2033         | 0           | 3.92                  |  |
| T2S3         2033         2033         2033         0         17.88           T2V1         2033         2033         0         1.4.94           T2V1         2033         2033         0         1.08           T2V2         2033         2033         0         1.04           T2V3         2033         2033         0         1.04           T2V4         2033         2033         0         1.04           S1         2651         2651         0         1.356           S2         2651         2651         2651         0         11.36           V1         2651         2651         2651         0         3.2           T1S1         2651         2651         2651         0         3.2           T1S2         2651         2651         2651         0         3.2           T1S3         2651<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     | T2S2              | 2033       | 2033                                 | 2033         | 0           | 12.95                 |  |
| $ kp-16 $ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                     | T2S3              | 2033       | 2033                                 | 2033         | 0           | 17.88                 |  |
| $kp-16 = \begin{bmatrix} T2V1 & 2033 & 2033 & 2033 & 0 & 1.08 \\ T2V2 & 2033 & 2033 & 2033 & 0 & 1.04 \\ T2V4 & 2033 & 2033 & 2033 & 0 & 1.04 \\ T2V4 & 2033 & 2033 & 2033 & 0 & 1.04 \\ \hline T2V4 & 2033 & 2033 & 2033 & 0 & 1.04 \\ \hline S1 & 2651 & 2651 & 2651 & 0 & 13.56 \\ \hline S2 & 2651 & 2650.2 & 2647 & 1.69 & 524.3 \\ \hline S3 & 2651 & 2650.2 & 2643 & 2.53 & 360.6 \\ \hline V1 & 2651 & 2651 & 2651 & 0 & 11.36 \\ \hline V2 & 2651 & 2651 & 2651 & 0 & 9.12 \\ \hline V3 & 2651 & 2651 & 2651 & 0 & 9.12 \\ \hline V3 & 2651 & 2651 & 2651 & 0 & 3.2 \\ \hline T1S1 & 2651 & 2651 & 2651 & 0 & 3.47.16 \\ \hline T1S2 & 2651 & 2651 & 2651 & 0 & 20.82 \\ \hline T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ \hline T1S2 & 2651 & 2651 & 2651 & 0 & 348 \\ \hline T1V2 & 2651 & 2651 & 2651 & 0 & 318 \\ \hline T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V4 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V4 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V4 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V4 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T2S4 & 2651 & 2651 & 2651 & 0 & 3.28.5 \\ \hline T2S2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ \hline S2 & 2917 & 2917 & 2917 & 0 & 81.88 \\ \hline S3 & 2917 & 2917 & 2917 & 0 & 43.84 \\ \hline S4 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S1 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                     | T2S4              | 2033       | 2033                                 | 2033         | 0           | 14.94                 |  |
| $ kp-16 = \begin{bmatrix} T2V2 & 2033 & 2033 & 2033 & 0 & 1.12 \\ T2V3 & 2033 & 2033 & 2033 & 0 & 1.04 \\ T2V4 & 2033 & 2033 & 2033 & 0 & 1.04 \\ \hline T2V4 & 2033 & 2051 & 2651 & 0 & 13.56 \\ \hline S2 & 2651 & 2650.2 & 2647 & 1.69 & 524.3 \\ \hline S3 & 2651 & 2650.2 & 2643 & 2.53 & 360.6 \\ \hline V1 & 2651 & 2651 & 2651 & 0 & 423.53 \\ \hline V1 & 2651 & 2651 & 2651 & 0 & 9.12 \\ \hline V2 & 2651 & 2651 & 2651 & 0 & 9.12 \\ \hline V3 & 2651 & 2651 & 2651 & 0 & 3.2 \\ \hline T1S2 & 2651 & 2651 & 2651 & 0 & 3.2 \\ \hline T1S2 & 2651 & 2651 & 2651 & 0 & 3.47.16 \\ \hline T1S3 & 2651 & 2651 & 2651 & 0 & 347.16 \\ \hline T1S3 & 2651 & 2651 & 2651 & 0 & 347.16 \\ \hline T1S4 & 2651 & 2651 & 2651 & 0 & 348 \\ \hline T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T1V4 & 2651 & 2651 & 2651 & 0 & 3.92 \\ \hline T2S4 & 2651 & 2651 & 2651 & 0 & 328.5 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 328.5 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 3.98 \\ \hline Re -17 & \hline S1 & 2917 & 2917 & 0 & 81.88 \\ \hline S3 & 2917 & 2917 & 2917 & 0 & 43.84 \\ \hline S4 & 2917 & 2917 & 2917 & 0 & 43.84 \\ \hline S4 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V1 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 5.073 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                     | T2V1              | 2033       | 2033                                 | 2033         | 0           | 1.08                  |  |
| $ kp-16 = \begin{bmatrix} 12V3 & 2033 & 2033 & 2033 & 0 & 1.04 \\ 12V4 & 2033 & 2033 & 2033 & 0 & 1.04 \\ S1 & 2651 & 2650 & 2631 & 0 & 13.56 \\ S2 & 2651 & 2650 & 2647 & 1.69 & 524.3 \\ S3 & 2651 & 2650 & 2643 & 2.53 & 360.6 \\ V1 & 2651 & 2651 & 2651 & 0 & 11.36 \\ V2 & 2651 & 2651 & 2651 & 0 & 11.36 \\ V2 & 2651 & 2651 & 2651 & 0 & 5.04 \\ V4 & 2651 & 2651 & 2651 & 0 & 3.2 \\ T1S1 & 2651 & 2651 & 2651 & 0 & 3.2 \\ T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S3 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 1.93 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 1.93 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 1.93 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 1.93 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S3 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 3.52 \\ V2 & 2917 & 2917 & 2917 & 0 & 43.84 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.84 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.84 \\ S4 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                     | T2V2              | 2033       | 2033                                 | 2033         | 0           | 1.12                  |  |
| $ \frac{12}{kp-16} + \frac{12}{kp-17} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                     | T2V3              | 2033       | 2033                                 | 2033         | 0           | 1.04                  |  |
| $k_{p-16} = \begin{bmatrix} S1 & 2651 & 2651 & 2651 & 0 & 13.56 \\ S2 & 2651 & 2650.2 & 2647 & 1.69 & 524.3 \\ S3 & 2651 & 2650.2 & 2643 & 2.53 & 360.6 \\ V1 & 2651 & 2651 & 2651 & 0 & 11.36 \\ V2 & 2651 & 2651 & 2651 & 0 & 9.12 \\ V3 & 2651 & 2651 & 2651 & 0 & 5.04 \\ V4 & 2651 & 2651 & 2651 & 0 & 3.2 \\ T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S3 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S3 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V4 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S3 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ S2 & 2917 & 2917 & 2917 & 0 & 42.88 \\ S3 & 2917 & 2917 & 2917 & 0 & 42.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 42.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.58 \\ V3 & 2917 & 2917 & 2917 & 0 & 4.58 \\ V3 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _     |                     | T2V4              | 2033       | 2033                                 | 2033         | 0           | 1.04                  |  |
| $kp-16 = \begin{cases} 82 & 2651 & 2650.2 & 2647 & 1.69 & 524.3 \\ 83 & 2651 & 2651 & 2651 & 0 & 423.53 \\ 84 & 2651 & 2650.2 & 2643 & 2.53 & 360.6 \\ 11.36 & 122 & 2651 & 2651 & 0 & 11.36 \\ 122 & 2651 & 2651 & 2651 & 0 & 9.12 \\ 123 & 2651 & 2651 & 2651 & 0 & 5.04 \\ 124 & 2651 & 2651 & 2651 & 0 & 3.2 \\ 1181 & 2651 & 2651 & 2651 & 0 & 3.2 \\ 1182 & 2651 & 2651 & 2651 & 0 & 347.16 \\ 1183 & 2651 & 2651 & 2651 & 0 & 347.16 \\ 1184 & 2651 & 2651 & 2651 & 0 & 318 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1112 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1123 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 1124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 124 & 2651 & 2651 & 2651 & 0 & 3.92 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2651 & 2651 & 2651 & 0 & 4.52 \\ 124 & 2917 & 2917 & 2917 & 0 & 81.88 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 83 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 85 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 85 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 85 & 2917 & 2917 & 2917 & 0 & 4.288 \\ 85 & 2917 & 2917 & 2917 & 0 & 4.52 \\ 1152 & 2917 & 2917 & 2917 & 0 & 5.73 \\ 1152 & 2917 & 2917 & 2917 & 0 & 5.73 \\ 1152 & 2917 & 2917 & 2917 & 0 & 5.73 \\ 1152 & 2917 & 2917 & 2917 & 0 & 5.73 \\ 1152 & 2917 & 2917 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                     | <b>S</b> 1        | 2651       | 2651                                 | 2651         | 0           | 13.56                 |  |
| $k_{p-16} = \frac{83}{12} 2651 2651 2651 2651 0 423.53 360.6 V1 2651 2651 2651 0 11.36 V1 2651 2651 2651 0 9.12 V3 2651 2651 2651 0 5.04 V4 2651 2651 2651 0 3.2 T1S1 2651 2651 2651 0 347.16 T1S2 2651 2651 2651 0 347.16 T1V2 2651 2651 2651 0 349.4 T1V2 2651 2651 2651 0 3.92 T1V4 2651 2651 2651 0 3.92 T1V4 2651 2651 2651 0 3.92 T1V4 2651 2651 2651 0 1.9 T2S1 2651 2651 0 328.5 T2S3 2651 2651 2651 0 328.5 T2S3 2651 2651 0 0 7.15 T2V2 2651 2651 2651 0 328.5 T2S3 2651 2651 0 4.52 T2V3 2651 2651 0 0 1.08 S2 2917 2917 0 43.84 S4 2917 2917 0 43.84 V3 2917 2917 0 42.88 V3 2917 2917 0 1.8 T1S1 2917 2917 0 1.8 T1S1 2917 2917 0 1.8 T1S1 2917 2917 0 5.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     | S2                | 2651       | 2650.2                               | 2647         | 1.69        | 524.3                 |  |
| $kp-16 = \frac{84}{1284} = \frac{2651}{2651} = \frac{2650.2}{2651} = \frac{2643}{2651} = \frac{2.53}{0} = \frac{360.6}{9.12}$ $\frac{V1}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{9.12}{9.12}$ $\frac{V2}{V3} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{3.2}{9.2}$ $\frac{V4}{V4} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{3.2}{9.2}$ $\frac{T151}{T152} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{3.2}{9.2}$ $\frac{T152}{T152} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{3.4}{9.16}$ $\frac{Kp-16}{T153} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{3.94}{11}$ $\frac{Kp-16}{T152} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{3.92}{11}$ $\frac{T1V2}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{3.92}{11}$ $\frac{T1V4}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{3.92}{11}$ $\frac{T1V4}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{3.92}{11}$ $\frac{T281}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{3.28.5}{12}$ $\frac{T284}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{3.28.5}{12}$ $\frac{T2V4}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{4.52}{12}$ $\frac{T2V4}{2651} = \frac{2651}{2651} = \frac{2651}{0} = 0 = \frac{4.52}{12}$ $\frac{S1}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{42.88}{1.88}$ $\frac{S3}{3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S4}{3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S4}{3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{3} = \frac{2917}{2917} = \frac{2917}{0} = \frac{2.16}{1.8}$ $\frac{V1}{V1} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = \frac{2.16}{1.8}$ $\frac{V1}{V1} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{4.58}{1.88}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{5.5}{1.85}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = 0 = \frac{5.5}{1.85}$ $\frac{S1}{V3} = \frac{2917}{2917} = \frac{2917}{0} = \frac{2917}{0} = \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                     | <b>S</b> 3        | 2651       | 2651                                 | 2651         | 0           | 423.53                |  |
| $kp-16 = V_1 = 2651 = 2651 = 2651 = 0 = 11.36 = V_2 = 2651 = 2651 = 2651 = 0 = 9.12 = V_3 = 2651 = 2651 = 2651 = 0 = 5.04 = V_4 = 2651 = 2651 = 2651 = 0 = 3.2 = 71.81 = 2651 = 2651 = 2651 = 0 = 347.16 = 71.82 = 2651 = 2651 = 2651 = 0 = 347.16 = 71.83 = 2651 = 2651 = 2651 = 0 = 31.8 = 71.1V_1 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 71.1V_2 = 2651 = 2651 = 2651 = 0 = 3.92 = 72.1V_2 = 2651 = 2651 = 2651 = 0 = 328.5 = 72.84 = 2651 = 2651 = 2651 = 0 = 328.5 = 72.84 = 2651 = 2651 = 2651 = 0 = 7.15 = 72.1V_2 = 2651 = 2651 = 2651 = 0 = 7.15 = 72.1V_2 = 2651 = 2651 = 2651 = 0 = 1.08 = 72.1V_2 = 2651 = 2651 = 2651 = 0 = 1.08 = 51 = 2917 = 2917 = 2917 = 0 = 43.44 = 54 = 2917 = 2917 = 2917 = 0 = 43.44 = 54 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.52 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.51 = 72.1V_2 = 2917 = 2917 = 2917 = 0 = 3.51 = 72.1V_2 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                     | S4                | 2651       | 2650.2                               | 2643         | 2.53        | 360.6                 |  |
| $kp-16 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                     | V1                | 2651       | 2651                                 | 2651         | 0           | 11.36                 |  |
| $k_{p-16} = \frac{V3}{V4} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{5.04}{3.2}$ $rus = \frac{V4}{T181} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{3.2}{20.82}$ $rus = \frac{7182}{T182} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{318}{20.82}$ $rus = \frac{7184}{T184} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{318}{2651}$ $rus = \frac{2651}{T184} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{318}{2651}$ $rus = \frac{2651}{T184} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{318}{2651}$ $rus = \frac{2651}{T184} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{318}{2651}$ $rus = \frac{2651}{T184} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{328.5}{2651}$ $rus = \frac{2651}{T284} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{23.96}{7284}$ $rus = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{23.96}{7284}$ $rus = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = 0 = \frac{29.4}{252}$ $rus = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{2917} = 0 = \frac{3.88}{3.5}$ $rus = \frac{83}{2917} = \frac{2917}{2917} = \frac{2917}{2917} = 0 = \frac{2.88}{3.5}$ $rus = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{2917} = 0 = \frac{3.85}{3.5}$ $rus = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{2917} = 0 = \frac{3.85}{3.5}$ $rus = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{2917} = 0 = \frac{3.85}{3.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                     | V2                | 2651       | 2651                                 | 2651         | 0           | 9.12                  |  |
| $kp-16 = \begin{cases} V4 & 2651 & 2651 & 2651 & 0 & 3.2 \\ T1S1 & 2651 & 2651 & 2651 & 0 & 20.82 \\ T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S3 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V1 & 2651 & 2651 & 2651 & 0 & 8.94 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 6.78 \\ T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V4 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 15.34 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ Y3 & 2917 & 2917 & 2917 & 0 & 81.88 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.84 \\ V1 & 2917 & 2917 & 2917 & 0 & 2.86 \\ V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                     | V3                | 2651       | 2651                                 | 2651         | 0           | 5.04                  |  |
| $k_{p-16} = \begin{bmatrix} T1S1 & 2651 & 2651 & 2651 & 0 & 20.82 \\ T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S3 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V1 & 2651 & 2651 & 2651 & 0 & 8.94 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 6.78 \\ T1V3 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S3 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ S1 & 2917 & 2917 & 2917 & 0 & 81.88 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                     | V4                | 2651       | 2651                                 | 2651         | 0           | 3.2                   |  |
| $k_{p-16} = \begin{bmatrix} T1S2 & 2651 & 2651 & 2651 & 0 & 347.16 \\ T1S3 & 2651 & 2651 & 2651 & 0 & 279.31 \\ T1S4 & 2651 & 2651 & 2651 & 0 & 8.94 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 6.78 \\ T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V4 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 15.34 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S3 & 2651 & 2651 & 2651 & 0 & 223.96 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ \hline \\ k_{p-17} & k_{1} & 2917 & 2917 & 2917 & 0 & 81.88 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \hline \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                     | T1S1              | 2651       | 2651                                 | 2651         | 0           | 20.82                 |  |
| $kp-16 = \frac{T1S3}{T1S4} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{0}{318} = \frac{279.31}{318} = \frac{1177}{1171} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{0}{0} = \frac{318}{318} = \frac{1177}{1172} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{0} = \frac{0}{392} = \frac{1177}{1174} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{15.34} = \frac{128}{1282} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{223.96} = \frac{128}{1284} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{223.96} = \frac{128}{1284} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{223.96} = \frac{128}{1284} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{23.96} = \frac{128}{1284} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{2.94} = \frac{127}{1274} = \frac{2651}{2651} = \frac{2651}{2651} = \frac{2651}{0} = \frac{0}{1.08} = \frac{128}{12917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{0}{43.44} = \frac{128}{84} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{288}{13} = \frac{118}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{2.88}{13} = \frac{118}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{0}{1.8} = \frac{118}{1181} = \frac{2917}{2917} = \frac{2917}{0} = \frac{0}{1.8} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{0}{0} = \frac{50.73}{15} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{0}{50.73} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{50.73}{15} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{50.73}{15} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{50.73}{15} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{50.73}{15} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{50.73}{15} = \frac{118}{118} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{118}{118} = \frac{118}{1182} = \frac{2917}{2917} = \frac{2917}{2917} = \frac{2917}{0} = \frac{118}{118} = 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                     | T1S2              | 2651       | 2651                                 | 2651         | 0           | 347.16                |  |
| $kp-16 = \begin{cases} T1S4 & 2651 & 2651 & 2651 & 0 & 318 \\ T1V1 & 2651 & 2651 & 2651 & 0 & 8.94 \\ T1V2 & 2651 & 2651 & 2651 & 0 & 6.78 \\ T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V4 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 15.34 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S3 & 2651 & 2651 & 2651 & 0 & 223.96 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 4.52 \\ Rentric 1 & 2917 & 2917 & 0 & 6.08 \\ S1 & 2917 & 2917 & 2917 & 0 & 81.88 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 3.52 \\ V2 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                     | T1S3              | 2651       | 2651                                 | 2651         | 0           | 279.31                |  |
| Kp-10         T1V1         2651         2651         2651         0         8.94           T1V2         2651         2651         2651         0         6.78           T1V3         2651         2651         2651         0         3.92           T1V4         2651         2651         2651         0         1.9           T2S1         2651         2651         2651         0         328.5           T2S2         2651         2651         2651         0         328.5           T2S3         2651         2651         2651         0         328.5           T2S4         2651         2651         2651         0         223.96           T2V1         2651         2651         2651         0         7.15           T2V2         2651         2651         2651         0         4.52           T2V3         2651         2651         2651         0         1.08           S1         2917         2917         2917         0         81.88           S3         2917         2917         2917         0         43.44           S4         2917         2917         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | kn 16               | T1S4              | 2651       | 2651                                 | 2651         | 0           | 318                   |  |
| $kp-17 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | кр-10               | T1V1              | 2651       | 2651                                 | 2651         | 0           | 8.94                  |  |
| $k_{p-17} = \begin{bmatrix} T1V3 & 2651 & 2651 & 2651 & 0 & 3.92 \\ T1V4 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 223.96 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 7.15 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ S1 & 2917 & 2917 & 2917 & 0 & 6.08 \\ S2 & 2917 & 2917 & 2917 & 0 & 6.08 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 3.52 \\ V2 & 2917 & 2917 & 2917 & 0 & 3.52 \\ V2 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                     | T1V2              | 2651       | 2651                                 | 2651         | 0           | 6.78                  |  |
| $kp-17 = \begin{cases} T1V4 & 2651 & 2651 & 2651 & 0 & 1.9 \\ T2S1 & 2651 & 2651 & 2651 & 0 & 15.34 \\ T2S2 & 2651 & 2651 & 2651 & 0 & 328.5 \\ T2S3 & 2651 & 2651 & 2651 & 0 & 223.96 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 7.15 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 2.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ S1 & 2917 & 2917 & 2917 & 0 & 6.08 \\ S2 & 2917 & 2917 & 2917 & 0 & 6.08 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 3.52 \\ V2 & 2917 & 2917 & 2917 & 0 & 3.52 \\ V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                     | T1V3              | 2651       | 2651                                 | 2651         | 0           | 3.92                  |  |
| $kp-17 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                     | T1V4              | 2651       | 2651                                 | 2651         | 0           | 1.9                   |  |
| $kp-17 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                     | T2S1              | 2651       | 2651                                 | 2651         | 0           | 15.34                 |  |
| $kp-17 = \begin{cases} T2S3 & 2651 & 2651 & 2651 & 0 & 223.96 \\ T2S4 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 7.15 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 1.08 \\ \hline T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ \hline S1 & 2917 & 2917 & 2917 & 0 & 6.08 \\ S2 & 2917 & 2917 & 2917 & 0 & 81.88 \\ \hline S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ \hline S4 & 2917 & 2917 & 2917 & 0 & 42.88 \\ \hline V1 & 2917 & 2917 & 2917 & 0 & 3.52 \\ \hline V2 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V3 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V3 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S1 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                     | T2S2              | 2651       | 2651                                 | 2651         | 0           | 328.5                 |  |
| $kp-17 = \begin{cases} T2S4 & 2651 & 2651 & 2651 & 0 & 6.95 \\ T2V1 & 2651 & 2651 & 2651 & 0 & 7.15 \\ T2V2 & 2651 & 2651 & 2651 & 0 & 4.52 \\ T2V3 & 2651 & 2651 & 2651 & 0 & 2.94 \\ T2V4 & 2651 & 2651 & 2651 & 0 & 1.08 \\ \hline S1 & 2917 & 2917 & 2917 & 0 & 6.08 \\ S2 & 2917 & 2917 & 2917 & 0 & 81.88 \\ S3 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 43.44 \\ S4 & 2917 & 2917 & 2917 & 0 & 42.88 \\ \hline V1 & 2917 & 2917 & 2917 & 0 & 3.52 \\ \hline V2 & 2917 & 2917 & 2917 & 0 & 2.88 \\ \hline V3 & 2917 & 2917 & 2917 & 0 & 2.16 \\ \hline V4 & 2917 & 2917 & 2917 & 0 & 1.8 \\ \hline T1S1 & 2917 & 2917 & 2917 & 0 & 8.5 \\ \hline T1S2 & 2917 & 2917 & 2917 & 0 & 50.73 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                     | T2S3              | 2651       | 2651                                 | 2651         | 0           | 223.96                |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                     | T2S4              | 2651       | 2651                                 | 2651         | 0           | 6.95                  |  |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ |       |                     | T2V1              | 2651       | 2651                                 | 2651         | 0           | 7.15                  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                     | T2V2              | 2651       | 2651                                 | 2651         | 0           | 4.52                  |  |
| $\frac{1}{1} + \frac{1}{1} + \frac{1}$                                                                                                                                                                                                             |       |                     | T2V3              | 2651       | 2651                                 | 2651         | 0           | 2.94                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |                     | T2V4              | 2651       | 2651                                 | 2651         | 0           | 1.08                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                     | <b>S</b> 1        | 2917       | 2917                                 | 2917         | 0           | 6.08                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                     | S2                | 2917       | 2917                                 | 2917         | 0           | 81.88                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                     | <b>S</b> 3        | 2917       | 2917                                 | 2917         | 0           | 43.44                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                     | S4                | 2917       | 2917                                 | 2917         | 0           | 42.88                 |  |
| kp-17         V2         2917         2917         2917         0         2.88           V3         2917         2917         2917         0         2.16           V4         2917         2917         2917         0         1.8           T1S1         2917         2917         2917         0         8.5           T1S2         2917         2917         2917         0         50.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1                   | V1                | 2917       | 2917                                 | 2917         | 0           | 3.52                  |  |
| V329172917291702.16V429172917291701.8T1S129172917291708.5T1S2291729172917050.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | кр-1 /              | V2                | 2917       | 2917                                 | 2917         | 0           | 2.88                  |  |
| V429172917291701.8T1S129172917291708.5T1S2291729172917050.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                     | V3                | 2917       | 2917                                 | 2917         | 0           | 2.16                  |  |
| T1S129172917291708.5T1S2291729172917050.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                     | V4                | 2917       | 2917                                 | 2917         | 0           | 1.8                   |  |
| T1S2 2917 2917 2917 0 50.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                     | T1S1              | 2917       | 2917                                 | 2917         | 0           | 8.5                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     | T1S2              | 2917       | 2917                                 | 2917         | 0           | 50.73                 |  |

| n Al-Haitham Interna  | tional Conferenc | the for Pure and Applied Sciences (IHICPS) IOP Publishing |                        |            |              |                   |  |
|-----------------------|------------------|-----------------------------------------------------------|------------------------|------------|--------------|-------------------|--|
| urnal of Physics: Con | ference Series   |                                                           | <b>1879</b> (2021) 022 | 097 doi:10 | .1088/1742-6 | 596/1879/2/022097 |  |
|                       |                  |                                                           |                        |            |              |                   |  |
|                       | T1S3             | 2917                                                      | 2917                   | 2917       | 0            | 40.95             |  |
|                       | T1S4             | 2917                                                      | 2917                   | 2917       | 0            | 39.27             |  |
|                       | T1V1             | 2917                                                      | 2917                   | 2917       | 0            | 1.93              |  |
|                       | T1V2             | 2917                                                      | 2917                   | 2917       | 0            | 1.96              |  |
|                       | T1V3             | 2917                                                      | 2917                   | 2917       | 0            | 1.04              |  |
|                       | T1V4             | 2917                                                      | 2917                   | 2917       | 0            | 1                 |  |
|                       | T2S1             | 2917                                                      | 2917                   | 2917       | 0            | 6 94              |  |
|                       | T2S2             | 2917                                                      | 2917                   | 2917       | 0            | 48 33             |  |
|                       | T252             | 2017                                                      | 2917                   | 2917       | 0            | 35.97             |  |
|                       | T2S3             | 2017                                                      | 2917                   | 2017       | 0            | 31.94             |  |
|                       | T2N1             | 2917                                                      | 2917                   | 2917       | 0            | 1 26              |  |
|                       |                  | 2917                                                      | 2917                   | 2917       | 0            | 1.20              |  |
|                       | 12V2             | 2917                                                      | 2917                   | 2917       | 0            | 1.75              |  |
|                       | 12V3             | 2917                                                      | 2917                   | 2917       | 0            | 1.23              |  |
| . <u></u>             | 12V4             | 2917                                                      | 2917                   | 2917       | 0            | 1                 |  |
|                       | 51               | 2818                                                      | 2818                   | 2818       | 0            | 24.28             |  |
|                       | 52<br>53         | 2010                                                      | 2817.1                 | 2017       | 0.32         | 978.5             |  |
|                       | S4               | 2818                                                      | 2817.1                 | 2817       | 0.32         | 905.5             |  |
|                       | V1               | 2818                                                      | 2818                   | 2818       | 0.52         | 94.76             |  |
|                       | V2               | 2818                                                      | 2818                   | 2818       | 0            | 39.6              |  |
|                       | V3               | 2818                                                      | 2818                   | 2818       | 0            | 30.36             |  |
|                       | V4               | 2818                                                      | 2818                   | 2818       | 0            | 18.52             |  |
|                       | T1S1             | 2818                                                      | 2818                   | 2818       | 0            | 30.65             |  |
|                       | T1S2             | 2818                                                      | 2818                   | 2818       | 0            | 766.3             |  |
|                       | T1S3             | 2818                                                      | 2818                   | 2818       | 0            | 598.5             |  |
| kn-18                 | T1S4             | 2818                                                      | 2818                   | 2818       | 0            | 832.9             |  |
| кр 10                 | T1V1             | 2818                                                      | 2818                   | 2818       | 0            | 71.2              |  |
|                       | T1V2             | 2818                                                      | 2818                   | 2818       | 0            | 23.9              |  |
|                       | T1V3             | 2818                                                      | 2818                   | 2818       | 0            | 19.43             |  |
|                       |                  | 2818                                                      | 2818                   | 2818       | 0            | 8.69              |  |
|                       | 1251<br>T282     | 2010                                                      | 2818                   | 2010       | 0            | 27.83             |  |
|                       | T2S2             | 2818                                                      | 2818                   | 2818       | 0            | 691.6             |  |
|                       | T2S3             | 2818                                                      | 2818                   | 2818       | 0            | 536.4             |  |
|                       | T2V1             | 2818                                                      | 2818                   | 2818       | 0            | 74.9              |  |
|                       | T2V2             | 2818                                                      | 2818                   | 2818       | 0            | 21.95             |  |
|                       | T2V3             | 2818                                                      | 2818                   | 2818       | 0            | 15.35             |  |
|                       | T2V4             | 2818                                                      | 2818                   | 2818       | 0            | 6.94              |  |
|                       | <b>S</b> 1       | 3223                                                      | 3223                   | 3223       | 0            | 95.68             |  |
|                       | S2               | 3223                                                      | 3221.2                 | 3221       | 0.632        | 985.5             |  |
|                       | <b>S</b> 3       | 3223                                                      | 3221.2                 | 3221       | 0.632        | 589.5             |  |
|                       | <b>S</b> 4       | 3223                                                      | 3221.2                 | 3221       | 0.632        | 765.3             |  |
| kp-19                 | V1               | 3223                                                      | 3223                   | 3223       | 0            | 13.1              |  |
| r -                   | V2               | 3223                                                      | 3223                   | 3223       | 0            | 9.43              |  |
|                       | V3               | 3223                                                      | 3223                   | 3223       | 0            | 7.93              |  |
|                       | V4               | 3223                                                      | 3223                   | 3223       | Õ            | 4 1               |  |
|                       | T1C1             | 3223                                                      | 3223                   | 3223       | 0            | 120.6             |  |

| Ibn Al-Haitham International Conferen | ce for Pure | and Applied Sci        | ences (IHICPS | )           | IOP Publishing     |
|---------------------------------------|-------------|------------------------|---------------|-------------|--------------------|
| Journal of Physics: Conference Series |             | <b>1879</b> (2021) 022 | 2097 doi:10.  | 1088/1742-0 | 6596/1879/2/022097 |
|                                       |             |                        |               |             |                    |
| T1S2                                  | 3223        | 3223                   | 3223          | 0           | 645.35             |
| T1S3                                  | 3223        | 3223                   | 3223          | 0           | 428.6              |
| T1S4                                  | 3223        | 3223                   | 3223          | 0           | 594.82             |
| T1V1                                  | 3223        | 3223                   | 3223          | 0           | 9.72               |
| T1V2                                  | 3223        | 3223                   | 3223          | 0           | 9.18               |
| T1V3                                  | 3223        | 3223                   | 3223          | 0           | 4.38               |
| T1V4                                  | 3223        | 3223                   | 3223          | 0           | 2.14               |
| T2S1                                  | 3223        | 3223                   | 3223          | 0           | 89.5               |
| T2S2                                  | 3223        | 3223                   | 3223          | 0           | 583.8              |
| T2S3                                  | 3223        | 3223                   | 3223          | 0           | 357.91             |
| T2S4                                  | 3223        | 3223                   | 3223          | 0           | 455.91             |
| T2V1                                  | 3223        | 3223                   | 3223          | 0           | 8.16               |
| T2V2                                  | 3223        | 3223                   | 3223          | 0           | 6.28               |
| T2V3                                  | 3223        | 3223                   | 3223          | 0           | 6.13               |
| T2V4                                  | 3223        | 3223                   | 3223          | 0           | 1.91               |

**Table S5:** Comparison results of uncorrelated large size 0–1 KP

| Instance | Dimension | Transfer function | Best  | Mean    | Worst | SD     | Mean<br>iterations |
|----------|-----------|-------------------|-------|---------|-------|--------|--------------------|
| kp-21    | 100       | S1                | 2060  | 2060    | 2060  | 0      | 142                |
| I        |           | S2                | 2060  | 2038.4  | 2023  | 19.756 | 350                |
|          |           | <b>S</b> 3        | 2060  | 2036.8  | 2023  | 17.387 | 353                |
|          |           | <b>S</b> 4        | 2060  | 2043    | 2023  | 18.886 | 351                |
|          |           | V1                | 2060  | 2060    | 2060  | 0      | 95                 |
|          |           | V2                | 2060  | 2060    | 2060  | 0      | 88                 |
|          |           | V3                | 2060  | 2060    | 2060  | 0      | 90                 |
|          |           | V4                | 2060  | 2060    | 2060  | 0      | 76                 |
|          |           | T1S1              | 2060  | 2060    | 2060  | 0      | 169                |
|          |           | T1S2              | 2060  | 2049    | 2045  | 6.519  | 153                |
|          |           | T1S3              | 2060  | 2049.8  | 2045  | 6.14   | 215                |
|          |           | T1S4              | 2060  | 2048.4  | 2045  | 7.092  | 201                |
|          |           | T1V1              | 2060  | 2060    | 2060  | 0      | 57                 |
|          |           | T1V2              | 2060  | 2060    | 2060  | 0      | 45                 |
|          |           | T1V3              | 2060  | 2060    | 2060  | 0      | 62                 |
|          |           | T1V4              | 2060  | 2060    | 2060  | 0      | 39                 |
|          |           | T2S1              | 2060  | 2060    | 2060  | 0      | 185                |
|          |           | T2S2              | 2060  | 2049.6  | 2048  | 6.542  | 162                |
|          |           | T2S3              | 2060  | 2049    | 2048  | 6.633  | 224                |
|          |           | T2S4              | 2060  | 2049.6  | 2048  | 5.941  | 240                |
|          |           | T2V1              | 2060  | 2060    | 2060  | 0      | 61                 |
|          |           | T2V2              | 2060  | 2060    | 2060  | 0      | 42                 |
|          |           | T2V3              | 2060  | 2060    | 2060  | 0      | 59                 |
|          |           | T2V4              | 2060  | 2060    | 2060  | 0      | 34                 |
|          |           | <b>S</b> 1        | 20348 | 20339.6 | 20334 | 7.668  | 2859               |
| kn 23    | 1000      | S2                | 20340 | 20327.2 | 20308 | 17.527 | 4781               |
| кр-23    | 1000      | <b>S</b> 3        | 20340 | 20329.4 | 20308 | 15.027 | 4618               |
|          |           | <b>S</b> 4        | 20340 | 20326.8 | 20308 | 17.181 | 4237               |

| Ibn Al-Haitham I                      | nternational Co | Pure and Ap    | plied Sciences            | s (IHICPS) IOP Publishi |                                     |        |      |
|---------------------------------------|-----------------|----------------|---------------------------|-------------------------|-------------------------------------|--------|------|
| Journal of Physics: Conference Series |                 | <b>1879</b> (2 | <b>1879</b> (2021) 022097 |                         | doi:10.1088/1742-6596/1879/2/022097 |        |      |
|                                       |                 |                |                           |                         |                                     |        |      |
|                                       |                 |                |                           |                         |                                     |        |      |
|                                       |                 | V1             | 20350                     | 20347.6                 | 20346                               | 2.19   | 531  |
|                                       |                 | V2             | 20350                     | 20348                   | 20346                               | 2      | 498  |
|                                       |                 | V3             | 20350                     | 20348.4                 | 20346                               | 2.19   | 562  |
|                                       |                 | V4             | 20350                     | 20349.2                 | 20346                               | 1.789  | 415  |
|                                       |                 | T1S1           | 20350                     | 20344.8                 | 20342                               | 3.899  | 2094 |
|                                       |                 | T1S2           | 20349                     | 20338.8                 | 20332                               | 9.311  | 3586 |
|                                       |                 | T1S3           | 20349                     | 20339.4                 | 20332                               | 8.848  | 3428 |
|                                       |                 | T1S4           | 20349                     | 20338.8                 | 20332                               | 7.12   | 4057 |
|                                       |                 | T1V1           | 20350                     | 20348.8                 | 20348                               | 1.095  | 463  |
|                                       |                 | T1V2           | 20350                     | 20349.4                 | 20348                               | 0.894  | 401  |
|                                       |                 | T1V3           | 20350                     | 20348.8                 | 20348                               | 0.837  | 443  |
|                                       |                 | T1V4           | 20350                     | 20349.4                 | 20348                               | 0.894  | 381  |
|                                       |                 | T2S1           | 20350                     | 20346                   | 20342                               | 3.742  | 2099 |
|                                       |                 | T2S2           | 20349                     | 20342.2                 | 20332                               | 9.3    | 3308 |
|                                       |                 | T2S3           | 20349                     | 20343.6                 | 20332                               | 7.8    | 3258 |
|                                       |                 | T2S4           | 20349                     | 20340.2                 | 20332                               | 8.526  | 3974 |
|                                       |                 | T2V1           | 20350                     | 20349.2                 | 20348                               | 1.095  | 492  |
|                                       |                 | T2V2           | 20350                     | 20349.2                 | 20348                               | 0.837  | 391  |
|                                       |                 | T2V3           | 20350                     | 20349                   | 20348                               | 1      | 412  |
|                                       |                 | T2V4           | 20350                     | 20349.6                 | 20348                               | 0.894  | 328  |
|                                       |                 | <b>S</b> 1     | 31255                     | 31247.8                 | 31241                               | 6.686  | 4289 |
|                                       |                 | <b>S</b> 2     | 31250                     | 31224.2                 | 31198                               | 26.04  | 6722 |
|                                       |                 | <b>S</b> 3     | 31250                     | 31222                   | 31198                               | 23.63  | 5983 |
|                                       |                 | <b>S</b> 4     | 31250                     | 31224                   | 31198                               | 25.76  | 5347 |
|                                       |                 | V1             | 31257                     | 31249.8                 | 31245                               | 5.215  | 1025 |
|                                       |                 | V2             | 31257                     | 31250.8                 | 31245                               | 4.49   | 992  |
|                                       |                 | V3             | 31257                     | 31250.4                 | 31245                               | 4.67   | 1349 |
|                                       |                 | V4             | 31257                     | 31252.2                 | 31245                               | 4.38   | 903  |
|                                       |                 | T1S1           | 31257                     | 31254.6                 | 31253                               | 2.19   | 2951 |
|                                       |                 | T1S2           | 31256                     | 31237.6                 | 31228                               | 13.45  | 4228 |
|                                       |                 | T1S3           | 31256                     | 31235.4                 | 31228                               | 14.69  | 3984 |
| 1 24                                  | 1500            | T1S4           | 31256                     | 31236.4                 | 31228                               | 15.646 | 4129 |
| кр-24                                 | 1500            | T1V1           | 31257                     | 31255.8                 | 31255                               | 1.095  | 751  |
|                                       |                 | T1V2           | 31257                     | 31256                   | 31255                               | 1      | 694  |
|                                       |                 | T1V3           | 31257                     | 31256.2                 | 31255                               | 0.837  | 789  |
|                                       |                 | T1V4           | 31257                     | 31256.4                 | 31255                               | 0.821  | 562  |
|                                       |                 | T2S1           | 31257                     | 31255                   | 31253                               | 2      | 2493 |
|                                       |                 | T2S2           | 31256                     | 31237.4                 | 31228                               | 12.605 | 4059 |
|                                       |                 | T2S3           | 31256                     | 31238.6                 | 31228                               | 12.954 | 4286 |
|                                       |                 | T2S4           | 31256                     | 31238.4                 | 31228                               | 11.06  | 4178 |
|                                       |                 | $T_2V_1$       | 31257                     | 31255.8                 | 31255                               | 0.837  | 842  |
|                                       |                 | T2V2           | 31257                     | 31256                   | 31255                               | 0.707  | 697  |
|                                       |                 | T2V3           | 31257                     | 31255.6                 | 31255                               | 0 894  | 981  |
|                                       |                 | T2V4           | 31257                     | 31256.4                 | 31255                               | 0.821  | 509  |
|                                       |                 |                | 01201                     | 01-0000                 | 0.00                                | 0.021  |      |

 Table S6: Comparison results of weakly correlated large size 0–1 KP

| Instance | Dimension | Transfer function | Best | Mean | Worst | SD | Mean<br>iterations |
|----------|-----------|-------------------|------|------|-------|----|--------------------|
| kp-26    | 100       | <u>S</u> 1        | 1016 | 1016 | 1016  | 0  | 120                |

| Ibn Al-Haitham International Conference for Pure and Applied Sciences (IHICPS) IO |       |      |              |              |                                    |       | IOP Publishing |             |
|-----------------------------------------------------------------------------------|-------|------|--------------|--------------|------------------------------------|-------|----------------|-------------|
| Journal of Physics: Conference Series                                             |       |      | 1879 (2      | 2021) 022097 | doi:10.1088/1742-6596/1879/2/02209 |       |                |             |
| ,                                                                                 |       |      | (            | ,            |                                    |       |                |             |
|                                                                                   |       |      |              |              |                                    |       |                |             |
|                                                                                   |       |      | 60           | 1016         | 007.2                              | 090   | 11 070         | 225         |
|                                                                                   |       |      | 52<br>52     | 1010         | 997.2                              | 989   | 11.278         | 325         |
|                                                                                   |       |      | 53           | 1016         | 994.2                              | 989   | 9.952          | 298         |
|                                                                                   |       |      | S4           | 1016         | 998                                | 989   | 10.677         | 337         |
|                                                                                   |       |      | VI           | 1016         | 1016                               | 1016  | 0              | 86          |
|                                                                                   |       |      | V2           | 1016         | 1016                               | 1016  | 0              | 79          |
|                                                                                   |       |      | V3           | 1016         | 1016                               | 1016  | 0              | 83          |
|                                                                                   |       |      | V4           | 1016         | 1016                               | 1016  | 0              | 62          |
|                                                                                   |       |      | T1S1         | 1016         | 1016                               | 1016  | 0              | 157         |
|                                                                                   |       |      | T1S2         | 1016         | 1004                               | 999   | 7.661          | 129         |
|                                                                                   |       |      | T1S3         | 1016         | 1007                               | 999   | 6.166          | 194         |
|                                                                                   |       |      | T1S4         | 1016         | 1009.4                             | 999   | 7.057          | 173         |
|                                                                                   |       |      | T1V1         | 1016         | 1016                               | 1016  | 0              | 65          |
|                                                                                   |       |      | T1V2         | 1016         | 1016                               | 1016  | 0              | 49          |
|                                                                                   |       |      | T1V3         | 1016         | 1016                               | 1016  | 0              | 64          |
|                                                                                   |       |      | T1V4         | 1016         | 1016                               | 1016  | 0              | 30          |
|                                                                                   |       |      | T2S1         | 1016         | 1016                               | 1016  | 0              | 160         |
|                                                                                   |       |      | T2S2         | 1016         | 1009.6                             | 1008  | 3.578          | 122         |
|                                                                                   |       |      | T2S3         | 1016         | 1012                               | 1008  | 4              | 188         |
|                                                                                   |       |      | T2S4         | 1016         | 1011.2                             | 1008  | 3.347          | 169         |
|                                                                                   |       |      | T2V1         | 1016         | 1016                               | 1016  | 0              | 64          |
|                                                                                   |       |      | T2V2         | 1016         | 1016                               | 1016  | 0              | 39          |
|                                                                                   |       |      | T2V3         | 1016         | 1016                               | 1016  | 0              | 61          |
|                                                                                   |       |      | T2V4         | 1016         | 1016                               | 1016  | 0              | 31          |
|                                                                                   |       |      | <b>S</b> 1   | 10352        | 10345.4                            | 10340 | 9.631          | 2156        |
|                                                                                   |       |      | <b>S</b> 2   | 10351        | 10348.2                            | 10338 | 13.964         | 3924        |
|                                                                                   |       |      | <b>S</b> 3   | 10351        | 10347.8                            | 10338 | 14.57          | 3615        |
|                                                                                   |       |      | <b>S</b> 4   | 10351        | 10348                              | 10338 | 13.238         | 4025        |
|                                                                                   |       |      | V1           | 10356        | 10353.6                            | 10350 | 5.613          | 492         |
|                                                                                   |       |      | V2           | 10356        | 10354                              | 10350 | 4.679          | 385         |
|                                                                                   |       |      | V3           | 10356        | 10353.8                            | 10350 | 5.348          | 477         |
|                                                                                   |       |      | V4           | 10356        | 10354.4                            | 10350 | 4 069          | 336         |
|                                                                                   |       |      | T1S1         | 10357        | 10354.2                            | 10352 | 2.15           | 2294        |
|                                                                                   |       |      | T1S1<br>T1S2 | 10357        | 10352.1                            | 10344 | 7 281          | 2960        |
|                                                                                   |       |      | T152         | 10357        | 10351.6                            | 10344 | 6 8 2 3        | 2/00        |
|                                                                                   |       |      | T155         | 10357        | 10351.0                            | 10344 | 6.134          | 3512        |
|                                                                                   | kp-28 | 1000 | 1134<br>T1V1 | 10357        | 10351.4                            | 10344 | 0.134          | JJ12<br>419 |
|                                                                                   |       |      | 11V1<br>T1V2 | 10257        | 10333.1                            | 10354 | 2.50           | 410         |
|                                                                                   |       |      | 11V2         | 10357        | 10356                              | 10354 | 1.068          | 304         |
|                                                                                   |       |      | T1V3         | 10357        | 10355.4                            | 10354 | 2.06           | 393         |
|                                                                                   |       |      | 11V4         | 10357        | 10356.2                            | 10354 | 0.985          | 300         |
|                                                                                   |       |      | T2S1         | 10357        | 10354                              | 10352 | 2.01           | 2341        |
|                                                                                   |       |      | T2S2         | 10357        | 10351.8                            | 10344 | 7.328          | 3001        |
|                                                                                   |       |      | T2S3         | 10357        | 10351.2                            | 10344 | 7.054          | 2923        |
|                                                                                   |       |      | T2S4         | 10357        | 10532                              | 10344 | 6.832          | 3194        |
|                                                                                   |       |      | T2V1         | 10357        | 10355.4                            | 10354 | 2.456          | 407         |
|                                                                                   |       |      | T2V2         | 10357        | 10356.1                            | 10354 | 1.37           | 318         |
|                                                                                   |       |      | T2V3         | 10357        | 10356                              | 10354 | 1.254          | 371         |
|                                                                                   |       |      | T2V4         | 10357        | 10356.2                            | 10354 | 0.895          | 303         |
|                                                                                   |       |      | <b>S</b> 1   | 15446        | 15441.6                            | 15432 | 7.627          | 4091        |
|                                                                                   | kp-29 | 1500 | S2           | 15400        | 15383.4                            | 15365 | 21.975         | 5906        |
|                                                                                   | _     |      | <b>S</b> 3   | 15400        | 15384                              | 15365 | 19.713         | 5213        |

| Ibn Al-Haitham International Conference for | IOP Publishing |              |                      |        |                  |
|---------------------------------------------|----------------|--------------|----------------------|--------|------------------|
| Journal of Physics: Conference Series       | <b>1879</b> (2 | 2021) 022097 | doi:10.1088/1742-659 |        | 96/1879/2/022097 |
|                                             |                |              |                      |        |                  |
|                                             |                |              |                      |        |                  |
| S4                                          | 15400          | 15383.6      | 15365                | 20.668 | 5194             |
| V1                                          | 15496          | 15486        | 15454                | 10.634 | 1395             |
| V2                                          | 15496          | 15486.4      | 15454                | 9.248  | 1082             |
| V3                                          | 15496          | 15486.2      | 15454                | 11.573 | 1267             |
| V4                                          | 15496          | 15486.8      | 15454                | 8.275  | 990              |
| T1S1                                        | 15507          | 15491        | 15470                | 5.382  | 3924             |
| T1S2                                        | 15507          | 15495.6      | 15460                | 13.627 | 4615             |
| T1S3                                        | 15507          | 15494.8      | 15460                | 14.351 | 4208             |
| T1S4                                        | 15507          | 15495        | 15460                | 12.01  | 4792             |
| T1V1                                        | 15507          | 15502        | 15490                | 5.617  | 971              |
| T1V2                                        | 15507          | 15503.2      | 15490                | 4.319  | 898              |
| T1V3                                        | 15507          | 15502.6      | 15490                | 4.065  | 919              |
| T1V4                                        | 15507          | 15503.2      | 15490                | 4.319  | 805              |
| T2S1                                        | 15507          | 15491.6      | 15454                | 5.915  | 3902             |
| T2S2                                        | 15507          | 15494.2      | 15460                | 12.951 | 4593             |
| T2S3                                        | 15507          | 15494        | 15460                | 13.986 | 4321             |
| T2S4                                        | 15507          | 15495.4      | 15460                | 13.035 | 4435             |
| T2V1                                        | 15507          | 15502.6      | 15490                | 4.972  | 850              |
| T2V2                                        | 15507          | 15503        | 15490                | 3.658  | 777              |
| T2V3                                        | 15507          | 15502        | 15490                | 5.349  | 882              |
| T2V4                                        | 15507          | 15503.4      | 15490                | 4.568  | 692              |

Table S7: Comparison results of strongly correlated large size 0–1 KP

| Instance | Dimension | Transfer   | Best  | Mean    | Worst | SD    | Mean       |
|----------|-----------|------------|-------|---------|-------|-------|------------|
| mstance  | Dimension | function   |       | wiedh   | worst | 50    | iterations |
|          |           | <b>S</b> 1 | 1332  | 1332    | 1332  | 0     | 95         |
|          |           | S2         | 1332  | 1332    | 1332  | 0     | 184        |
|          |           | <b>S</b> 3 | 1332  | 1332    | 1332  | 0     | 176        |
|          |           | <b>S</b> 4 | 1332  | 1332    | 1332  | 0     | 190        |
|          |           | V1         | 1332  | 1332    | 1332  | 0     | 54         |
|          |           | V2         | 1332  | 1332    | 1332  | 0     | 31         |
|          |           | V3         | 1332  | 1332    | 1332  | 0     | 50         |
|          |           | V4         | 1332  | 1332    | 1332  | 0     | 29         |
|          |           | T1S1       | 1332  | 1332    | 1332  | 0     | 109        |
|          |           | T1S2       | 1332  | 1332    | 1332  | 0     | 123        |
|          |           | T1S3       | 1332  | 1332    | 1332  | 0     | 125        |
| lun 21   | 100       | T1S4       | 1332  | 1332    | 1332  | 0     | 120        |
| кр-31    |           | T1V1       | 1332  | 1332    | 1332  | 0     | 40         |
|          |           | T1V2       | 1332  | 1332    | 1332  | 0     | 25         |
|          |           | T1V3       | 1332  | 1332    | 1332  | 0     | 33         |
|          |           | T1V4       | 1332  | 1332    | 1332  | 0     | 19         |
|          |           | T2S1       | 1332  | 1332    | 1332  | 0     | 137        |
|          |           | T2S2       | 1332  | 1332    | 1332  | 0     | 114        |
|          |           | T2S3       | 1332  | 1332    | 1332  | 0     | 122        |
|          |           | T2S4       | 1332  | 1332    | 1332  | 0     | 108        |
|          |           | T2V1       | 1332  | 1332    | 1332  | 0     | 47         |
|          |           | T2V2       | 1332  | 1332    | 1332  | 0     | 27         |
|          |           | T2V3       | 1332  | 1332    | 1332  | 0     | 30         |
|          |           | T2V4       | 1332  | 1332    | 1332  | 0     | 25         |
| kp-33    | 1000      | <b>S</b> 1 | 13410 | 13405.2 | 13395 | 7.391 | 1945       |

| Ibn Al-Haitham International Conference for Pure and Applied Scienc |       |      |            |              |                                     | s (IHICPS) IOP Publishing |        |      |  |
|---------------------------------------------------------------------|-------|------|------------|--------------|-------------------------------------|---------------------------|--------|------|--|
| Journal of Physics: Conference Series                               |       |      | 1879 (2    | 2021) 022097 | doi:10.1088/1742-6596/1879/2/022097 |                           |        |      |  |
|                                                                     |       |      |            |              |                                     |                           |        |      |  |
|                                                                     |       |      |            |              |                                     |                           |        |      |  |
|                                                                     |       |      | \$2        | 13390        | 13386                               | 13370                     | 18 62  | 3026 |  |
|                                                                     |       |      | S2<br>S3   | 13390        | 13385.9                             | 13370                     | 19.28  | 2915 |  |
|                                                                     |       |      | S4         | 13390        | 13386.4                             | 13370                     | 17.54  | 3108 |  |
|                                                                     |       |      | V1         | 13448        | 13441                               | 13436                     | 12.68  | 1154 |  |
|                                                                     |       |      | V2         | 13448        | 13442                               | 13436                     | 10.25  | 1093 |  |
|                                                                     |       |      | V3         | 13448        | 13441.6                             | 13436                     | 11.39  | 1251 |  |
|                                                                     |       |      | V4         | 13448        | 13442.4                             | 13436                     | 10.09  | 1001 |  |
|                                                                     |       |      | T1S1       | 13454        | 13449                               | 13440                     | 9.52   | 2397 |  |
|                                                                     |       |      | T1S2       | 13454        | 13448.5                             | 13440                     | 10.27  | 2108 |  |
|                                                                     |       |      | T1S3       | 13454        | 13448                               | 13440                     | 9.35   | 2293 |  |
|                                                                     |       |      | T1S4       | 13454        | 13447.2                             | 13440                     | 11.24  | 2604 |  |
|                                                                     |       |      | T1V1       | 13454        | 13454                               | 13454                     | 0      | 938  |  |
|                                                                     |       |      | T1V2       | 13454        | 13454                               | 13454                     | 0      | 756  |  |
|                                                                     |       |      | T1V3       | 13454        | 13454                               | 13454                     | 0      | 849  |  |
|                                                                     |       |      | T1V4       | 13454        | 13454                               | 13454                     | 0      | 720  |  |
|                                                                     |       |      | T2S1       | 13454        | 13447                               | 13440                     | 10.14  | 2253 |  |
|                                                                     |       |      | T2S2       | 13454        | 13448                               | 13440                     | 8.37   | 2204 |  |
|                                                                     |       |      | T2S3       | 13454        | 13447.8                             | 13440                     | 9.63   | 2157 |  |
|                                                                     |       |      | T2S4       | 13454        | 13448.2                             | 13440                     | 8.921  | 2384 |  |
|                                                                     |       |      | T2V1       | 13454        | 13454                               | 13454                     | 0      | 961  |  |
|                                                                     |       |      | T2V2       | 13454        | 13454                               | 13454                     | 0      | 770  |  |
|                                                                     |       |      | T2V3       | 13454        | 13454                               | 13454                     | 0      | 902  |  |
| _                                                                   |       |      | T2V4       | 13454        | 13454                               | 13454                     | 0      | 738  |  |
|                                                                     |       |      | <b>S</b> 1 | 20295        | 20284                               | 20252                     | 10.692 | 3157 |  |
|                                                                     |       |      | S2         | 20289        | 20277.2                             | 20246                     | 25.34  | 5089 |  |
|                                                                     |       |      | <b>S</b> 3 | 20289        | 20276                               | 20246                     | 27.137 | 4975 |  |
|                                                                     |       |      | <b>S</b> 4 | 20289        | 20276.8                             | 20246                     | 26.821 | 5013 |  |
|                                                                     |       |      | V1         | 20310        | 20306                               | 20302                     | 9.38   | 1085 |  |
|                                                                     |       |      | V2         | 20310        | 20306.8                             | 20302                     | 8.937  | 1020 |  |
|                                                                     |       |      | V3         | 20310        | 20306.4                             | 20302                     | 9.036  | 1017 |  |
|                                                                     |       |      | V4         | 20310        | 20307                               | 20302                     | 10.02  | 1003 |  |
|                                                                     |       |      | T1S1       | 20314        | 20312                               | 20300                     | 6.35   | 3681 |  |
|                                                                     |       |      | T1S2       | 20314        | 20310                               | 20296                     | 16.93  | 3054 |  |
|                                                                     |       |      | T1S3       | 20314        | 20310.6                             | 20296                     | 18.37  | 3376 |  |
|                                                                     | kn 31 | 1500 | T1S4       | 20314        | 20311                               | 20296                     | 20.589 | 3128 |  |
|                                                                     | кр-54 | 1500 | T1V1       | 20314        | 20314                               | 20314                     | 0      | 984  |  |
|                                                                     |       |      | T1V2       | 20314        | 20314                               | 20314                     | 0      | 793  |  |
|                                                                     |       |      | T1V3       | 20314        | 20314                               | 20314                     | 0      | 980  |  |
|                                                                     |       |      | T1V4       | 20314        | 20314                               | 20314                     | 0      | 751  |  |
|                                                                     |       |      | T2S1       | 20314        | 20312.6                             | 20300                     | 5.83   | 3507 |  |
|                                                                     |       |      | T2S2       | 20314        | 20311                               | 20296                     | 19.34  | 3182 |  |
|                                                                     |       |      | T2S3       | 20314        | 20310.6                             | 20296                     | 15.61  | 3259 |  |
|                                                                     |       |      | T2S4       | 20314        | 20310.4                             | 20296                     | 13.29  | 3204 |  |
|                                                                     |       |      | T2V1       | 20314        | 20314                               | 20314                     | 0      | 901  |  |
|                                                                     |       |      | T2V2       | 20314        | 20314                               | 20314                     | 0      | 800  |  |
|                                                                     |       |      | T2V3       | 20314        | 20314                               | 20314                     | 0      | 826  |  |
| _                                                                   |       |      | T2V4       | 20314        | 20314                               | 20314                     | 0      | 748  |  |

References

[1] Wang G, Guo L, Wang H, Duan H, Liu L and Li J 2012 Incorporating mutation scheme into krill

herd algorithm for global numerical optimization *Neural Computing and Applications* **24**(3-4) pp 853-871

- [2] Feng Y, Yang J, Wu C, Lu M and Zhao X 2016 Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian Mutation *Memetic Computing* 10(2) pp 135-150
- [3] Tilahun S L and J M T Ngnotchouye 2017 Firefly algorithm for discrete optimization problems: A survey *KSCE Journal of Civil Engineering* **21**(2) pp 535-545
- [4] Parsopoulos K E and Vrahatis M N 2010 Particle Swarm Optimization and Intelligence Advances and Applications *IGI Global*
- [5] Abdel-Basset M, El-Shahat D and Sangaiah A K 2017 A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem *International Journal of Machine Learning and Cybernetics*
- [6] Abdel-Basset M, El-Shahat D and El-Henawy I 2017 Solving 0–1 Knapsack Problems by Binary Dragonfly Algorithm *Springer International Publishing AG* 10363 pp 491-502
- [7] Cao J, Yin B, Lu X, Kang Y and Chen X 2017 A modified artificial bee colony approach for the 0-1 knapsack problem *Applied Intelligence* **48**(6) pp 1582-1595
- [8] Layeb A 2013 A hybrid quantum inspired harmony search algorithm for 0–1 optimization problems *Journal of Computational and Applied Mathematics* 253 pp 14-25
- [9] Abdel-Basset M, D El-Shahat and I El-Henawy 2018 Solving 0–1 knapsack problem by binary flower pollination algorithm *Neural Computing and Applications*
- [10] Zouache D, A Moussaoui and F Ben Abdelaziz 2018 A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem *European Journal of Operational Research* 264(1) pp 74-88
- [11] Feng Y, Wang G, Deb S, Lu M and Zhao X 2015 Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization *Neural Computing and Applications* **28**(7) pp 1619-1634
- [12] Zhou Y, L Li, and M Ma 2015 A Complex-valued Encoding Bat Algorithm for Solving 0–1 Knapsack Problem *Neural Processing Letters* 44(2) pp 407-430
- [13] Rizk-Allah R M and A E Hassanien 2017 New binary bat algorithm for solving 0–1 knapsack problem *Complex & Intelligent Systems* **4**(1) pp 31-53
- [14] Haddar B, Khemakhem M, Hanafi S and Wilbaut C 2015 A hybrid heuristic for the 0–1 Knapsack Sharing Problem *Expert Systems with Applications* **42**(10) pp 4653-4666
- [15] Haddar B, Khemakhem M, Rhimi H and Chabchoub H 2014 A quantum particle swarm optimization for the 0–1 generalized knapsack sharing problem *Natural Computing* 15(1) pp 53-164
- [16] Bansal J C and K Deep 2012 A Modified Binary Particle Swarm Optimization for Knapsack Problems Applied Mathematics and Computation 218(22) pp 11042-11061
- [17] Zhou Y, X Chen and G Zhou 2016 An improved monkey algorithm for a 0-1 knapsack problem *Applied Soft Computing* **6**(38) pp 817-830
- [18] Changdar C, G S Mahapatra and R K Pal 2013 An Ant colony optimization approach for binary knapsack problem under fuzziness *Applied Mathematics and Computation* 223 pp. 243-253
- [19] Zhang X, Huang S, Hu Y, Zhang Y, Mahadevan S and Deng Y 2013 Solving 0-1 knapsack problems based on amoeboid organism algorithm *Applied Mathematics and Computation* 219(19) pp 9959-9970
- [20] Zou D, Gao L, Li S and Wu J 2011 Solving 0–1 knapsack problem by a novel global harmony search algorithm *Applied Soft Computing* **11**(2) pp 1556-1564
- [21] Yang X S 2012 Flower pollination algorithm for global optimization Unconventional *Computation and Natural Computation* 7445 pp 240-249
- [22] Yang X S, M Karamanoglu and H Xingshi 2014 *Flower pollination algorithm: A noval approach for multiobjective optimization* Engineering Optimization
- [23] Yang X S 2015 *Recent Advances in Swarm Intelligence and Evolutionary Computation* Springer International Publishing Switzerland

| Ibn Al-Haitham International Conference for P | ure and Applied Sciences | (IHICPS)         | IOP Publishing      |
|-----------------------------------------------|--------------------------|------------------|---------------------|
| Journal of Physics: Conference Series         | 1879 (2021) 022097       | doi:10.1088/1742 | -6596/1879/2/022097 |

- [24] Islam M J, X Li and Y Mei 2017 A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO *Applied Soft Computing* **59** pp 182-196
- [25] Kulkarni A J and H Shabir 2014 Solving 0–1 Knapsack Problem using Cohort Intelligence Algorithm *International Journal of Machine Learning and Cybernetics* **7**(3) pp 427-441
- [26] Abdel-Basset M, El-Shahat D, El-Henawy I and Sangaiah A A 2017 modified flower pollination algorithm for the multidimensional knapsack problem: human-centric decision making *Soft Computing* 22(13) pp 4221-4239
- [27] Bozorg-Haddad O 2018 Advanced Optimization by Nature-Inspired Algorithms Springer Nature Singapore Pte Ltd
- [28] Mafarja M, Aljarah I, Heidari A, Faris H, Fournier-Viger P, Li X and Mirjalili S 2018 Binary dragonfly optimization for feature selection using time-varying transfer functions *Knowledge-Based Systems* 161 pp 185-204
- [29] Mirjalili S and A Lewis 2013 S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization *Swarm and Evolutionary Computation* 9 pp 1-14
- [30] Teng X, H Dong and X Zhou 2017 Adaptive feature selection using v-shaped binary particle swarm optimization *PLoS One* **12**(3) pp e0173907