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Abstract. Stochastic differential equations (SDEs) were developed at the beginning of the 

twentieth century to quantify all aspects of stochastic processes. This study focusses to evaluate 

the applicability and efficiency of the SDEs for modeling tree diameter over bark at any 

particular height and total stem volume for birch tree species in the boreal forests of Lithuania. 

Newly developed models of the stem taper development are based on well-defined diffusion 

processes, such as the symmetric Vasicek type diffusion process, and asymmetric geometric type 

diffusion process. The stem taper models with the fixed- and mixed-effect parameters are 

examined. The fixed- and mixed-effect parameters of the SDEs stem are evaluated using 

maximum likelihood procedure. Results are illustrated using birch trees longitudinal 

measurements. These models are compared with traditionally used regression type stem taper 

models using statistical measures and residual analysis. Overall, the best goodness-of-fit 

statistics for tree diameter and volume predictions produced the SDEs stem taper models. All 

results are implemented in the Maple software. 

Keywords: stochastic differential equation, probability density, approximated maximum 

likelihood procedure, stem taper. 

1. Introduction 

Deterministic population dynamics defined by the ordinary differential equation growth models are 

usually unrealistic since in nature individuals coexist with others and are affected by different types of 

interactions. The phenomenon of the environment stochasticity can be modelled by allowing that some 

of parameters vary randomly in the shape of a mean zero process. Such growth process is described by 

a stochastic differential equation (SDE) resulting in a solution which is a diffusion process. SDEs now 

find applications in many disciplines including engineering, finance, population dynamics, biology and 

medicine [1,2,3,4,5].  

A good amount of work has in the last five decades been done for stem taper construction from both 

linear and nonlinear regression modeling perspectives. Hence, numerous studies have been performed 

on evaluating stem diameter at any particular height. These dynamics are basically the classical 

deterministic regression models in diverse configurations, generalized by including additional stand 

level or tree variables and random effects. For many years, the segmented, variable-exponential and q-

exponential taper regression curves have been used in forestry for modeling the tree bole development 

[6,7,8]. The most of taper curves are species-specific, and, according to their results, the superiority of 

the q-exponential stem taper curves in improving the diameter at any particular height was concluded. 

For a more accurate predictions of the stem diameter outside the bark at any particular height with a 
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minimum variance led to the development of more advanced taper models phenomenally implemented 

by using the SDE.  

For describing growth and yield processes in a forest stand, there is a purely stochastic analogy to the 

ordinary differential equation method. The stochastic calculus of the Itô type with certain mathematical 

restrictions concerning drift and diffusion functions capacitates for an exact form solution. In the 

modeling of tree development, the univariate [9,10] and multivariate [11,12] SDE, symmetric type 

(Vasicek) [13], and non-symmetric type (Gompertz, Bertalanffy and gamma) [14,15] have been adapted 

for the prediction of the tree height, diameter, crown width and other variables. The multivariate SDE 

extends univariate SDE to additionally incorporate more realistic distributions with the underlying 

covariance structure formalizing the changes in the state variables [16]. 

Taper equations are widely used in forestry to estimate the diameter at any given height along a tree 

bole and, therefore, to calculate the total or merchantable stem volume. This study focusses on a 

segmented model of a tree taper, which uses two different SDEs for different parts of the stem to 

overcome local bias. For greater understanding of the physical meaning of a stochastic tree stem taper 

equation, it is a benefit to consider a problem for which the underlying stem taper dynamic is known 

deterministic but this mechanism cannot be fully observed [17,18]. One of SDE's unquestionable 

advantage is the consistent description of the stem taper development process by means of the 

probability density function.  

In this research, we suppose that in the lower section (less than 1.3 m) of a tree trunk can be modeled 

by the geometric Brownian motion SDE, and in the upper section (more than 1.3 m) of the stem can be 

modeled by the Vasicek type SDE. In particular, for butt swell at the height 1.3 m, the segmented SDE 

models were greatly superior.  

The objectives of this research are to develop equations describing relative diameter and relative height 

stem taper relationships by applying segmented mixed-effect parameters SDE, describe the maximum 

likelihood procedure for parameter estimators, and compare the SDE stem taper models with 

traditionally used regression models for prediction of diameter at any specified height and stem volume. 

The results are illustrated using longitudinal measurements of birch trees in Lithuania. 

2. Materials and methods 

This research focusses on univariate continuous diffusion processes 𝑌𝑖(𝑥), 𝑖 = 1, . . . , 𝑀, evolving in M 

different individuals (stems). It is supposed that the development of the tree relative diameter 𝑌𝑖 =
𝐷

𝑑𝑖 

against the tree relative height 𝑥𝑖 =
ℎ

ℎ𝑖 (𝑥
𝑖 ∈ [0; 1], in the sequel x) is expressed by the Itô-type [19] 

SDE, where D is the diameter at any particular height ℎ, 𝑑𝑖 is the diameter at breast height of the i-th 

tree, and hi is the stem height of the i-th tree. In what follows, we will outline three different segmented 

stem taper models given by the SDE which solution possessed the exact transition probability density 

function.  

2.1. SDE stem taper models 

Two different SDEs are used for quantifying the stem development. The first SDE model of the relative 

diameter via the relative height is described using the geometric Brownian motion model as: 

 𝑑 𝑌𝑖(𝑥) = 𝛼𝐵𝑌𝑖(𝑥)𝑑𝑥 + 𝜎𝐵𝑌𝑖(𝑥)𝑑𝑊𝐵
𝑖 (𝑥),  (1) 

where 𝑖 = 1, . . . , 𝑀 is the number of stems,  𝑌𝑖(𝑥𝑖) is the value of the relative diameter at a particular 

relative height xi;  𝛼𝐵, and 𝜎𝐵 are fixed effect parameters (for all M stems); 𝑦0
𝑖  is the butt relative 

diameter; index B indicates a butt part of a stem; and 𝑊𝐵
𝑖 (𝑥𝑖), Mi ,...,1= , are mutually independent 

standard Brownian motions. Stochastic process, 𝑌𝑖(𝑥), is conditioned on two different initial values 

𝑦𝑥0
𝑖 ∊ {𝛿, 1} at 𝑥0

𝑖 ∊{0,
1.3

ℎ𝑖 }, thus is: if x0=0, then 𝑦𝑥0
𝑖 = 𝛿 and δ has a log-normal distribution where 

𝐿𝑁1(𝜇0; 𝜎0), and if 𝑥0
𝑖 =

1.3

ℎ𝑖 , then 𝑦𝑥0
𝑖 = 1, 𝑃 (𝑌𝑖 (

1.3

ℎ𝑖 ) = 1) = 1. If the initial condition is fixed,  

𝑃(𝑌𝑖(𝑥0
𝑖 ) = 𝑦0

𝑖 ) = 1, then the diffusion process defined by Eq. (1) has the lognormal distribution 
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𝐿𝑁1(𝜇𝑔(𝑥|𝛼𝐵,𝜎𝐵, 𝑦𝑥0
𝑖 , 𝑥0

𝑖 ); 𝑣𝑔(𝑥|𝜎𝐵, 𝑥0
𝑖 )) with conditional mean, variance, and density, respectively,  

defined as: 

 𝜇𝑔(𝑥|𝛼𝐵,𝜎𝐵, 𝑦𝑥0
𝑖 , 𝑥0

𝑖 ) = 𝑙𝑛( 𝑦𝑥0
𝑖 ) + (𝛼𝐵 −

𝜎𝐵
2

2
) |𝑥 − 𝑥0

𝑖 |  (2) 

 𝑣𝑔(𝑥|𝜎𝐵, 𝑥0
𝑖 ) = 𝜎𝐵

2|𝑥 − 𝑥0
𝑖 | (3) 

 𝑝𝑔(𝑦, 𝑥|𝛼𝐵, 𝜎𝐵 , 𝑦𝑥0
𝑖 , 𝑥0

𝑖 ) =
1

𝑦√2𝜋𝑣𝑔(𝑥|𝜎𝐵,𝑥0
𝑖 )

𝑒𝑥𝑝 (−
(𝑙𝑛 𝑦−𝜇𝑔(𝑥|𝛼𝐵,𝜎𝐵,𝑦𝑥0

𝑖 ,𝑥0
𝑖 ))

2

2𝑣𝑔(𝑥|𝜎𝐵,𝑥0
𝑖 )

)  (4) 

If 𝑦𝑥0
𝑖 = 𝛿, 𝛿~𝐿𝑁1(𝜇0; 𝜎0), then the diffusion process defined by Eq. (1) has the lognormal distribution 

𝐿𝑁1(𝜇𝑔
′ (𝑥|𝛼𝐵,𝜎𝐵, 𝑦𝑥0

𝑖 , 𝑥0
𝑖 ); 𝑣𝑔

′ (𝑥|𝜎𝐵, 𝑥0
𝑖 )) with conditional mean, variance, and density, respectively,  

defined as: 

 𝜇𝑔
′ (𝑥|𝛼𝐵,𝜎𝐵, 𝜇0, 𝑥0

𝑖 ) = 𝜇0 + (𝛼𝐵 −
𝜎𝐵

2

2
) |𝑥 − 𝑥0

𝑖 |  (5) 

 𝑣𝑔
′ (𝑥|𝜎𝐵, 𝑥0

𝑖 ) = 𝜎0
2 + 𝜎𝐵

2|𝑥 − 𝑥0
𝑖 | (6) 

 𝑝𝑔(𝑦, 𝑥|𝛼𝐵, 𝜎𝐵, 𝜇0, 𝜎0, 𝑥0
𝑖 ) =

1

𝑦√2𝜋𝑣𝑔
′ (𝑥|𝜎𝐵,𝑥0

𝑖 )

𝑒𝑥𝑝 (−
(𝑙𝑛 𝑦−𝜇𝑔

′ (𝑥|𝛼𝐵,𝜎𝐵,𝜇0,𝑥0
𝑖 ))

2

2𝑣𝑔
′ (𝑥|𝜎𝐵,𝑥0

𝑖 )
)  (7) 

 

The Vasicek type SDE of the relative diameter against the relative height is given as: 

 𝑑 𝑌𝑖(𝑥) = 𝛽𝑇(𝛼𝑇 − 𝑌𝑖(𝑥))𝑑𝑥 + 𝜎𝑇𝑑𝑊𝑇
𝑖(𝑥),𝑖 = 1, . . . , 𝑀  (8) 

where 𝛼𝑇, 𝛽𝑇, and 𝜎𝑇 are fixed effect parameters (identical for all M stems) and 𝑊𝑇
𝑖(𝑥) denotes 

independent standard Brownian motions. Diffusion process, 𝑌𝑖(𝑥), conditioned on the initial value 𝑦𝑥0
𝑖 ∊

{1.0; 0.0} at 𝑥0
𝑖 ∊{

1.3

ℎ𝑖 ;0.0}, thus is 𝑃 (𝑌𝑖 (
1.3

ℎ𝑖 ) = 1.0) = 1, 𝑃(𝑌𝑖(1) = 0.0) = 1, and has a normal 

distribution 𝑁1(𝜇𝑉(𝑥|𝛼𝑇 ,𝛽𝑇 , 𝑦𝑥0
𝑖 , 𝑥0

𝑖 ); 𝑣𝑉(𝑥|𝛽𝑇 , 𝜎𝑇 , 𝑥0
𝑖 )) with the conditional mean, variance, and 

density, respectively 

 𝜇𝑉(𝑥|𝛼𝑇 ,𝛽𝑇 , 𝑦𝑥0
𝑖 , 𝑥0

𝑖 ) = 𝛼𝑇 − (𝑦𝑥0
𝑖 − 𝛼𝑇) ⋅ 𝑒−𝛽𝑇|𝑥−𝑥0

𝑖 | (9) 

 𝑣𝑉(𝑥|𝛽𝑇 , 𝜎𝑇 , 𝑥0
𝑖 ) =

𝜎𝑇
2

2𝛽𝑇
(1 − 𝑒−2𝛽𝑇|𝑥−𝑥0

𝑖 |)  (10) 

 𝑝𝑉(𝑦, 𝑥|𝛼𝑇 , 𝛽𝑇 , 𝜎𝑇 , 𝑦𝑥0
𝑖 , 𝑥0

𝑖 ) =
1

√2𝜋𝑣𝑉(𝑥|𝛽𝑇,𝜎𝑇,𝑥0
𝑖 )

𝑒𝑥𝑝 (−
(𝑦−𝜇𝑉(𝑥|𝛼𝑇,𝛽𝑇,𝑦𝑥0

𝑖 ,𝑥0
𝑖 ))

2

2𝑣𝑉(𝑥|𝛽𝑇,𝜎𝑇,𝑥0
𝑖 )

)  (11) 

Using Eqs. 1–11 and fixing the initial conditions, we will define three different stem taper models. The 

proposed SDE stem taper models take the following forms:    

Model 1: Eqs. (1) and (8), 𝑖 = 1, . . . , 𝑀, with starting-points at the stem but 𝑦𝑥0
𝑖 = 𝛿, 𝛿~𝐿𝑁1(𝜇0; 𝜎0) 

and at the stem top 𝑃(𝑌𝑖(1.0) = 0.0) = 1:  

𝑑 𝑌𝑖(𝑥) = {
𝛼𝐵𝑌𝑖(𝑥)𝑑𝑥 + 𝜎𝐵𝑌𝑖(𝑥)𝑑𝑊𝐵

𝑖 (𝑥), 𝑦𝑥0
𝑖 = 𝛿, 𝛿~𝐿𝑁1(𝜇0; 𝜎0), 0 ≤

ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝛽𝑇 (𝛼𝑇 − 𝑌𝑖(𝑥)) 𝑑𝑥 + 𝜎𝑇𝑑𝑊𝑇
𝑖(𝑥), 𝑃(𝑌𝑖(1.0) = 0.0) = 1,

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

  (12) 

Model 2 : Eqs. (1) and (8), 𝑖 = 1, … , 𝑀, with starting-points at the stem but 𝑃 (𝑌𝑖 (
1.3

ℎ𝑖 ) = 1.0) = 1 

and at the stem top 𝑃(𝑌𝑖(1.0) = 0.0) = 1: 

 𝑌𝑖(𝑥) = {
𝛼𝐵𝑌𝑖(𝑥)𝑑𝑥 + 𝜎𝐵𝑌𝑖(𝑥)𝑑𝑊𝐵

𝑖 (𝑥), 𝑃 (𝑌𝑖 (
1.3

ℎ𝑖 ) = 1.0) = 1, 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝛽𝑇 (𝛼𝑇 − 𝑌𝑖(𝑥)) 𝑑𝑥 + 𝜎𝑇𝑑𝑊𝑇
𝑖(𝑥), 𝑃(𝑌𝑖(1.0) = 0.0) = 1,

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

  (13) 

Model 3 : Eqs. (1) and (8), 𝑖 = 1, . . . , 𝑀, at the stem but 𝑃 (𝑌𝑖 (
1.3

ℎ𝑖 ) = 1.0) = 1 and at the stem top 

𝑃 (𝑌𝑖 (
1.3

ℎ𝑖 ) = 1.0) = 1: 
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 𝑑 𝑌𝑖(𝑥) = {
𝛼𝐵𝑌𝑖(𝑥)𝑑𝑥 + 𝜎𝐵𝑌𝑖(𝑥)𝑑𝑊𝐵

𝑖 (𝑥), 𝑃 (𝑌𝑖 (
1.3

ℎ𝑖 ) = 1.0) = 1, 0 ≤
ℎ

ℎ𝑖 <
1.3

ℎ𝑖

𝛽𝑇 (𝛼𝑇 − 𝑌𝑖(𝑥)) 𝑑𝑥 + 𝜎𝑇𝑑𝑊𝑇
𝑖(𝑥), 𝑃 (𝑌𝑖 (

1.3

ℎ𝑖 ) = 1.0) = 1,
ℎ

ℎ𝑖 >
1.3

ℎ𝑖

  (14) 

The diffusion processes defined by Eqs. (12-14) have the explicit probability density functions [15]. 

Therefore, we can define the trajectories of the diameter mean, 𝑑𝑘(ℎ|𝑑𝑖, ℎ𝑖), variance, 𝑤𝑘(ℎ|𝑑𝑖, ℎ𝑖) and 

p-quantile development, 𝑞𝑘(ℎ, 𝑝|𝑑𝑖 , ℎ𝑖), for all model (k=1, 2, 3) , respectively: 

𝑑1(ℎ|𝑑𝑖, ℎ𝑖) = {
𝑑𝑖 𝑒𝑥𝑝 (𝜇𝑔

′ (
ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 𝜇0, 0.0) +

1

2
𝑣𝑔

′ (
ℎ

ℎ𝑖
|𝜎𝐵, 0.0)) , 0 ≤

ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝑑𝑖𝜇𝑉(
ℎ

ℎ𝑖
|𝛼𝑇 ,𝛽𝑇 , 0.0,1.0),

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

  (15) 

𝑤1(ℎ|𝑑𝑖, ℎ𝑖) =

{
(𝑑𝑖)

2
𝑒𝑥𝑝 (2𝜇𝑔

′ (
ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 𝜇0, 0.0) + 𝑣𝑔

′ (
ℎ

ℎ𝑖
|𝜎𝐵, 0.0)) (𝑒𝑥𝑝 (𝑣𝑔

′ (
ℎ

ℎ𝑖
|𝜎𝐵, 0.0)) − 1) , 0 ≤

ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

(𝑑𝑖)
2

𝑣𝑉(
ℎ

ℎ𝑖
|𝛽𝑇 , 𝜎𝑇 , 1.0),

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

 (16) 

𝑞1(ℎ, 𝑝|𝑑𝑖, ℎ𝑖) = {
𝑑𝑖 𝐿𝛷𝑝

−1 (𝜇𝑔
′ (

ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 𝜇0, 0.0) ; 𝑣𝑔

′ (
ℎ

ℎ𝑖
|𝜎𝐵, 0.0)) , 0 ≤

ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝑑𝑖𝛷𝑝
−1(𝜇𝑉(𝑥|𝛼𝑇 ,𝛽𝑇 , 0.0,1.0); 𝑣𝑉(

ℎ

ℎ𝑖
|𝛽𝑇 , 𝜎𝑇 , 1.0)),

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

 (17)  

𝑑2(ℎ|𝑑𝑖, ℎ𝑖) = {
𝑑𝑖 𝑒𝑥𝑝 (𝜇𝑔 (

ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 1.0,

1.3

ℎ𝑖 ) +
1

2
𝑣𝑔(

ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) , 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝑑𝑖𝜇𝑉(
ℎ

ℎ𝑖
|𝛼𝑇 ,𝛽𝑇 , 0.0,1.0),

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

  (18) 

𝑤2(ℎ|𝑑𝑖, ℎ𝑖) =

{
(𝑑𝑖)

2
𝑒𝑥𝑝 (2𝜇𝑔 (

ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 1.0,

1.3

ℎ𝑖 ) + 𝑣𝑔(
ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) (𝑒𝑥𝑝 (𝑣𝑔 (
ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) − 1) , 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

(𝑑𝑖)
2

𝑣𝑉(
ℎ

ℎ𝑖
|𝛽𝑇 , 𝜎𝑇 , 1.0),

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

 (19) 

𝑞2(ℎ, 𝑝|𝑑𝑖, ℎ𝑖) = {
𝑑𝑖 𝐿𝛷𝑝

−1 (𝜇𝑔 (
ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 1.0,

1.3

ℎ𝑖 ) ; 𝑣𝑔 (
ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) , 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝑑𝑖𝛷𝑝
−1(𝜇𝑉(𝑥|𝛼𝑇 ,𝛽𝑇 , 0.0,1.0); 𝑣𝑉(

ℎ

ℎ𝑖
|𝛽𝑇 , 𝜎𝑇 , 1.0)),

ℎ

ℎ𝑖 >
1.3

ℎ𝑖

 (20) 

𝑑3(ℎ|𝑑𝑖, ℎ𝑖) = {
𝑑𝑖 𝑒𝑥𝑝 (𝜇𝑔 (

ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 1.0,

1.3

ℎ𝑖 ) +
1

2
𝑣𝑔(

ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) , 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝑑𝑖𝜇𝑉(
ℎ

ℎ𝑖
|𝛼𝑇 ,𝛽𝑇 , 1.0,

1.3

ℎ𝑖 ),
ℎ

ℎ𝑖 >
1.3

ℎ𝑖

  (21) 

𝑤3(ℎ|𝑑𝑖, ℎ𝑖) =

{
(𝑑𝑖)

2
𝑒𝑥𝑝 (2𝜇𝑔 (

ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 1.0,

1.3

ℎ𝑖 ) + 𝑣𝑔(
ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) (𝑒𝑥𝑝 (𝑣𝑔 (
ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) − 1) , 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

(𝑑𝑖)
2

𝑣𝑉(
ℎ

ℎ𝑖 |𝛽𝑇 , 𝜎𝑇 ,
1.3

ℎ𝑖 ),
ℎ

ℎ𝑖 >
1.3

ℎ𝑖

 (22) 

𝑞3(ℎ, 𝑝|𝑑𝑖, ℎ𝑖) = {
𝑑𝑖 𝐿𝛷𝑝

−1 (𝜇𝑔 (
ℎ

ℎ𝑖
|𝛼𝐵,𝜎𝐵, 1.0,

1.3

ℎ𝑖 ) ; 𝑣𝑔 (
ℎ

ℎ𝑖 |𝜎𝐵,
1.3

ℎ𝑖 )) , 0 ≤
ℎ

ℎ𝑖 ≤
1.3

ℎ𝑖

𝑑𝑖𝛷𝑝
−1(𝜇𝑉(𝑥|𝛼𝑇 ,𝛽𝑇 , 1.0,

1.3

ℎ𝑖 ); 𝑣𝑉(
ℎ

ℎ𝑖 |𝛽𝑇 , 𝜎𝑇 ,
1.3

ℎ𝑖 )),
ℎ

ℎ𝑖 >
1.3

ℎ𝑖

 (23)  

where 𝛷𝑝
−1(∗,∗) is the inverse normal distribution, and 𝐿𝛷𝑝

−1(∗,∗) is the inverse lognormal distribution. 

2.2. Data 

The diameter of each birch tree was remeasured every 2 m, starting from the diameter on the butt, 

i.e., 0, 1, 1.3, 3, 5, etc. Stump heights were not measured, and a constant height of 0.0 m was assumed 

in the analysis. There was a total of 333 sample stems, and all section measurements consist of 4,228 

points. For testing and validation purposes the complete observed dataset was randomly divided into 

two datasets. 230 stems (2,931 measurements) were selected for model fitting, and the remaining dataset 

of 103 stems (1,297 measurements) were used for model validation. The relative diameter against the 

relative heights of all stems are presented in Figures 1 and 2.  
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Figure 1. Observed estimation dataset.  Figure 2. Observed validation dataset. 

3. Results and discussion 

Complex inventories of forests require accurate estimates of the total and merchantable volume of each 

tree. For several decades, forest science focused much attention on modelling individual tree height, 

taper and volume as functions of individual tree attributes. Traditionally, the relationships between 

predictor variables (diameter at breast height, height) and tree biomass, stem taper and stem volume 

have been described based on regression models [8]. 

An observed dataset consists of longitudinal measurements of a continuous diameter growth process. 

Longitudinal measurements are collected through a series of repeated observations of the same stem and 

have two features that complicate their statistical analysis: a) within-individual stem correlation, and b)  

extremely high variability between measurements for different stems.  

For all developed models the fixed effect parameters, and random effects were estimated by the 

maximum likelihood and approximated maximum likelihood techniques [15], using a segmented 

conditional probability density functions. All results on parameter estimation are implemented using 

mathematical software Maple [21]. The parameter estimators are presented in Table 1. 

Evaluation and comparison of stem taper models fitted for birch tree species in Lithuania was performed 

using the analysis of the residuals and the following fit statistics: root mean square error (RMSE), mean 

bias (B), mean absolute bias (AB), and coefficient of determination (R2). This research also examined 

the applicability of new developed stem taper equations in accurately estimating stem volume (m3). In 

general, SDE taper models prove for at least 95% of the variation in diameter outside bark for the 

estimation dataset, and 93% of the variation in diameter outside bark for the validation dataset. For 

volume predictions all models showed an insignificant bias. All three models produced percent root-

mean-square error values of 11.60% to 13.83% for the diameter predictions. The best results showed 

Model 1, where the diameter at the butt is lognormally distributed with unknown parameters. 

Foresters stem taper equations use for estimating stem diameter at any particular heights, height to 

specified diameters, and volumes of various productions of stem bole. Basically, stem volume is 

calculated by mathematical integration. All new developed stochastic stem taper models examined in 

previous section are plotted in Figure 3. Three stems from the validation dataset were used for 

illustrating stochastic modeling techniques. 

Figure 4 shows the 5% and 95% quantiles taper trajectories with the mean trend and the observed dataset 

for three randomly selected stems corresponding to large, medium, and small tree. This figure illustrates 

how well the observed datasets are covered by the 5% and 95% quantiles area. The quantile trajectories 

can be used to distinguish abnormal tree stems and to shape a way to predict a range of values while 

having a certain amount of confidence in that range [20]. 
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Table 1. Estimation of fixed effect parameters (standard 

errors) for all used models. 

 

Model 

Parameters 

ɑB 𝝈B αT ꞵT 𝝈T μ0 𝝈0 

M1 
-4.7638 

(0.0603) 

0.3058 

(0.0101) 

1.0048 

(0.0100) 

2.0150 

(0.0404) 

0.1759 

(0.0030) 

0.2748 

(0.0006) 

0.0091 

(0.0004) 

M2 
3.6504 

(0.1033) 

0.4380 

(0.0145) 

1.1306 

(0.0111) 

1.7760 

(0.0312) 

0.1712 

(0.0027) 
- - 

M3 
3.6504 

(0.0165) 

0.4380 

(0.0145) 

-12.0531 

(2.9271) 

0.0718 

(0.0165) 

0.1443 

(0.0021) 
- - 

 

 

Table 2. Comparison indexes for all fitted taper models. 

 

Model 
B 

(%) 

AB 

(%) 

RMSE 

(%) 

R2
 

B 
(%) 

AB 

(%) 

RMSE 

(%) 
R2 

Estimation dataset Validation dataset 

M1 
-0.2936 

(-1.79) 

1.3432 

(8.21) 

1.9075 

(11.66) 
0.9662 

-0.2856 

(-1.79) 

1.4981 

(9.39) 

2.1142 

(13.19) 
0.9553 

M2 
-0.2714 

(-1.66) 

1.2755 

(7.79) 

1.9527 

(11.93) 
0.9646 

-0.4906 

(-3.07) 

1.5795 

(9.90) 

2.3082 

(14.47) 
0.9468 

M3 
-0.0517 

(-0.32) 

1.6588 

(10.14) 

2.2624 

(13.83) 
0.9524 

-0.5070 

(-3.18) 

1.9641 

(12.31) 

2.6387 

(16.54) 
0.9304 
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Figure 3. The development of diameter against height. Large tree is shown in black, 

medium tree in blue, and small tree in red. Observed dataset in circles. 
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Figure 4. The development of the 5% and 95% quantiles and mean trajectories of 

diameter against height. Large tree is shown in black, medium tree in blue, and small tree 

in red. Observed dataset in circles. Quantiles in dashed lines. Mean in solid line. 

4. Conclusions 

The segmented SDE models with estimated joint point 1.3 m provided a better quantification of stem 

taper when compared to traditionally used regression models. Based on the goodness-of-fit statistical 

measures and the statistical analysis of the residuals the best performance showed Model 1. It may be 

noted that SDE segmented models have many other potential applications in forestry for other species.  
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