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Abstract: The graph G1, G2, G3 and G4 which is defined by the direct sum of four fuzzy graphs 
G1⊕G2⊕G3⊕G4. This is also proved the effective values. The degree of the vertices is 
G1⊕G2⊕G3⊕G4 is calculated with the establishment of the regular property and the 
Connectedness of the Direct Sum of four Fuzzy Graphs.  

Keywords: Fuzzy graph, Degree of vertices in the direct sum, Regular fuzzy graphs, connected 
fuzzy graphs and Effective fuzzy graphs. 

1. INTRODUCTION   

The concept of fuzzy graphs was established by A. Rosenfeld in 1975 [6]. Mordeson .J.N and Peng. S 

[2] were developed some operations on fuzzy graphs. Further Bhattacharya [1] discussed about the 

remarks of fuzzy graphs. Also, Dr. K. Radha and Mrs. Arumugam [7] asserted the connectedness and 

regular properties of direct sum of two fuzzy graphs. Similarly, the direct sum of two fuzzy graphs 

was extended to three fuzzy graphs in T. Henson and N. Devi [3]. 

  

By using numerical example, can be calculated the direct sum of four fuzzy graphs with the degree 

of nodes. In this whole article V is a fuzzy subset of   and   is a symmetric fuzzy relation on   

was represented. In addition, also, with the help of numerical example direct sum four fuzzy graphs of 

Regularness, Connectedness and Effectiveness of four fuzzy graphs were checked in this paper below.

  

2. PRELIMINARIES 

Let G: (, µ) be a fuzzy graph on �∗: (V, E), then the following graphs arrives. 

2.1. Definition 

The valency of is x defined as ��(x) = ∑ �(��)� � � , and if each vertex with same degree K, and if  

dG (x) = K for every x and y then the graph is said to be a regular fuzzy graph of degree K [4]. 

2.2. Definition  

If every pair of vertices is connected by an edge then the graph is a connected fuzzy graph [4]. 

3. Direct sum 

Let G1: (σ1, 1), G2: (σ2, 2), G3: (σ3, 3), and G4: (σ4, 4) denote four fuzzy graphs with underlying 

crisp graphs G1
*: (V1, E2), G2

*: (V2, E2) [7], G3
*: (V3, E3) [3] and G4

*: (V4, E4) respectively. 

 Let V = V 1V 2V 3V 4 and   
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        E = E1E2 E3E4 

            Define: G1⊕G2⊕G3⊕G4 = G: (σ, µ) by 

                                       

                              σ1 ( x 1) if xV 1 

      σ (x) =                  σ2 ( x 2) if xV 2 

                              σ3 ( x 3) if xV 3 

                                                    σ4 ( x 4) if xV 4 

                                                                       1 ( x 1)  σ2 ( x 2)  σ3 ( x 3)  σ4 ( x 4)                                                                                                            

                                                                                If xV 1V 2V 3V 4   

                             µ1 (E1) ≤ min (σ1) where σ1V 1 

             µ (E) =              µ2 (E2) ≤ min (σ2) where σ2V 2 

                                                  µ3 (E3) ≤ min (σ3) where σ3V 3 

                                           µ4 (E4) ≤ min (σ4) where σ4V 4 

 Therefore G1⊕G2⊕G3⊕G4 = G: (σ, µ) is the direct sum of four fuzzy graphs [3]. 

3.1 Example: 
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4. THE DIRECT SUM OF FOUR FUZZY GRAPHS IN THE VALENCY OF NODES  

4.1 Theorem: - 

Find the valency of nodes in the direct sum of four fuzzy graphs in term of the valency of the node in 

G1, G2, G3, and G4 is given by  

    

                  DG1 ( x), if x ∈ V 1 

D G1⊕ G2⊕ G3⊕ G4 ( x ) =          DG2 ( x), if x ∈ V 2 

                             DG3 ( x), if x ∈ V 3 

                                                                               DG4 ( x), if x ∈ V 4 

                                                             DG1 ( x) + DG2 ( x) + DG3 ( x) + DG4 ( x),  

    If x∈V 1∩ V 2∩ V 3∩ V 4 and   

   E1∩ E2∩ E3∩ E4 = ϕ 

Proof: 

        In G1⊕G2⊕G3⊕G4, for any vertex we have two cases, 
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Case (i):-  

If x v 1 or x v 2 or x v 3 or x v 4 then the edge incident at ‘x’ lies in E1∩E2∩E3∩E4.  

 

                                                

                                                  µ1 ( xy) if x v 1, xy ∈ E1 

(µ1⊕µ2⊕µ3⊕µ4)(E) =             µ2 ( xy) if x v 2, xy∈ E2 

                                                                 µ3 ( xy) if x v 3, xy∈ E3 

                                                  µ4 ( xy) if x v 4, xy∈ E4 

Hence, 

          If x ∈ v1 then DG1⊕G2⊕G3⊕G4 (x) = E1 µ (E1) = DG1 (x) 

          If x ∈ v2 then DG1⊕G2⊕G3⊕G4 (x) = E2 µ (E2) = DG2 (x) 

          If x ∈ v3 then DG1⊕G2⊕G3⊕G4 (x) = E3 µ (E3) = DG3 (x) 

          If x ∈ v4 then DG1⊕G2⊕G3⊕G4 (x) = E4 µ (E4) = DG4 (x) 
 
 
 

Case (ii): - 

If x ∈ v 1∩ v 2∩ v 3∩ v 4 then there is no edge incident to x  on E1∩E2∩E3∩E4 but it lies in E1 or E2 or 
E3 or E4.  

Hence, 

The valency of x in G1⊕G2⊕G3⊕G4 is given by 

 DG1⊕G2⊕G3⊕G4 ( x ) = E (µ1⊕µ2⊕µ3⊕µ4) (E) 

                                   = E1 µ (E1) + E2 µ (E2) + E3 µ (E3) + E4 µ (E4)  

                                   = DG1 ( x ) + DG2 ( x ) + DG3 ( x ) + DG4 ( x ) 
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4.1. Example: -                                                                                                                  

  

  

 

 

 Figure 2 Direct sums of four fuzzy graphs with valency of nodes 

The valency of the node in G1⊕ G2⊕ G3⊕ G4 is as follows. 
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D G1⊕ G2⊕ G3⊕ G4 ( x 1) = 0.3 + 0.3 + 0.2 + 0.4 = 1.2 

D G1⊕ G2⊕ G3⊕ G4 ( x 2) = 0.6 

D G1⊕ G2⊕ G3⊕ G4 ( x 3) = 0.2 

D G1⊕ G2⊕ G3⊕ G4 ( y 1) = 0.3 

D G1⊕ G2⊕ G3⊕ G4 ( y 2) = 0.2 

D G1⊕ G2⊕ G3⊕ G4 ( y 3) = 0.3+0.2 = 0.5 

D G1⊕ G2⊕ G3⊕ G4 ( y 4) = 0.6+0.4 = 1 

Now, 

 G1, G2, G3 and G4. 

D G1⊕ G2⊕ G3⊕ G4 ( x 1) = D G1 ( x 1) + D G2 ( x 1) + D G3 ( x 1) + D G4 ( x 1) 

                               = 0.3+0.2+0.3+0.4 

                               = 1.2 

D G1⊕ G2⊕ G3⊕ G4 ( x 2) = D G4 ( x 2) = 0.6 

D G1⊕ G2⊕ G3⊕ G4 ( x 3) = D G3 ( x 3) = 0.2 

D G1⊕ G2⊕ G3⊕ G4 ( y 1) = D G1 ( y 1) = 0.3 

D G1⊕ G2⊕ G3⊕ G4 ( y 2) = D G2 ( y 2) = 0.2 

D G1⊕ G2⊕ G3⊕ G4 ( y 3) = D G3 ( y 3) = 0.2 + 0.3 = 0.5 

D G1⊕ G2⊕ G3⊕ G4 ( y 4) = D G4 ( y 4) = 0.6 + 0.4 = 1 

Hence the degree of nodes is verified by the direct sum of four fuzzy graphs. 

5. REGULAR FUZZY GRAPHS ON FOUR DIRECT SUMS: 

5.1 Theorem: - 

If G1: (σ1, µ1), G2: (σ2, µ2), G3: (σ3, µ3) and G4: (σ4, µ4) are regular fuzzy graphs with degrees k1, k2, k3  

and k4 respectively and  v1∩ v2∩v3∩ v4 ≠ ϕ then G1⊕ G2⊕ G3⊕ G4 : (σ, µ) is regular if and only if  

 k1 = k2 = k3 = k4. 

Proof:  
            
  Let,  

                G1: (σ1, µ1) be a k1- regular fuzzy graph 

                G2: (σ2, µ2) be a k2- regular fuzzy graph 
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                G3: (σ3, µ3) be a k3- regular fuzzy graph 

                G4: (σ4, µ4) be a k4- regular fuzzy graph 

Let us consider G1⊕ G2⊕ G3⊕ G4: (σ, µ) is regular, 

We know that, 

                                                 DG1 ( x ), if x∈ v 1 

D G1⊕ G2⊕ G3⊕ G4 ( x ) =        DG2 ( x ), if x∈ v 2 

                  DG3 ( x ), if x∈ v 3 

                                                  DG4 ( x ), if x∈ v 4 

                                              DG1 ( x ) + DG2 ( x ) + DG3 ( x ) + DG4 ( x ),  

                  If x ∈ v 1∩ v 2∩ v 3∩ v 4 and   

                                                                 E1∩ E2∩ E3∩ E4 =   

 Since v 1∩ v 2 ∩ v 3∩ v 4   

 D G1⊕ G2⊕ G3⊕ G4 ( x ) =      dG1 ( x ) = k1, if x ∈ v 1 

                                          dG2 ( x ) = k2, if x ∈ v 2 

                                                              dG3 ( x ) = k3, if x ∈ v 3  

                                         dG4 ( x ) = k4, if x ∈ v 4 

Since G1⊕G2⊕G3⊕G4: (σ, µ) is regular. 

So, we conclude that k1 = k2 = k3 = k4 

Converse part: 

Consider k1 = k2 = k3 = k4 = k (say) 

Then k- regular fuzzy graphs be G1, G2, G3, G4 such that v 1∩ v 2∩ v 3∩ v 4 ≠ ϕ 

Then the valency of node in the direct sum is given by 

 D G1⊕ G2⊕ G3⊕ G4 ( x ) =     dG1 ( x ) = k, if x ∈ v 1 

                                               dG2 ( x ) = k, if x ∈ v 2 

                                                                      dG3 ( x ) = k, if x ∈ v 3 

                                               dG4 ( x ) = k, if x ∈ v 4 

Therefore, the degree of direct sum, of four fuzzy graphs is k. 
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Hence G1⊕G2⊕G3⊕G4: (σ, µ) is regular. 

5.1. Example 

Consider the four regular fuzzy graphs.                                      
                                                

  
 
 
 G2(Regular) 
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                                          Figure 3 Direct Sums of Regular Fuzzy Graphs 

6. DIRECT SUM OF FOUR CONNECTED FUZZY GRAPHS 

6.1 Theorem: - 

If G1: (σ1, µ1), G2: (σ2, µ2), G3: (σ3, µ3), G4: (σ4, µ4) are four connected fuzzy graphs with underlying  

Crisp graphs G1
*: (σ1, µ1), G2

*: (σ2, µ2), G3
*: (σ3, µ3), G4

*: (σ4, µ4) respectively such that 

E1∩E2∩E3∩E4 = ϕ, v 1∩ v 3 ≠ ϕ, v 2∩ v 4 ≠ ϕ then their direct sum G1⊕G2⊕G3⊕G4: (σ, µ) is  

Connected Fuzzy Graphs. 

Proof: 

Let, 

G1: (σ1, µ1) is a connected fuzzy graph, µ1
∞ (E1) > 0 

G2: (σ2, µ2) is a connected fuzzy graph, µ2
∞ (E2) > 0 

G3: (σ3, µ3) is a connected fuzzy graph, µ3
∞ (E3) > 0 

G4: (σ4, µ4) is a connected fuzzy graph, µ4
∞ (E4) > 0 

Then, v 1∩ v 3 ≠ ϕ and v 2∩ v 4 ≠ ϕ 

At least one vertex in v 1∩ v 3, one vertex in v 2∩ v 4, and no edges in E1∩E2∩E3∩E4 

Two vertices exist a path G1⊕G2⊕G3⊕G4: (σ, µ), that is µ∞ G1⊕G2⊕G3⊕G4 (E) > 0. 

Which implies that G1⊕G2⊕G3⊕G4: (σ, µ) is connected. 

6.1. Example 

If G1: (σ1, µ1), G2: (σ2, µ2), G3: (σ3, µ3), and G4: (σ4, µ4) are four connected fuzzy graphs.  
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With ∩ (v1∩v3) = 1 and ∩ (v2∩v4) = 1. Then G1⊕G2⊕G3⊕G4: (σ, µ) is the connected fuzzy graph. 

Solution:- 

Consider the direct sum of four connected fuzzy graph.  
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                           Figure 4 The Direct sums of four Connected Fuzzy Graphs 

7. DIRECT SUM OF FOUR FUZZY GRAPHS - EFFECTIVE FUZZY GRAPHS 

7.1 Theorem  
If G1, G2, G3, and G4 are four effective fuzzy graphs with x ∈v1∩ v2∩ v3∩ v4 and there is no edge 

common in E1∩ E2∩ E3∩ E4. Such that σ1 ( x ) ≥ σ1 (y), σ2 ( x ) ≥ σ2 ( y ), σ3 ( x ) ≥ σ3 ( y ) and 

 σ4 ( x ) ≥ σ4 ( y ) then G1⊕G2⊕G3⊕G4 is an Effective Fuzzy Graphs. 

Proof: -  

Assume that x, y be an edge G1⊕G2⊕G3⊕G4  

If x , y ∈ v 1v 2 v 3v 4 

Then x , y  ∈ v 1 or x , y  ∈ v 2 or x , y  ∈ v 3 or x , y  ∈ v 3 

Now consider x y ∈ v 1, then x y ∈ E1 

Therefore 

σ ( x ) = σ1 ( x ) 

σ ( y) = σ1 ( y) and 

µ ( x, y) = µ1 ( x, y) 

Since G1 is an Effective Fuzzy Graphs 

µ1 (x y) = σ1 ( x )  σ1 ( y) 

µ (x y) = σ ( x)  σ ( y) 
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Consider x, y ∈ V2, then x y ∈ E2 

Therefore, 

σ ( x) = σ2 ( x) 

σ ( y) = σ2( y) and 

µ ( x , y ) = µ2 ( x , y) 

G2 is an effective fuzzy graph. 

µ2 (x y) = σ2 ( x)  σ2 (y) 

µ (x y) = σ ( x )  σ (y) 

This proof is similar to other two. 

7.1. Example 
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                               Figure 5 The Direct sums of four Effective Fuzzy Graphs. 

8. CONCLUSION 

We conclude that, the valency of nodes for the direct sum of four fuzzy graphs is proposed by the 

formulas and the Regular, Connected and Effective Fuzzy Graphs are verified with the characteristic 

of the direct sum with an example. In future this work can be taken as next stages like the direct sum 

of five, six etc., and this direct sum was applicable to the traffic light signals and the roadways.  
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