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Abstract. The magnetic dressing phenomenon occurs when spins precessing in a static field 

(holding field) are subjected to an additional strong alternating field. It is usually studied when 

such extra field is homogeneous and oscillates in one direction. We study the dynamics of spins 

under dressing condition in two unusual configurations. In the first instance, an inhomogeneous 

dressing field produces a space-dependent dressing phenomenon, which helps to operate the 

magnetometer in a strongly inhomogeneous static field. In the second instance, besides the usual 

configuration with a static and a strong orthogonal oscillating magnetic fields, we add a 

secondary oscillating field, which is perpendicular to both. The system shows novel and 

interesting features that are accurately explained and modelled theoretically. Possible 

applications of these novel features are briefly discussed. 

1.  Introduction 

The physics of a precessing magnetization in a static magnetic field is well-known since the studies 

performed by Joseph Larmor at the end of the 19th century. The phenomenology of precessing systems 

is enriched when additional time-dependent fields are introduced. In many applications like magnetic 

resonance (MR) experiments, an oscillating transverse field (which is usually much weaker than the 

static one) is applied resonantly to the Larmor one L/2. In this case the resonant condition helps in 

describing the system dynamics in the rotating wave approximation: the oscillating field is seen as a 

superposition of two counter-rotating components, one of which appears to be static in the reference 

frame rotating at L around the holding field: it causes a slow precession in that rotating frame. 

The presence of a transverse (off-resonant) alternating field arouses interest also in the 

complementary regime, when its strength exceeds the static one. This condition is technically unfeasible 

in conventional NMR at tesla level, while it is more easily accessible in atomic physics experiments, 

where the MR is commonly studied in much weaker fields, e.g. at a microtesla level. 

The seminal work studying precessing spins subjected to a strong, off-resonant, transverse field 

(dressing field) dates back to the late nineteen sixties, when S. Haroche and co-workers [1] introduced 

the concept of magnetic dressing. That contribution started a vivid activity around the subject [2-5]. 
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Recently, the magnetic dressing was studied also with cold atoms and condensates [6, 7]. The magnetic 

dressing of atoms offers a powerful tool in quantum control experiments [6, 8] and high-resolution 

magnetometry [9]. 

Our group devoted research activity to characterizing the magnetic dressing phenomenon occurring 

when an atomic sample is subject to an anharmonic dressing field [10]. More recently, the potential of 

applying a non-uniform dressing field to counteract the effects of static field inhomogeneities was 

demonstrated [11]. This has important implications in NMR imaging (MRI) in the ultra-low field regime 

[12]. 

As a general feature, the mentioned works studied the magnetic dressing in configurations where the 

precession around the holding field is modified by one time dependent field oriented along one direction 

in the plane perpendicular to the holding one (the precession plane).  

In a more recent work [13], we studied theoretically and experimentally new features that emerge 

when the design of the dressing field uses both dimensions of the precession plane. We addressed the 

case when such time-dependent two-dimensional field is periodic in time. The periodicity is obtained 

by superposing two perpendicular field components, which oscillate harmonically with various 

amplitudes and with frequencies that are equal or in (small) integer ratio p.  

The system is studied by means of a model that produces analytical results thanks to a perturbative 

approach. This approach requires that one of the time-dependent components is much larger than both 

the static field and the other oscillating term. Despite its weakness, the latter (denominated tuning field) 

plays an important role. 

This paper is organized as follows: in Sec.2, we describe the model and derive the expression for the 

effective precession frequency in terms of the dressing parameters (amplitudes, frequencies and relative 

phase of the dressing and tuning fields); in Sec.3, we describe a practical application of magnetic 

dressing, which makes a Bell and Bloom atomic magnetometer suited to operate also in the presence of 

a strong field gradient. In Sec.4, we report experimental results obtained in the tuning-dressing 

configuration and consider possible applications where our findings may be of interests. An appendix 

deepens some technical aspects of the calculations on which the model is based. 

2.  Model 

The evolution of atomic magnetization in an external field is commonly described using the Bloch 

equations. In this work, the considered atomic sample is a buffered Cs cell at the core of a Bell & Bloom 

magnetometer [14]. The presence of a weak pump radiation synchronously modulated at the effective 

Larmor frequency compensates the weak relaxation phenomena and enables the use of a model that 

determines the steady-state solution on the basis of the simpler Larmor equation. 

Consider the Larmor equation 𝑀̇ = γ𝐵 × 𝑀 for the atomic magnetization 𝑴 in presence of a 

magnetic field of the form 

 

𝑩 = 𝐵1 cos(Ω𝑡) 𝒙̂ + 𝐵2 cos(𝑝Ω𝑡 + 𝜙) 𝒚̂ + 𝐵3𝒛̂  (1) 

 

with 𝑝 an integer. We refer to 𝐵3 as static field, to 𝐵1 as dressing field and to 𝐵2 as tuning field, 

respectively. Using the adimensional time τ =  Ω𝑡 one obtains explicitly (ω𝑖 = γ𝐵𝑖) 

 
𝑑 𝑴

𝑑 𝜏
= [

𝜔1

Ω
cos(𝜏) 𝐴1 +

𝜔2

Ω
cos(𝑝𝜏 + 𝜙) 𝐴2 +

𝜔3

Ω
𝐴3] 𝑴, (2) 

 

where the three-dimensional matrices 𝐴𝑖 are antisymmetric with only two elements different from zero 

i.e. (𝐴1)2,3 = −(𝐴1)3,2 = −1. 𝐴2and 𝐴3 are obtained from cyclic permutations of the indices: see 

equations (A.1) in the appendix.  

Assuming that ξ = ω1/Ω ≫ ω2/Ω, ω3/Ω the perturbation theory let factorize the time evolution 

operator 𝑈(𝜏) (𝑀(τ) ≡ 𝑈(τ)𝑀(0)) in the interaction representation as 
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𝑈(𝜏) = exp[𝜉  sin 𝜏  𝐴1] 𝑈𝐼(𝜏) =  (

1 0 0
0  𝑐𝑜𝑠 (𝜑)  −𝑠𝑖𝑛 (𝜑)
0  𝑐𝑜𝑠 (𝜑) 𝑐𝑜𝑠 (𝜑)

) 𝑈𝐼(𝜏), (3) 

 
where φ = ξ 𝑠𝑖𝑛 τ, obtaining a dynamical equation for 𝑈𝐼(τ): 𝑑𝑈𝐼/𝑑 is given by 

[(
ω3

Ω
sin φ +

ω2

Ω
cos φ cos(𝑝τ + ϕ)) 𝐴2 + (

ω3

Ω
cos φ −

ω2

Ω
sin φ cos(𝑝τ + ϕ)) 𝐴3] 𝑈𝐼 ≡ ϵ𝐴(τ)𝑈𝐼 , 

 
where the parameter ϵ is used to identify the various orders of perturbation theory and to label the 

corresponding terms.  

The matrix 𝐴(τ) is periodic 𝐴(𝜏 + 2𝜋) = 𝐴(𝜏)  so we can use the Floquet theorem and write 

 

𝑈𝐼(𝜏) = 𝑒Λ(𝜏) 𝑒𝜏 𝐹 (4) 

 

with Λ(0) = 0 and Λ(τ + 2π) = Λ(τ), and the Floquet matrix 𝐹 is time independent. Next, we expand 

𝑈𝐼 following the Floquet-Magnus [15] expansion 

 

Λ = ϵΛ1 + ϵ2Λ2 + ⋯ ,     𝐹 = ϵ𝐹1 + ϵ2𝐹2 + ⋯ (5) 

 

where the first terms are obtained from the relations 

 

𝐹1 =
1

2π
∫ 𝐴(τ)d

2π

0

τ ,     Λ1(τ) = ∫ 𝐴(τ′)d
τ

0

τ′ − τ𝐹1. 

 

(6) 

Using the relation involving the Bessel functions 𝐽𝑛  

 

𝑒𝑖 𝑧 sin θ = ∑ 𝐽𝑛(𝑧) 𝑒𝑖 𝑛 𝜃

+∞

𝑛=−∞

 (7) 

 

one finds 

 

∫ cos(𝜑(𝜏′)) d𝜏′
τ

0

 = 𝐽0(ξ)τ + 𝑓1(τ) (8a) 

∫ sin(𝜑(𝜏′)) d𝜏′
τ

0

 = 𝑓2(τ) (8b) 

∫ cos(𝜑(𝜏′)) cos(𝑝𝜏′ + 𝜙) d𝜏′
τ

0

=
1 + (−1)𝑝

2
τ𝐽𝑝(ξ) cos ϕ + 𝑓3(τ) (8c) 

∫ sin(𝜑(𝜏′)) cos(𝑝𝜏′ + 𝜙) d𝜏′
τ

0

=
−1 + (−1)𝑝

2
τ𝐽𝑝(ξ) sin ϕ + 𝑓4(τ). (8d) 

 

The functions 𝑓𝑖(τ) are reported in the appendix (see equations (A.4)-(A.7)). Using the equation (8) one 

finds 

 

𝐹1 = {

ω3

Ω
𝐽0(ξ) 𝐴3 +

ω2

Ω
𝐽𝑝(ξ) cos ϕ A2         𝑝 even

[
ω3

Ω
𝐽0(ξ) +

ω2

Ω
𝐽𝑝(ξ) sin ϕ] 𝐴3          𝑝 odd

  

 

(9) 

and  
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Λ1 = (
ω3

Ω
𝑓2(τ) +

ω2

Ω
𝑓3(τ)) 𝐴2 + (

ω2

Ω
𝑓1(τ) −

ω2

Ω
𝑓4(τ)) 𝐴3 

 

(10) 

Using the equation (9) (see appendix for details) we can calculate the dressed Larmor frequency 

measured in the experiment for the component of the magnetization parallel to the dressing field: 

 

ΩL = {
√ω3

2𝐽0
2(ξ) + ω2

2𝐽𝑝
2(ξ)  cos2 𝜙

 
        𝑝 even

|ω3𝐽0(ξ) + ω2𝐽𝑝(ξ)  sin ϕ|           𝑝 odd
 

  (11) 

 

The equation (11) is at the focus of this paper. It includes also the well known and simpler case of a 

single dressing field: for zero values of the tuning field (i.e.ω2 = 0) it givesΩL = |𝐽0(ξ)ω3|. The latter 

is the instance discussed in Sec.3, where only the dressing field is applied, with the peculiarity of a 

position-dependent parameter: ξ = ξ(x). The more general case, with the presence of both the dressing 

and the tuning fields, is discussed in Sec.4. 

3.  Atomic resonance enhancement with inhomogeneous dressing 

An interesting magnetometric application of the dressing phenomenon is based on applying a position-

dependent dressing (and/or tuning) field to compensate atomic MR broadening caused by 

inhomogeneities of the static field. Unless counteracted, the broadening induced by strongly 

inhomogeneous static field would severely deteriorate the performance of the magnetometer.  

Details of the magnetometric experimental apparatus can be found elsewhere [16]. Beside the field 

control system described in ref. [16], here several additional coils enable the application of the time 

dependent (dressing and tuning) fields. In particular, the stronger dressing field is applied with a 

solenoidal coil surrounding the sensor and the weaker tuning field is applied by means of a Helmholtz 

pair. Alternatively, when an inhomogeneous dressing field is required, it is produced by a small source 

(a coil wound on a hollow-cylinder ferrite, with the laser beams passing across the hole) placed in the 

proximity of the atomic cell. 

As discussed in Refs. [11, 12], the application of inhomogeneous dressing field paves the way to 

detecting NMR imaging signals in loco, that is with an atomic sensor operating in the same place where 

the NMR sample is. In fact, the frequency encoding technique used in MRI requires the application of 

static gradients which would destroy the atomic resonance. 

The basic principle of operation can be summarized as follows: let the NMR sample and the sensor 

atom be in a static field ( B3 (x)) with an intensity dependent on the x co-ordinate , thus ω3 = ω3(𝑥) =
γ𝐵3(0) + 𝐺𝑥, where 𝐺 = ∂𝐵3/ ∂𝑥 is the gradient applied to the frequency encoding purpose, which in 

our case is up to about 150 nT/cm. Over the centimetric size of the atomic sample, such a gradient would 

broaden the atomic MR from its original few-Hz width up to kHz level, smashing it completely and 

preventing any magnetometric measurement. 

The narrow width of the atomic magnetic resonance can be restored by applying tailored tuning 

and/or dressing fields. We will consider here the case of single field dressing, where the gradient 𝐺 

makes Ω𝐿 position-dependent according to 

 

ΩL(𝑥) = |𝐽0(ξ(𝑥))ω3(𝑥)|, (12) 

 

where we have considered a position dependent dressing field, making the dressing parameter ξ 

dependent on 𝑥, as well. 
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Figure 1. 1-D imaging of a structured (four disks) water sample contained in the plastic cartridge 
shown in the picture (b). The plots (a) represent MRI profiles, as obtained when the sample occupies 
four different positions 𝑥𝑠. Both the structure details and the positions (actual 𝑥𝑠 values are reported 
the right-side y-axes) are determined with submillimetric precision.  
 

An appropriate inhomogeneity of  𝜉 makes possible to achieve the condition ∂Ω𝐿/ ∂𝑥 = 0, under 

which the atomic resonance width is restored. It is worth noting that the nuclear precession is unaffected 

by the dressing field. The much smaller gyromagnetic factor of nuclei makes their dressing parameter 

vanishing and the effects of 𝐵1 negligible: the MRI frequency encoding based on 𝐺 is preserved. 

In this configuration, 𝐵1 is inhomogeneous, and, in a dipole approximation, at a distance 𝑥 from the 

cell centre, the dressing field 𝐵𝑥  is 

 

𝐵𝑥(𝑥, 𝑡) =
μ0

2π

𝑚(𝑡)

(𝑥0 + 𝑥)3
= 𝐵1(𝑥) cos(Ω𝑡), (13) 

 

where 0 is the vacuum permittivity, 𝑚(𝑡) = 𝑚0 cos(Ω𝑡) is the oscillating dipole momentum, and 𝑥0 is 

the distance of the dipole from the cell centre. Taking now into account the dependence on 𝑥 of both the 

static and the dressing fields, accordingly with the equation (11), the dressed angular frequency results 

 

Ω𝐿(𝑥) =
γCs

2π
(𝐵0 + 𝐺𝑥)𝐽0 (

γCs𝐵1(𝑥)

Ω
), (14) 

 

or, in a first-order Taylor approximation,  

ΩL(𝑥) = ΩL(0) + ΩL
′ (0) 𝑥 + 𝑂(𝑥2) ≈

γCs

2π
(𝐵0𝐽0(α) + [

3𝐵0α𝐽1(α)

𝑥0
+ 𝐺𝐽0(α)] 𝑥) , 

 

 

where α = (μ0/2π)(γCs𝑚0)/(Ω𝑥0
3). In conclusion, the condition for compensating the effect of the 

gradient 𝐺 is found to be: 

 

−3
𝐵0

𝑥0

α𝐽1(α)

𝐽0(α)
= 𝐺. (15) 
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This shows that with an appropriate choice of α, the width of the atomic magnetic resonance is 

substantially restored, as to recover the magnetometer performance to a level making it suited to detect 

weak MRI signals.  

Figure 1 shows MRI profiles obtained with this methodology. The frequency encoding is here 

obtained with a field gradient 𝐺 ≈ 100 nT/cm. The presence of 𝐺 broadens the atomic MR from its 

original 25 Hz up to about 800 Hz. Its width is then restored down to 35 Hz by inhomogeneous dressing.  

4.  Tuning-dressing experiment 

The equation (11) expresses the dependence of dressed angular frequency Ω𝐿 on the experimental 

parameters (strengths, relative phase and frequencies of the tuning and dressing fields). The predicted 

behavior is verified using the mentioned Bell and Bloom magnetometer.  

Measurements are made with 𝑝 = 1,2,3, and Ω𝐿 is recorded as a function of ω1 and ϕ. 

 

 

Figure 2. (a) Ω𝐿 as a function of the relative phase ϕ between the fields 𝐵1 and 𝐵2. In black dots the 

experimental measurements, in blue the theoretical predictions. Upper, middle and bottom panels 

refer respectively to the cases with 𝑝 = 1, 2, 3, in which ξ has been fixed to 1.38,3.83 ,1.54.  

(b) Ω𝐿 as a function of the Bessel functions argument 𝜉. In black dots the experimental measurements, 

in blue the theoretical predictions. Upper, middle and bottom panels refer respectively to the cases 

with 𝑝 = 1, 2, 3. In the cases with an odd 𝑝 the phase between 𝐵1 and 𝐵2 is fixed to ϕ = π/2, when 

𝑝 is even the phase ϕ is set to zero. In each plot, ξ changes varying the value of 𝐵1, which ranges 

from zero to ≈ 15 T.  

 

Figure 2 shows comparisons of measured and calculated values of Ω𝐿  as a function of ϕ for given ξ 

and as a function of  𝜉 for given 𝜙, respectively. The data shown in figure 2 (b) are measured with 𝜙 

values that maximize the tuning effect. i.e. is 𝜙 = π/2 for the odd 𝑝 values and 𝜙 = 0for the even one.  

There is an excellent accordance between the experimental data and the theoretical prediction. In 

particular, both the dependence of the relative phase 𝜙 and on the pertinent 𝐽𝑝 (with 𝑝 = 1,2,3) Bessel 

functions are perfectly verified by the experiment. Minor deviations can be attributed to experimental 

imperfections, mainly to not-exact perpendicularity of the applied fields 𝐵1 and 𝐵2. 

The developed model and its excellent correspondence with the experimental results demonstrates 

the possibility to enhance the control of spins evolution by means of the described tuning-dressing field 

arrangement. 



XXI International Conference and School on Quantum Electronics
Journal of Physics: Conference Series 1859 (2021) 012018

IOP Publishing
doi:10.1088/1742-6596/1859/1/012018

7

 

 

 

 

 

 

This enhancement opens up to a variety of new experimental configurations in which the new set of 

parameters (𝐵2, 𝑝, and 𝜙) add to 𝐵1 and Ω to make new handles available to finely control the atomic 

magnetization dynamics. Compared to the known cases of harmonic [1] or anharmonic [10] dressing 

field oscillating along one direction, noticeably here the dressed frequency Ω𝐿 (equation (11)) may 

exceed ω3.  

The tuning-dressing scheme makes possible to choose a parameter set to achieve an arbitrary dΩ𝐿/𝑑ξ 

in conjunction with an arbitrary (to some extent) value of Ω𝐿. For instance, it is possible to produce a 

condition of critical dressing (equalization of precession frequencies of different species) [17] with no 

first-order dependence on  𝜉, so to attenuate the detrimental effects caused by B1inhomogeneities, which 

constitute a severe limiting problem in high-resolution experiments [9]. 

Similarly, it is possible to fulfil the condition of a large dΩ𝐿/𝑑𝜉 avoiding the constraint of a strong 

Ω𝐿 reduction. The latter may help in applications like that described in Sec.3, where Ω𝐿 is made 

deliberately position-dependent by means of a spatially inhomogeneous  𝜉. In addition, for that kind of 

application, it is worth noting that the presented scheme makes it possible to render Ω𝐿 space dependent 

by means of an inhomogeneity of the field 𝐵2, which is of easier implementation and control, being 

𝐵2 ≪ 𝐵1. 

Other applications where the tuning-dressing scheme may offer important potentials is suggested by 

the dependence on  𝜙. As recently reported [18], an emerging application of highly sensitive 

magnetometers concerns the detection of targets made of weakly conductive materials. In that case, the 

typical setup is based on a radio-frequency magnetometer, where the target modifies the amplitude or 

the phase of a (resonant) radio-frequency field driving the magnetometer. Alternative setups could be 

developed, where the target modifies the field 𝐵2, whose frequency is not required to match the atomic 

resonance. In this case, provided that 𝐽𝑝(ξ) is large (e.g. ξ ≈ 1.84 in the case of 𝑝 = 1), the system 

would have a large response to any variation of either the amplitude (if 𝜙 = ±𝜋/2) or the phase (if  

𝜙 = 0, 𝜋) of 𝐵2 caused by eddy currents induced in the target. 

Appendix 

The explicit expressions for the matrices in the main text are 

 

𝐴1 = (
0 0 0
0  0  −1
0  1 0

) , 𝐴2 = (
0 0 1
0  0  0

−1  0 0
) , 𝐴3 = (

0 1 0
−1  0  0
0  0 0

) (A.1) 

 

Defining 𝐿𝑗 = 𝑖𝐴𝑗 and taking the base that diagonalizes 𝐿3 one obtains the familiar form for the 

angular momentum operators acting on the |𝐿 = 1, 𝑀𝐿⟩  states. This demonstrates that the algebra 

generated by the 𝐴𝑖 matrices is the same of the quantum angular momentum operators. Moreover, it is 

straightforward to demonstrate that the quantum mean value 〈γ𝑳〉 satisfies the same classical Larmor 

equation. 

The action of a general antisymmetric matrix 𝑊 = 𝑎1𝐴1 + 𝑎2𝐴2 + 𝑎3𝐴3 on a given vector 𝒗 is the 

cross-product 

𝑊𝒗 = 𝒂 × 𝒗  𝒂 ≡ (𝑎1, 𝑎2, 𝑎3). (A.2) 

 

Using the Cayley-Hamilton theorem, the needed matrix exponentials can be analytically evaluated. 

Let's write 𝒂 = θ𝑎̂, with 𝑎̂ ⋅ 𝑎̂ = 1 then  

 

𝑒𝑊𝒗 = ∑
𝑊𝑛

𝑛!
𝒗

+∞

𝑛=0

= 𝒗 + sin θ 𝑎̂ × 𝒗 + (1 − cos θ) 𝑎̂ × (𝑎̂ × 𝒗). (A.3) 

The auxiliary 𝑓𝑖 functions introduced in the main text are defined as  
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𝑓1(τ) = ∑
𝐽2𝑛(ξ)

𝑛

∞

𝑛=1

sin(2𝑛τ) 

 

(A.4) 

𝑓2(τ) = 4 ∑

∞

𝑛=0

𝐽2𝑛+1(ξ)

2𝑛 + 1
sin2((𝑛 + 1/2)τ) 

 

(A.5) 

𝑓3(τ) = Re(𝑔(τ)) 

 

(A.6) 

𝑓4(τ) = Im(𝑔(τ)) (A.7) 

 

where  

 

𝑔(τ) = 𝑒𝑖ϕ ∑
𝐽𝑛(ξ)

𝑖(𝑛 + 𝑝)
𝑛≠−𝑝

(𝑒𝑖(𝑛+𝑝)τ − 1) + 𝑒−𝑖ϕ ∑
𝐽𝑛(ξ)

𝑖(𝑛 − 𝑝)
𝑛≠𝑝

(𝑒𝑖(𝑛−𝑝)τ − 1) (A.8) 

 

These functions have a limited and oscillating behaviour and are needed in the evaluation of 𝑒Λ1(τ). 

One can see by inspection that 𝑒Λ1 ≈ 𝟙 is a good approximation.  

The initial condition appropriate for the experiment is 𝑴(0) ∝ (1,0,0) and the quantity monitored is 

𝑀𝑥(τ). So, applying equation (A.3) to evaluate 𝑒τ𝐹1, and then equation (3), one finds  

 

𝑀𝑥(𝑡) ∝ cos(ΩL 𝑡). (A.9) 
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