Journal of Physics: Conference
Series

PAPER « OPEN ACCESS You may also like

. HH . - Delay-dependent stability of neural
Exponential Stability for the Neutral-type Inertial networke of euiral pe it fme delay in

the leakage term

BAM Neural Networks with Time-varying Delays Xiaodi Li and Jinde Cao

- Periodic oscillation of higher-order

. . . . . bidirectional associative memory neural
To cite this article: J Thipcha and S Pinjai 2021 J. Phys.: Conf. Ser. 1850 012116 networks with periodic coefficients and

delays
Fengli Ren and Jinde Cao

- Stability in Cohen—Grossberg-type
bidirectional associative memory neural

networks with time-varying delays
Jinde Cao and Qiankun Song

View the article online for updates and enhancements.

c '. o ; " - DISCOVER

how sustainability

The ., Ak intersects with
Electrochemical ¢ ' |
Society

Advancing solid state &
electrochemical science & technology

This content was downloaded from IP address 3.23.127.197 on 04/05/2024 at 13:20


https://doi.org/10.1088/1742-6596/1850/1/012116
https://iopscience.iop.org/article/10.1088/0951-7715/23/7/010
https://iopscience.iop.org/article/10.1088/0951-7715/23/7/010
https://iopscience.iop.org/article/10.1088/0951-7715/23/7/010
https://iopscience.iop.org/article/10.1088/0951-7715/20/3/004
https://iopscience.iop.org/article/10.1088/0951-7715/20/3/004
https://iopscience.iop.org/article/10.1088/0951-7715/20/3/004
https://iopscience.iop.org/article/10.1088/0951-7715/20/3/004
https://iopscience.iop.org/article/10.1088/0951-7715/19/7/008
https://iopscience.iop.org/article/10.1088/0951-7715/19/7/008
https://iopscience.iop.org/article/10.1088/0951-7715/19/7/008
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjss1HiJCsk1vmWdJNa4u1FsD-QmvNayMtehe2656d5ZKKC7Vf6-2m4dN-AKgYvscskLkhKT111y8p3J5EWBc7bjM0uPcQTG-fRbjsEf7B7yr7ISDymQLb-WKyd5sNxgwA1b-LOy_bXmh7rZ63ixxlovCa8sdaen9MF41VKqqnB8uafVGBO8isXp8FbULG_kU3uMl9eoY5gYhwJMVGA_l-p-8rZtIk1AKL1dBBT2NcRdIoXVbEYe4Y9CcsThRKK-36oudiQ7TQCmxCIcyvw0JJTg6_F6sl2z9UKYpmXoNZd2tLjFDZ8ZLdlIeqzYmHuib-4rXL0yVObMhlcyNkfTdxArgkU_J2Q&sig=Cg0ArKJSzGgRnBuCxgVE&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

ICMMCMSE 2020 IOP Publishing
Journal of Physics: Conference Series 1850(2021) 012116  doi:10.1088/1742-6596/1850/1/012116

Exponential Stability for the Neutral-type Inertial BAM
Neural Networks with Time-varying Delays

J Thipcha', S Pinjai’

'Department of Mathematics, Maejo University, Chiang Mai 50290, Thailand

2Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of
Technology Lanna, Chiang Mai, 50300, Thailand

E-mail: jenjira_tc@mju.ac.th

Abstract. In this paper, the global exponential stability for the neutral-type inertial bidirectional
association memory neural networks with time-varying delays is considered . In our study, the lower and
upper bounds of the activation functions are allowed to be either positive, negative or zero. By constructing
new and improved Lyapunov-Krasovskii functional and introducing free-weighting matrices, a new and
improved delay-dependent the neutral-type inertial bidirectional association memory neural networks with
time-varying delays is derived in the form of linear matrix.

1. Introduction

A class of neural networks related to bidirectional associative memory (BAM) has been introduced by
Kosko [9]. This model generalized the single-layer autoassociative Hebbian correlator to a two-layer
pattern matched heteroassociative circuit. It is important that it produces many nice properties owing to
the special structure of connection weights and its practice applications in storing paired patterns through
both directional forward and backward directions. In [20, 24, 25, 26], several sufficient condition on the
global asymptotic stability and global exponential stability of BAM neural networks with time-varying
delays have been derived.

In general, time delay is often unavoidable in the communication and response of neurons due to
the finite switching speed of amplifiers in the electronic implementation of analog neural network and
communication time, see [14, 15, 17, 23]. It is well known that time delays might cause instability,
divergence behavior and oscillations of neural networks. Therefore, several researchers have focused
on the study of stability analysis of BAM neural networks with either constant delays or time-varying
delays, see [4, 6, 18, 19].

Besides, it is usual that the time delay arises not only in system states but also in the derivatives of
system states. Systems containing the information of past state derivatives are called neutral-type delay
systems. Recently, the study of the stability analysis of neutral-type neural networks and the BAM neural
network has been widely admitted interest from several researchers, see [1, 7, 13, 16, 21].

Moreover, the inertial neural network has been first introduced by Babcock and Westervelt [2].
This network is described by second-order differential equations. It should be pointed out that inertial
neural networks are much more difficult to analyze their dynamical behaviors. Thus, the problem of
stability analysis of the inertial neural networks has been attention, see [3, 5, 8, 11, 12, 22, 27]. In
[10], the sufficient conditions are derived to ensure the global exponential stability of delayed inertial
neural networks by constructing suitable Lyapunov Krasovskii functionals with the derivative of double
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integral terms. Manivannan R et al. [13] proposed stability analysis of interval time-varying delayed
neural networks including neutral time-delay and leakage delay. By proposing a suitable Lyapunov
Krasovskii functionals with the auxiliary function-based integral inequality and reciprocally convex
approach, several sufficient conditions of interval time-varying delayed neural networks including neutral
time-delay and leakage delay is obtained.

Motivated by the above discussions, in this letter, we investigate the problem of neutral-type inertial
BAM neural networks with time-varying delays. Firstly, a variable transformation is given to simplify the
stability analysis of neutral-type inertial BAM neural networks. Finally, the global exponential stability
for the neutral-type inertial BAM neural networks with time-varying delays is ensured by using suitable
Lyapunov Krasovskii functionals candidates, free weighting matrices, and convex combination approach
within the lower and upper bounds of the activation functions are allowed to be either positive, negative
or zero and without derivative time-varying delays.

2. Model description and preliminaries
In this paper, we consider the following neutral type BAM inertial Neural Networks with time varying
delays

fi(t) = —ait(t) — ali(0) + T, b Fi70) + DL ¢ (;f,(vju — () + I, df;aj(t —n@) +1;
Bi(0) = =B;¥;(1) - a@)y(r) + X b Ri(0) + s, DRila(t — o (0) + T, 5 = p(1) + U,

(D
fori=1,2,...,n, j=1,2,...,m, where second derivative is called an inertial term of system (1), i and
7 denote the states variable of the i neuron and the j” neuron at the time 7, a; > 0, 8; >0, a(l) and a(z)
D, d, b2, 2
ij > ji €

external inputs, f]( ) and g;(+) denotes the activation function of the i neuron and the j™ neuron at the
time ¢, 7(¢), o(¢) are the time-varying delays, and 7(¢), p(¢) are the neutral-type time-varying delays. Let
variable transformation:

are constants, bgjl.) ) and d(z) denote the connection weights at the time ¢z, I; and J; are the

Xi(0) = i (1) + €iti(r)
¥i(1) = V(1) + &V,(1),
then system (1) can be rewritten as
i(t) = —Ei(r) + (1), i i
X(1) = —Aqi(t) — A (1) + B f(9(0) + Cof (9t — 7(2))) + Dyt — (1) + 1,

V(1) = ~Ea0(1) + (1), .
V(@) = =A2v(1) = Ao§(1) + Bog(iu(1)) + C2g(ia(r — 07(1))) + Dov(r — p(0)) + J

(@)

where A = diag(a)—€1, ..., @y =€), Ay = diag(B1 =81, Bn=&n)s B = (0 Yuxm B2 = (b ) C1
(€t s Co = (€ Vmxns D1 = (@i Yy D2 = (@ Vs T = (D1 )T T = (T )T

Definition 2.1 The point (u*,v*,x*,y*) with u* = (u’l‘,...,u;‘l)T, Ve o= (v’]‘,...,v;’;)T, Xt =

(x]s---s x)T, v = O i) is called an equilibrium point of system (2) if

—=ut + X" =
—ANu* —A X+ B fO0)+Cifv)+1
—Zovt 4+ y*

—Apv* — Apy* + Brg(u*) + Crgu™)+J =

-

3)

-

cooo

Let (u*,v*,x*,y") be the equilibrium point of system (2). For the purpose of simplicity, we can
shift the intended equilibrium (u«*,v*, x*,y*) to be the origin by taken the following transformation:
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u() =) —u’, v() = 9() =V, x() = X()—x", y() = 30) —y", gu()) = () +u*) - gu*), f(v() =
FO() +v*) — f(v*). Then the system (2) can be transformed to
u(r) = —Equ(t) + x(1),
x(1) = —Au®) — Aix(1) + B f(v(1) + C1f(v(t — 7(1))) + Drint — n(2)),
V(1) = —Eav(®) + y(1),
V(1) = =Aau(t) — Agy(t) + Bog(u(1)) + Cog(u(t — o (1)) + Dav(t — p(1)).

We have the following assumptions.

“

Assumption 2.2 The delay o (t), 7(t), n(t) and p(t) are bounded time-varying delays satisfying:

) 0o <o) <oy, 011 <)) <™
@  0<n@®<n n@ <na,
@iy 0<p®<p, p()<pgs, Y120,
where o1, 07,71, T2, 1, P, Na and pg are real constants.

Assumption 2.3 The neuron activation functions f;(-) and g;(-) are continuous, bounded which satisfy
the following conditions: f;(0) =0, gi(0)=0wheni=1,2,...,n,j=1,2,...,mand foranypB,neR
and B # 1), there exist real numbers F;, F ;, G; and G| such that

R0

(i) T < Fj, j=12....m,
(i) G;sMsGﬁ, i=1,2....n.
-n

Denote
Fy =diag(F|,F5,....,F,), F = diag(FJr,F;,...,F,;),

G\ = diag(G|,G,,...,G,), G, = diag(G{,Gj,...,Gy).
Moreover, we assume that the initial conditions of system (4) has the form

ui(s) = (s, ii(s) = ¥1V(s), xi(s) = €0\ (s) + ¥V (s) = V()

1) = 07(), 1i(5) = 62(5), 39 = 560 +2(5) = 625), 5 € [,0), y = maxlor,7a). )

Definition 2.4 The trivial solution of system (4) is said to be globally exponentially stable if there exist
constants k > 0 and p > 1 such that

_ 2 2 2 2
lu@®I* + Ix@)I? + V@I + Iy@I* < pe 2 AN + 1l + 16207 + le@11%), Ve >0,
where one denotes

2 2 2 2 2 2
el + 1™ + 6@ + le®)” = sup e PIT+  sup lleVs)ll

—max{o;,72}<s<0 —max{o3,72}<s<0

2 2
+  sup 9P+ sup [le@ )

—max{o,12}<s<0 —max{o,12}<s<0

Lemma 2.5 /23] For any constant matrix R € R™, R = RT > 0, a scalar function 7(t) with

0 < 7(t) < 7y and vector function x : [—7y,0] — R” such that the integration concerned is well
defined, let

f x(s)ds = Ep(t),
1—1(1)
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where & € R™* and ¢(t) € RX. Then the following inequality holds for matrix M € R"™
t
- [ AR < oo
t—1(t)

where Y| = -8TM - MTE + t(OMIRIM.

Lemma 2.6 [13] For a given matrix G € R™", scalar function py > pm > 0, vector function
72 [om, pm] = R" such that the subsequent relation holds:

1=Pm 1=Pm T 1=Pm
—(Pu — Pm) rT(@)Gr(@)da < —( f r(a)da) g( f r(a)da).

—pm —=pm —pm
Lemma 2.7 [13] For a given matrix G > 0 and differentiable function {r(a) | a € [a, b], the subsequent
relations hold:
1
b-a

v

b 3 5
f i (@)Gi(a)da ugfmb lzgfmb r.6t,

Vv

b B
f f T (Gi@)dadB > 261,G014 +4L]GE)s,

where

ty = rb)-r(a), ,

i = rb)+r(a)-— ﬁ fa r(a)da,

tiz = rb)— r(a) + % ab rl@)da -

fa = -5 L [ r(@da,

s = rb)+ 5% [ rieda - oo [7 [ r(@)dadp.

72 ) [ redadp,

3. Main result
For this point on, for simplicity of notations, we assume that #y = 0. For the sake of simplicity on matrices
representation, we let

£0) = colfu(t), ult—o), ult— o), ult— o)), W), X0, K0), gu®)), gt — o),
t =0 t—o (1)
gt - ), gult - (1)), Ui f u(s)ds, f u(s)ds, f u(s)ds,
2 Jt-oy t t

—o (1) -0

1 0 t
= [ wdeds, ate = no. v, v = 7. vt a0 50, 500, 560

=71

1 1
Fo@), fO(t =11)), fO(t = 712)), fO(t=7(2))), o f v(s)ds, f v(s)ds,

—7(1)
—7(1) 1 0
f v(s)ds, ") f f v(0)dods, v(t — p(1))}
-1 Ty J-13 Jt+s

and let ¢; € R (i = 1,2,...,32) be defined as blocks entry matrices, for example e, =
0, 1, 0, --- 0,]wherel,and O, are identity and zero matrices of dimension n X n, respectively.
[ —

30
Then, u(t) = e1&(t), u(t — o1) = exé(t),..., and V(t — p(t)) = e3&(2), respectively. In addition, the
notations of several matrices are defined as follows:

Ly = colfer,eg}, Lo = coller, eq}, L3 = colfes,ejp}, L4 = col{e;7, 24},
Ls = colfeig, exs}), L = col{erg, exs}, L7 = coller, es}, Lg = col{e17, e21},
Oy = 02—01, T4 =T2—T1.
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Theorem 3.1 For given positive constants oy, 02,T1, T2, 1,0,N4, and pg, the system (4) is globally
exponentially stable with convergent rate k which satisfying the Assumptions 1.1 and Assumptions 1.2
, if there exist positive definite matrices P; € R™" (i = 1,...,4), S; € R™ (i = 1,...,6), Q; =

On On xan e ) e o U U ]
[QB Qi4]ER (i = 1. 4) where Qi € R™'(j = 1.4, U = | "1 /" |,V =
Vi Vi _| Ru Rz | Zu Zn w0 w0 N
[ * (sz]’?_[ * Rzz}’z_[ * Zzz]”u_[ N _,uZI’V_ £ v , positive

diagonal matrices A; = diag(A}, A}, ..., A) (i = 1,2),A; = diag(4], 1), LAY (o= 3,4, N =
diag(n’i,né,...,nﬁl) (i=1,...,49, M; = diag(m’i,mé,...,mfn) (i = 1,...,4), and any matrices
Yii=1,...,4), H; (i =1,...,8) with appropriate dimensions which satisfy the following LMIs:

8_2]“”7111 e—ZkO'Sq/ll2 e—ZkO'S’u1 0
* e—2k0'37/122 0 e—2k0'5M2 -0 (6)
* " e—ZkO'Aq/{“ e—ZkO'Swlz =%
* " * e—ZkO'J(lez
e_ZkT“le e—ZkT_VZIZ e_ZkT5V1 0
" e—ZkTSZZZ 0 e—ZkrS V) 20 (7)
% * e—ZkTSZ“ e_ZkTS-le =Y
* * * e_ZkTS,Zzz
[ 11 e_ZkZZ Yy eyl
% —gge 958§y 0 <0, )
% * —1,e kTS ¢ ]
[ 11 9_2]“73 YT e—lk‘r‘gyT
2 3
x  —ose kTS, 0 <0, )
|« " —Tse_ZkTSS(, |
[ 11 e—2k0's YT e—szS YT
4
x  —ose kTS, 0 <0, (10
| * * ~7,e S |
II e—ZkO's YT e—Zk‘rs YT
1 3
x  —oge kS, 0 <0, (11)
* * —Tse_zk“‘S(,
where
8
0 S
=1
I, = ZkelTPlel + 2e1TPle5 + 2k€£P2€6 + 26£P2€7 + 2k€{7P3€17 + 26{7P3€21

+2k€§2P4622 + 26;2P4823,

I, = 4k(68 - Glel)TAlel + 2(68 - Glel)TA185 + 4k(G2€1 - eg)TAzel
+2(Gaey — eg)! Aves + 4k(eas — Fre17)T Aser7 + 2(e2s — Fre17)! Aszen
+ak(Fae17 — e24)T Agerr + 2(Fae17 — €24)" Asery,
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I1;
Iy

IIs

ITe

ITg

_e—lk‘rz{

T ~2kn T T ~2kp T
esS1es — (1 —na)e™ e S1e16 + €58 2021 — (1 — pa)e™ P e3,5 232,

LU0+ Q] L1+ LI035 + 04l Ly — e LTQ\ Lo — e 72 LT 0, L3

_e—2k71£§ Q3-£5 _ e_sz2£gQ4£6’ ) —
LIIR+ ULy + LE@V +22) Ly —e—zko—z[ o2e12 ] ru Ri [ o2er2 ]

el —e3 x*  Roollel —e3
) o e [ e13
_p-2km| T2€28 Vi (V12H 72628 } o2k €2 €4 [W ,U] e — ey
e17 — el x  Vnllerr —er el x Ul ens
) S e4 — €3 |1€4 — €3
T
€29 i €29
_ o 2kr| €18 ~ €20 Z V] eig — €20
€30 = Z|| en |’
L€20 — €19 €20 — €19

eST(Uze_zk(TZS3 + O'se_ZkO—sS4)€5 + egl (Tze_ZszSs + 1o 2kTs g 6)€21
1 -2 T 3° 2 T
—Le k(e — e3)TS3(e) — €3) — ¢ k72(e1 + €3 — 2e12)T S3(e1 + €3 — 2e12)

s

—_e_Zko-z(el —e3+6epp — 12615)TS3(€1 —e3+06e1n — 12e15)

o2
1
o (e17 - e19)'Ss(e17 — e19) + %(6’17 +e19 — 2e28) S s(e17 + €19 — 2eag)

+%(€17 — e19 + 623 — 12e31)7 Ss(e17 — €19 + beag — 12e31)}

+e 5 [(es — )Y + Y] (es — €2) + (€3 — €4) Yo + Y (3 — €4)]
+e™ T [(e20 — €18)" Y3 + YT (e20 — €18) + (€19 — €20)" Y4 + Y] (€19 — e20)],
(2] Hy + 2el Hy)(—Ee1 + €6 — e5) + (2ef H3 + 2l Hy)(—A e — Ajeg

[§

+Biey + Crexs + Dyejg — e7) + (2e],Hs + 2] He)(—Eae17 + €23 — €21)

+(2e{,Hy + 2], Hg)(—Aze17 — Azery + Baeg + Cae1 + Daesy — e23),

—2(es — Gae1) ' Ni(es — Grer) — 2(e11 — Gaea)' Na(er1 — Gires) — 2(es — e11 — Go
X(e1 — e4)) N3(es — e11 — Gi(ey — eg)) — 2(e11 — e10 — Ga(es — €3))  Naler1 — ero
—Gi(es — €3)) — 2(exs — Fre17)" Mi(ezs — Fre17) — 2(e27 — Fae20)" Ma(ex7 — Frex)
—2(exs — €27 — Fa(e17 — €20))! M3(e24 — €27 — Fi(e17 — ex0))

—2(e27 — €26 — Fa(ex — €19)) My(e27 — €26 — Fi(ea0 — €19)).

Proof Choose the Lyapunov-Krasovskii functional candidate for the system as follow

where

Vi

V3

Va4

6
Vi = > Vi), (12)
=1

u" (OPu(t) + X (OP2x(t) + v (OP3v(0) + y' (1)Pay(t),

n 1 (1) n
2 ;“ |41 fo t (8i(s) - Gy s)ds| +2 ;“ | Aaie® fo
+2 zn: [/lsjeZkl‘ fo‘vj(t)(fj(s) - Fl_S)dS] +2 zm: [/141'82]“ j;vj(Z)(F;—s _ fj(s))ds],
=1 =1

f !
f eZ5uT (5)S 1i(s)ds + f 25y ()8 2iu(s)ds,
t

—n(t) 1=p(t)
t T
us | uls) u(s)
d”f,_gf [g(u(s))] QZ[ 2(u(s)) ]ds

t T
s | uls) u(s)
f,_m"’ [g(u(s))] o
"o v ! v(s)
d”ft_ff [f(V(s))] Q4[f(v(s)) ]"S’

Ui

0
(GF's — gi(s))ds|

g(u(s))

"] v | v(s)
+ft_ﬁe [f(v(s))} Q3[f(v(s))
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0 t —0] t
Vs = o f f T (O)R¢(0)dbd s + o f f T (O)U(0)dod s
—0p JIts -0 t+s
0 1 —T t
+75 f f KT (O)VEO)dods + T f f T (0)Z3(9)dods,
—T] JI+s -T2 1+s
0 t -0 t
Ve = f f X1 (0)S 3i(6)d6ds + f f il (0)S 4in(6)dbd s
-0 JIt+Ss -0 1+s

0 t —T 1
+ f f T (9)S sv(6)dod s + f f 25T (9)S 61(6)dOds.
-T2 t+s -T2 t+s

The derivative of V(¢) in (12) along the trajectories of the system (4) is given by
Vi = EX2ku’ ©)Pu@) + 2uT ()Pi(r) + 2kxT (1)Pax(t) + 2xT ())P2x(1) + 2kvT (1) P3v(7)
+2vT (1)P3v(t) + 2ky" (1)Pay(t) + 2y" () Py (1)}
= exi’ (1){2ke] P1e) + 2e] Pies + 2ke; Paeg + 2¢, Paer + 2kel,P3e17 + 2e],P3en

+2ke§2P4622 + 26’%2P4€23 }g(l‘), (13)

" ak(g(u(®)) — Gu()” Aju(t) + 2(g((®) — Gru()” Ayir(t) + 4k(Gou(t) — g())" Au(?)
+2(Gou(t) — g(u(t)” Apir(t) + 4k(F(0(1)) — Frv() Azv(t) + 2(f (1)) — F1v(1))" A3v(p)
+HAK(Fov(t) — fFO(0) X Agu(t) + 2(Fov(1) = FO0O)T Agv(0)}

ET (D){dk(es — Gren) Arer +2(es — Gie1)T Ares + 4k(Gaer — es)T Aver +2(Grey — es)”
XAges + dk(eas — Fre17)  Azerr + 2(exs — Fre17) Asear + dk(Faerr — eq)" Agers

+2(Fae17 — e2s)" Ager1 JE(D), (14)

V2

IA

IA

Vi < (1) 1) — (1 = na)e Ml (1 — n(0))S it — n(6)) + 7 (1S 29(1)
~(1 = pa)V" (t — p(D)S 29(t — p(1))}

< T (el S1es — (1 - na)e el S 1e16 + €], S 2001 — (1 — pa)e el S ren)é(r), (15)
u@ | u(r) uit—-op) | u(t — oy)
’ 2kt _—2ko - -
Va < e {[g(u(t))} Ql[g(u(z))] ¢ g(u(t—m))] Ql[g(u(z—m»}
Cu [ w0 | | w2 u(t — o)
| gy | QZ»g(u(f))_ ¢ [g(u(t—a'z))] QZ[g(u(t—az»}
v [ v ] | ve-T | [ vt — 1) }
oy | 8| foa) | [f(V(t—Tl))] | -1
v | v ] | ve-T ] [ v(t — 1) }}
T roe) | Q“, fow) |~° f(V(t—Tz))] | fot -2
< MEMILTIQ + Q) Li+ Ly 105 + Qul Lo = e L 01L - L300 L
—e N LT 05 L5 — e LT 0uLo)E), (16)
!
Vs < eMsT () (0R + a2 UNS(H) + 5T (1)(T3V + T2 2)5(1) — orpe” f sT(s)Rs(s)ds

1—0

! 1
—Tye kT2 f ST (5)VE(s)ds — orge™ ks f sT()Us(s)ds
15

-T2 1—0p

—7,e T f 5T (5)Z5(s)ds). (17)

)
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By the use of Lemma 2.5 ,we have

t T
e [ %o, ft_(,2 u(s)ds Rt Ri
et [ s st < [ u(t) = utt - ) ] R
X[ ft_(rz u(s)ds }’ (18)
u(t) — u(t — o)
t t T
o ,=2kT =T ( NV _—2kn, ft_Tz v(s)ds Vi Vi
e jt‘_ng ()Vs(s)ds < e [ V() = v(t — 12) ] |: * % ]

X

ftt_Tz v(s)ds } ‘ (19)
v(t) — v(t —17)

Utilizing the same idea in [15], if (6) and (7) are holds, then some integral terms can obtain

-0 t—o(1)
oy (- f §" (s)Us(s)ds — f §" (5)Us(s)ds)
t

[—0|
—o e ks f cT()Ug(s)ds <
t—o —o(t) =0
1—0| T 1—01
ft_(rz s(s)ds * U ft_gz ¢(s)ds
-7 I—T] t_T(t)
e [ wzseds < e (- [ @z [ s 6Zsus)
—To 1—1(t) -1
1—T] _ d T 1—T1 _ d
¢ tn| SO [Z V] S
Josds | L | [T s(s)ds

Vo < Ml (1)o7 285 + 03¢ T3S it) + v ()(12e 728 5 + 156 K758 6)0(1)

! t
—g 2o f 1" (5)S3u(s)ds — e~ f v (5)S 59(s)d's
1—o>

-1

t—o| [—T]
—e s f u” (5)S gut(s)ds — e f v (5)S gv(s)ds).
t

-0 -1

By the use of Lemma 2.5 and Lemma 2.7 ,we have
Ve < eZkth(t){esT(O'ze_zk‘rzSg + O'Se_Zk‘r‘VS4)e5) + egl (126 28 5 + 7,6 K58 6)en;

1 3
+€_2k02( — —(e1 —e3) ' S3(er —e3) — —(e1 + e3 = 2e12)" S3(e1 + €3 — 2e12)
(o) 02
5 _ 1
——(e1 —e3 + 6epy — 12¢15)7 S3(e1 — e3 + Gepp — 12615)) +e 2kTZ( — —(e17—e€19)" S5
lop) T

3 5
X(e17 — e19) — T—2(€17 +e19 — 2ex8)T Ss(e17 + e19 — 2e28) — 7—2(617 — e19 + begg — 12e31)

XSs(e17 — e19 + 6exg — 12631)) +e 5 [(es — €)Yy + Y] (e — €2)
+Ho(t) = oDY] SV +(e3—en) Yo+ Y] (e3 —eq) + (02 — 0(1)Y; S;' V2]
+e 5 [(e0 — e18) V3 + Y1 (e20 — €15 + (7(H) — T1)Y4 S ;' V3)

+erg — e20)" Ya + Y] (e19 — e20) + (12 — T()) Y] S g ' Yall(0). (22)
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In order to reduce the conservatism, we add the following zero equations: for any matrices H;(i =
1,2,...,8) with appropriate dimension

20T () H, + 207 () Hy | [-E1u(t) + x(t) — i(t)] = 0,
267 () H + 257 (0 Ha | [=A1u() = A1 x(1) + B1 f0(D)) +C1 f(v(z = 7(1)
+Dyi(t = 1(1)) — (0] = 0,
2x" ()Hs + 2 ()He | [~E2v(1) + y(1) = ¥(1)] = 0,
227 (0H7 + 237 (0 Hs | [~ Aav(t) = Agy(1) + Bag(u(®) +Cag(ult = (1))
+D2i(t = p(1) = 3(1)] = 0

By Assumption 2.3, the following inequalities hold

2[g(u(0)) = Gou(®)]" Ny [g(u(®)) — Gru(p)]

2[g(u(t — (1)) — Gau(t — (1)) N2 [g(u(t — (1)) ~Gru(t — o°(1))]
~2[g(u()) — g(u(t — (1)) = Gau(t) — u(t — o(1))]" N3

x [g(u(1) = g(u(t — o(1))) = G1 () — u(t — o(1)))]

~2[g(u(t — (1)) — g(u(t — 072)) — Ga(u(t — o(1)) —u(t — 02))1" N
[g(u(t — (1)) — g(u(t — 072)) ~G(u(t — o°(2)) — u(t — 7))

—2[f () — Fav(®)]" My [f(0(2)) — F1v(2)]

=2[f((t = T())) = Fav(t = 7(0)])" Mo [f(v(t = 7(£))) —=F1v(t = 7(1))]
“2[f (1) = fO(t = (1)) = Fa(u(1) — v(t — 7(1)))]” M3

X [fv(1) = f(u(t = (1)) = F1(v(t) = v(t = 7(2)))]

“2[fO(t = 7(D)) = FO(t = 12)) = Fa(u(t = 7(8)) —v(t — 12))]” My
[f((t = 7(0))) = fO(t = T2)) =F1(W(t — (1)) = v(t — T2))]

Using inequalities (13) — (25), we obtain

(23)

vV v

v
L

(24)

AN\
L

W%
L

v
e

V(1) < M) o),
where
My = [+ (02—0@®e X YISV + (o) — e *7 YISy
+H1z = () UYL S Y4 + (1) — 1)e Y] S ¢ Y.

Since (02 — o())e YIS 1Y, + (0(t) — o) YIS Y1 + (12 — ()™ Y] S Yy + (1) -
Tl)e‘Zk“YgSleg is a convex combination of matrices YZTSlle, YlTSZIYl, Y4TS81Y4 and Y3TSg1Y3 of
o(t) and 7(¢), respectively, I1g can be handled by four corresponding boundary LMlIs:

M+ (02 —0)e YIS ' + (o —1)e Y] S 'y < 0 (25)
[+ (02 —0)e X YIS o + (1 —1)e X0 YIS 'Y < 0 (26)
T+ (02 —o)e XY S MYy + (o —1)e Y] Sy < 0 (27)
I+ (02— 0)e XY S 'Yy + (o —t)e YIS 'y < 0. (28)

Using Schur Complement, (25) — (28) are equivalent to (8) — (11). For showing the convergence rate, we
have for all and we obtain

V(©0) = x1lleV 117 + x2lle 1 + x3llp @I + xallg 1.
On the other hand, we have

Ve = M APOIu@I? + Ln(POIXOI + (P3O
+Au(Py)lly@)I1*).
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Therefore,

luOI? + Ix@)I* + V@I + @l < ye (|l
+HlePIP + 162017 + I 2112,

where y = max(y1, x2, 3, ¥4)/min(4,,(P1), A (P2), A (P3), 4n(P4)) > 1. Therefore, the system (4) is
globally exponentially stable with the convergent rate k > 0.

4. Conclusions

In this paper, we have investigated exponential stability problem for the neutral-type inertial BAM neural
networks with time-varying delays. By constructing a new and improved Lyapunov-Krasovskii function
containing some new augmented terms and using convex combination technique, a delay-dependent
exponential stability criterion for the neutral-type inertial BAM neural networks with time-varying delays
has been formulated in terms of LMIs.
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