PAPER•OPEN ACCESS

ON DIRECT SUM OF FOUR FUZZY GRAPHS

To cite this article: T. Henson and S. Santhanalakshmi 2021 J. Phys.: Conf. Ser. 1850012055

View the article online for updates and enhancements.

You may also like
Restriction and induction of indecomposable modules over the Temperley-Lieb algebras Jonathan Belletête, David Ridout and Yvan Saint-Aubin

Some properties on fuzzy chromatic number of union of fuzzy graphs through cut araphs coloring I Rosyida, Widodo, Ch R Indrati et al.

Forcing geodesic number of a fuzzy graph S Rehmani and M S Sunitha

ON DIRECT SUM OF FOUR FUZZY GRAPHS

T. Henson and S. Santhanalakshmi
PG and Research Department of Mathematics, St. Joseph's College of Arts and Science (Autonomous), Cuddalore - 607001, Tamil Nadu, India.

E-mail: thenson1967@gmail.com, santhanalakshmi1210@gmail.com

Abstract

The graph G_{1}, G_{2}, G_{3} and G_{4} which is defined by the direct sum of four fuzzy graphs $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$. This is also proved the effective values. The degree of the vertices is $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$ is calculated with the establishment of the regular property and the Connectedness of the Direct Sum of four Fuzzy Graphs.

Keywords: Fuzzy graph, Degree of vertices in the direct sum, Regular fuzzy graphs, connected fuzzy graphs and Effective fuzzy graphs.

1. INTRODUCTION

The concept of fuzzy graphs was established by A. Rosenfeld in 1975 [6]. Mordeson .J.N and Peng. S [2] were developed some operations on fuzzy graphs. Further Bhattacharya [1] discussed about the remarks of fuzzy graphs. Also, Dr. K. Radha and Mrs. Arumugam [7] asserted the connectedness and regular properties of direct sum of two fuzzy graphs. Similarly, the direct sum of two fuzzy graphs was extended to three fuzzy graphs in T. Henson and N. Devi [3].

By using numerical example, can be calculated the direct sum of four fuzzy graphs with the degree of nodes. In this whole article V is a fuzzy subset of σ and μ is a symmetric fuzzy relation on σ was represented. In addition, also, with the help of numerical example direct sum four fuzzy graphs of Regularness, Connectedness and Effectiveness of four fuzzy graphs were checked in this paper below.

2. PRELIMINARIES

Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(\mathrm{V}, \mathrm{E})$, then the following graphs arrives.

2.1. Definition

The valency of is x defined as $d_{G}(\mathrm{x})=\sum_{x \neq y} \mu(x y)$, and if each vertex with same degree K , and if $\mathrm{dG}(\mathrm{x})=\mathrm{K}$ for every x and y then the graph is said to be a regular fuzzy graph of degree K [4].

2.2. Definition

If every pair of vertices is connected by an edge then the graph is a connected fuzzy graph [4].

3. Direct sum

Let $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2}:\left(\sigma_{2}, \mu_{2}\right), G_{3}:\left(\sigma_{3}, \mu_{3}\right)$, and $G_{4}:\left(\sigma_{4}, \mu_{4}\right)$ denote four fuzzy graphs with underlying crisp graphs $G_{1}{ }^{*}:\left(V_{1}, E_{2}\right), G_{2}{ }^{*}:\left(V_{2}, E_{2}\right)[7], G_{3}{ }^{*}:\left(V_{3}, E_{3}\right)[3]$ and $G_{4}{ }^{*}:\left(V_{4}, E_{4}\right)$ respectively.

Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ and

$$
\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \mathrm{E}_{3} \cup \mathrm{E}_{4}
$$

Define: $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}=\mathrm{G}:(\sigma, \mu)$ by

$$
\sigma(\mathrm{x})=\left\{\begin{array}{l}
\sigma_{1}\left(x_{1}\right) \text { if } x \in V_{1} \\
\sigma_{2}\left(x_{2}\right) \text { if } x \in V_{2} \\
\sigma_{3}\left(x_{3}\right) \text { if } x \in V_{3} \\
\sigma_{4}\left(x_{4}\right) \text { if } x \in V_{4} \\
\sigma_{1}\left(x_{1}\right) \cup \sigma_{2}\left(x_{2}\right) \cup \sigma_{3}\left(x_{3}\right) \cup \sigma_{4}\left(x_{4}\right) \\
\\
\\
\text { If } x \in V_{1} \cup V_{2} \cup V_{3} \cup V_{4}
\end{array}\right.
$$

$$
\mu(\mathrm{E})=\left\{\begin{array}{l}
\mu_{1}\left(\mathrm{E}_{1}\right) \leq \min \left(\sigma_{1}\right) \text { where } \sigma_{1} \in V_{1} \\
\mu_{2}\left(\mathrm{E}_{2}\right) \leq \min \left(\sigma_{2}\right) \text { where } \sigma_{2} \in V_{2} \\
\mu_{3}\left(\mathrm{E}_{3}\right) \leq \min \left(\sigma_{3}\right) \text { where } \sigma_{3} \in V_{3} \\
\mu_{4}\left(\mathrm{E}_{4}\right) \leq \min \left(\sigma_{4}\right) \text { where } \sigma_{4} \in V_{4}
\end{array}\right.
$$

Therefore $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}=\mathrm{G}:(\sigma, \mu)$ is the direct sum of four fuzzy graphs [3].

3.1 Example:

Direct sum of four fuzzy graphs
Fig (1)

4. THE DIRECT SUM OF FOUR FUZZY GRAPHS IN THE VALENCY OF NODES

4.1 Theorem: -

Find the valency of nodes in the direct sum of four fuzzy graphs in term of the valency of the node in G_{1}, G_{2}, G_{3}, and G_{4} is given by

$$
\mathrm{D}_{\mathrm{G} 1} \oplus_{\mathrm{G} 2} \oplus_{\mathrm{G} 3} \oplus_{\mathrm{G} 4}(x)=\left\{\begin{array}{l}
\mathrm{D}_{\mathrm{G} 1}(x), \text { if } \mathrm{x} \in V_{1} \\
\mathrm{D}_{\mathrm{G} 2}(x), \text { if } \mathrm{x} \in V_{2} \\
\mathrm{D}_{\mathrm{G} 3}(x), \text { if } \mathrm{x} \in V_{3} \\
\mathrm{D}_{\mathrm{G} 4}(x), \text { if } \mathrm{x} \in V_{4} \\
\mathrm{D}_{\mathrm{G} 1}(x)+\mathrm{D}_{\mathrm{G} 2}(x)+\mathrm{D}_{\mathrm{G} 3}(x)+\mathrm{D}_{\mathrm{G} 4}(x), \\
\text { If } x \in V_{1} \cap V_{2} \cap V_{3} \cap V_{4} \text { and } \\
\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}=\phi
\end{array}\right.
$$

Proof:
In $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$, for any vertex we have two cases,

Case (i):-

If $x \in v_{1}$ or $x \in v_{2}$ or $x \in \mathcal{v}_{3}$ or $x \in \mathcal{v}_{4}$ then the edge incident at ' x ' lies in $\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}$.
$\left(\mu_{1} \oplus \mu_{2} \oplus \mu_{3} \oplus \mu_{4}\right)(\mathrm{E})=\left\{\begin{array}{l}\mu_{1}(x y) \text { if } x \in v_{1}, x y \in \mathrm{E}_{1} \\ \mu_{2}(x y) \text { if } x \in v_{2}, x y \in \mathrm{E}_{2} \\ \mu_{3}(x y) \text { if } x \in v_{3}, x y \in \mathrm{E}_{3} \\ \mu_{4}(x y) \text { if } x \in v_{4}, x y \in \mathrm{E}_{4}\end{array}\right.$
Hence,

$$
\begin{aligned}
& \text { If } \mathrm{x} \in \mathrm{v}_{1} \text { then } \mathrm{D}_{\mathrm{G} 1} \oplus_{\mathrm{G} 2} \oplus_{\mathrm{G} 3} \bigoplus_{\mathrm{G} 4}(\mathrm{x})=\Sigma_{\mathrm{E} 1} \mu\left(\mathrm{E}_{1}\right)=\mathrm{D}_{\mathrm{G} 1}(\mathrm{x}) \\
& \text { If } \mathrm{x} \in \mathrm{v}_{2} \text { then } \mathrm{D}_{\mathrm{G} 1} \oplus_{\mathrm{G} 2} \bigoplus_{\mathrm{G} 3} \bigoplus_{\mathrm{G} 4}(\mathrm{x})=\Sigma_{\mathrm{E} 2} \mu\left(\mathrm{E}_{2}\right)=\mathrm{D}_{\mathrm{G} 2}(\mathrm{x}) \\
& \text { If } \mathrm{x} \in \mathrm{v}_{3} \text { then } \mathrm{D}_{\mathrm{G} 1} \bigoplus_{\mathrm{G} 2} \oplus_{\mathrm{G} 3} \oplus_{\mathrm{G} 4}(\mathrm{x})=\Sigma_{\mathrm{E} 3} \mu\left(\mathrm{E}_{3}\right)=\mathrm{D}_{\mathrm{G} 3}(\mathrm{x}) \\
& \text { If } \mathrm{x} \in \mathrm{v}_{4} \text { then } \mathrm{D}_{\mathrm{G} 1} \bigoplus_{\mathrm{G} 2} \bigoplus_{\mathrm{G} 3} \bigoplus_{\mathrm{G} 4}(\mathrm{x})=\Sigma_{\mathrm{E} 4} \mu\left(\mathrm{E}_{4}\right)=\mathrm{D}_{\mathrm{G} 4}(\mathrm{x})
\end{aligned}
$$

Case (ii): -

If $x \in v_{1} \cap v_{2} \cap v_{3} \cap v_{4}$ then there is no edge incident to x on $\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}$ but it lies in E_{1} or E_{2} or E_{3} or E_{4}.

Hence,
The valency of x in $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$ is given by
$\mathrm{D}_{\mathrm{G} 1} \bigoplus_{\mathrm{G} 2} \bigoplus_{\mathrm{G} 3} \bigoplus_{\mathrm{G} 4}(x)=\Sigma_{\mathrm{E}}\left(\mu_{1} \oplus \mu_{2} \bigoplus \mu_{3} \oplus \mu_{4}\right)(\mathrm{E})$

$$
\begin{aligned}
& =\Sigma_{\mathrm{E} 1} \mu\left(\mathrm{E}_{1}\right)+\Sigma_{\mathrm{E} 2} \mu\left(\mathrm{E}_{2}\right)+\Sigma_{\mathrm{E} 3} \mu\left(\mathrm{E}_{3}\right)+\Sigma_{\mathrm{E} 4} \mu\left(\mathrm{E}_{4}\right) \\
& =\mathrm{D}_{\mathrm{G} 1}(x)+\mathrm{D}_{\mathrm{G} 2}(x)+\mathrm{D}_{\mathrm{G} 3}(x)+\mathrm{D}_{\mathrm{G} 4}(x)
\end{aligned}
$$

4.1. Example: -

(0.5)

Figure 2 Direct sums of four fuzzy graphs with valency of nodes
The valency of the node in $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$ is as follows.
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(x_{1}\right)=0.3+0.3+0.2+0.4=1.2$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(x_{2}\right)=0.6$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(x_{3}\right)=0.2$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{1}\right)=0.3$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{2}\right)=0.2$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{3}\right)=0.3+0.2=0.5$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{4}\right)=0.6+0.4=1$
Now,
$\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ and G_{4}.
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4\left(x_{1)}=\mathrm{DG}_{1}\left(x_{1}\right)+\mathrm{D} \mathrm{G}_{2}\left(x_{1}\right)+\mathrm{DG}_{3}\left(x_{1}\right)+\mathrm{D} \mathrm{G}_{4}\left(x_{1}\right), ~(x)\right.}$

$$
\begin{aligned}
& =0.3+0.2+0.3+0.4 \\
& =1.2
\end{aligned}
$$

$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(x_{2}\right)=\mathrm{D} \mathrm{G}_{4}\left(x_{2}\right)=0.6$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4\left(x_{3}\right)}=\mathrm{D} \mathrm{G}_{3}\left(x_{3}\right)=0.2$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{1)}=\mathrm{D} \mathrm{G}_{1}\left(y_{1}\right)=0.3\right.$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{2)}=\mathrm{D} \mathrm{G}_{2}\left(y_{2}\right)=0.2\right.$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{3)}=\mathrm{D} \mathrm{G}_{3}\left(y_{3}\right)=0.2+0.3=0.5\right.$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G} 2 \oplus \mathrm{G} 3 \oplus \mathrm{G} 4}\left(y_{4}\right)=\mathrm{D} \mathrm{G}_{4}\left(y_{4}\right)=0.6+0.4=1$
Hence the degree of nodes is verified by the direct sum of four fuzzy graphs.

5. REGULAR FUZZY GRAPHS ON FOUR DIRECT SUMS:

5.1 Theorem: -

If $\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right), \mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right), \mathrm{G}_{3}:\left(\sigma_{3}, \mu_{3}\right)$ and $\mathrm{G}_{4}:\left(\sigma_{4}, \mu_{4}\right)$ are regular fuzzy graphs with degrees $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$ and k_{4} respectively and $\mathcal{V}_{1} \cap \mathcal{V}_{2} \cap \mathcal{V}_{3} \cap \mathcal{V}_{4} \neq \phi$ then $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is regular if and only if $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}$.

Proof:

Let,
$\mathrm{G}_{1}:\left(\sigma_{1}, \mu_{1}\right)$ be a k_{1} - regular fuzzy graph G_{2} : $\left(\sigma_{2}, \mu_{2}\right)$ be a k_{2} - regular fuzzy graph
$\mathrm{G}_{3}:\left(\sigma_{3}, \mu_{3}\right)$ be a k_{3} - regular fuzzy graph $\mathrm{G}_{4}:\left(\sigma_{4}, \mu_{4}\right)$ be a k_{4} - regular fuzzy graph

Let us consider $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is regular,
We know that,

$$
\mathrm{D}_{\mathrm{G} 1} \oplus_{\mathrm{G} 2} \oplus_{\mathrm{G} 3} \oplus_{\mathrm{G} 4}(x)=\left\{\begin{array}{l}
\mathrm{D}_{\mathrm{G} 1}(x), \text { if } x \in v_{1} \\
\mathrm{D}_{\mathrm{G} 2}(x), \text { if } x \in v_{2} \\
\mathrm{D}_{\mathrm{G} 3}(x), \text { if } x_{\in} \in v_{3} \\
\mathrm{D}_{\mathrm{G} 4}(x), \text { if } x_{\in} v_{4} \\
\mathrm{D}_{\mathrm{G} 1}(x)+\mathrm{D}_{\mathrm{G} 2}(x)+\mathrm{D}_{\mathrm{G} 3}(x)+\mathrm{D}_{\mathrm{G} 4}(x), \\
\text { If } x \in v_{1} \cap v_{2} \cap v_{3} \cap v_{4} \text { and } \\
\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}=\phi
\end{array}\right.
$$

Since $\mathcal{v}_{1} \cap \mathcal{v}_{2} \cap v_{3} \cap \mathcal{v}_{4} \neq \phi$
$\mathrm{D}_{\mathrm{G} 1 \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G} 4}(x)=\left\{\begin{array}{l}\mathrm{d}_{\mathrm{G} 1}(x)=\mathrm{k}_{1}, \text { if } x \in v_{1} \\ \mathrm{~d}_{\mathrm{G} 2}(x)=\mathrm{k}_{2}, \text { if } x \in v_{2} \\ \mathrm{~d}_{\mathrm{G} 3}(x)=\mathrm{k}_{3}, \text { if } x \in v_{3} \\ \mathrm{~d}_{\mathrm{G} 4}(x)=\mathrm{k}_{4}, \text { if } x \in v_{4}\end{array}\right.$
Since $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is regular.
So, we conclude that $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}$

Converse part:

Consider $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}=\mathrm{k}$ (say)
Then k - regular fuzzy graphs be $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}$ such that $v_{1} \cap v_{2} \cap v_{3} \cap v_{4} \neq \phi$
Then the valency of node in the direct sum is given by
$\mathrm{D}_{\mathrm{G} 1} \oplus_{\mathrm{G} 2} \oplus_{\mathrm{G} 3} \oplus_{\mathrm{G} 4}(x)=\left\{\begin{array}{l}\mathrm{d}_{\mathrm{G} 1}(x)=\mathrm{k}, \text { if } x \in v_{1} \\ \mathrm{~d}_{\mathrm{G} 2}(x)=\mathrm{k}, \text { if } x \in v_{2} \\ \mathrm{~d}_{\mathrm{G} 3}(x)=\mathrm{k}, \text { if } x \in v_{3} \\ \mathrm{~d}_{\mathrm{G} 4}(x)=\mathrm{k}, \text { if } x \in v_{4}\end{array}\right.$
Therefore, the degree of direct sum, of four fuzzy graphs is k.

Hence $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is regular.

5.1. Example

Consider the four regular fuzzy graphs.

Figure 3 Direct Sums of Regular Fuzzy Graphs

6. DIRECT SUM OF FOUR CONNECTED FUZZY GRAPHS

6.1 Theorem: -

If $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2:}\left(\sigma_{2}, \mu_{2}\right), G_{3:}\left(\sigma_{3}, \mu_{3}\right), G_{4}\left(\sigma_{4}, \mu_{4}\right)$ are four connected fuzzy graphs with underlying
Crisp graphs $\mathrm{G}_{1}{ }^{*}:\left(\sigma_{1}, \mu_{1}\right), \mathrm{G}_{2}{ }^{*}:\left(\sigma_{2}, \mu_{2}\right), \mathrm{G}_{3}{ }^{*}:\left(\sigma_{3}, \mu_{3}\right), \mathrm{G}_{4}{ }^{*}:\left(\sigma_{4}, \mu_{4}\right)$ respectively such that
$\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}=\phi, v_{1} \cap v_{3} \neq \phi, v_{2} \cap v_{4} \neq \phi$ then their direct sum $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is Connected Fuzzy Graphs.

Proof:

Let,
$G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ is a connected fuzzy graph, $\mu_{1}^{\infty}\left(\mathrm{E}_{1}\right)>0$
$\mathrm{G}_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is a connected fuzzy graph, $\mu_{2}{ }^{\infty}\left(\mathrm{E}_{2}\right)>0$
$G_{3}:\left(\sigma_{3}, \mu_{3}\right)$ is a connected fuzzy graph, $\mu_{3}^{\infty}\left(\mathrm{E}_{3}\right)>0$
$\mathrm{G}_{4}:\left(\sigma_{4}, \mu_{4}\right)$ is a connected fuzzy graph, $\mu_{4}{ }^{\infty}\left(\mathrm{E}_{4}\right)>0$
Then, $v_{1} \cap v_{3} \neq \phi$ and $v_{2} \cap v_{4} \neq \phi$
At least one vertex in $v_{1} \cap v_{3}$, one vertex in $v_{2} \cap v_{4}$, and no edges in $\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}$
Two vertices exist a path $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$, that is $\mu^{\infty} \mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}(\mathrm{E})>0$.
Which implies that $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is connected.

6.1. Example

If $G_{1}:\left(\sigma_{1}, \mu_{1}\right), G_{2:}\left(\sigma_{2}, \mu_{2}\right), G_{3}:\left(\sigma_{3}, \mu_{3}\right)$, and $G_{4}:\left(\sigma_{4}, \mu_{4}\right)$ are four connected fuzzy graphs.

With $\cap\left(v_{1} \cap v_{3}\right)=1$ and $\cap\left(v_{2} \cap v_{4}\right)=1$. Then $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}:(\sigma, \mu)$ is the connected fuzzy graph.

Solution:-

Consider the direct sum of four connected fuzzy graph.

Figure 4 The Direct sums of four Connected Fuzzy Graphs

7. DIRECT SUM OF FOUR FUZZY GRAPHS - EFFECTIVE FUZZY GRAPHS

7.1 Theorem

If G_{1}, G_{2}, G_{3}, and G_{4} are four effective fuzzy graphs with $x \in v_{1} \cap v_{2} \cap v_{3} \cap v_{4}$ and there is no edge common in $\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}$. Such that $\sigma_{1}(x) \geq \sigma_{1}(\mathrm{y}), \sigma_{2}(x) \geq \sigma_{2}(y), \sigma_{3}(x) \geq \sigma_{3}(y)$ and $\sigma_{4}(x) \geq \sigma_{4}(y)$ then $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$ is an Effective Fuzzy Graphs.

Proof: -
Assume that x , y be an edge $\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{G}_{3} \oplus \mathrm{G}_{4}$
If $x, \mathrm{y} \in \mathcal{v}_{1} \cup v_{2} \cup v_{3} \cup v_{4}$
Then $x, y \in v_{1}$ or $x, y \in v_{2}$ or $x, y \in v_{3}$ or $x, y \in v_{3}$
Now consider $x \mathrm{y} \in v_{1}$, then $\mathrm{x} \mathrm{y} \in \mathrm{E}_{1}$
Therefore
$\sigma(x)=\sigma_{1}(x)$
$\sigma(y)=\sigma_{1}(y)$ and
$\mu(x, y)=\mu_{1}(x, y)$
Since G_{1} is an Effective Fuzzy Graphs
$\mu_{1}(\mathrm{x} y)=\sigma_{1}(x) \wedge \sigma_{1}(y)$
$\mu(\mathrm{x} y)=\sigma(X) \wedge \sigma(y)$

Consider $\mathrm{x}, \mathrm{y} \in \mathrm{V}_{2}$, then $\mathrm{x} \mathrm{y} \in \mathrm{E}_{2}$
Therefore,
$\sigma(x)=\sigma_{2}(x)$
$\sigma(y)=\sigma_{2}(y)$ and
$\mu(x, y)=\mu_{2}(x, y)$
G_{2} is an effective fuzzy graph.
$\mu_{2}(\mathrm{xy})=\sigma_{2}(x) \wedge \sigma_{2}(\mathrm{y})$
$\mu(\mathrm{x} y)=\sigma(x) \wedge \sigma(\mathrm{y})$
This proof is similar to other two.

7.1. Example

$x_{3}(0.3)$	
G_{1} (Effective)	

Figure 5 The Direct sums of four Effective Fuzzy Graphs.

8. CONCLUSION

We conclude that, the valency of nodes for the direct sum of four fuzzy graphs is proposed by the formulas and the Regular, Connected and Effective Fuzzy Graphs are verified with the characteristic of the direct sum with an example. In future this work can be taken as next stages like the direct sum of five, six etc., and this direct sum was applicable to the traffic light signals and the roadways.

REFERENCES

[1] Bhattacharya, "Some remarks on Fuzzy graphs", pattern Recognition Letter 6 (1987), 297-302.
[2] Frank Hararay, "Graph Theory", Narosa/ Addison Wesley, Indian student Edition, 1988.
[3] T. Henson and N. Devi "On Direct sum of Three Fuzzy Graphs", International Journal of

Mathematics and its Applications, 2018.
[4] J.N. Mordeson and C.S. Peng, "Operations on Fuzzy Graphs", Information Sciences 79 (1994), 159-170.
[5] Nagoorgani .A and Radha .K, "Conjunction of Two Fuzzy Graphs", International Review of Fuzzy Mathematics, 2008, vol. 3, 95-105.
[6] Rosenfeld. A (1975) "Fuzzy Graphs", In Zadeh, L.A., Fu. K.S., Tanoak Shimura, M. (eds.), Fuzzy Sets and their Application to cognitive and Decision processes, Academic press, New York, ISBN 9780127752600, PP 77-95.
[7] Dr .k. Radha, Mr .S. Arumugam, "On Direct Sum of Two Fuzzy Graphs", International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013.

