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Abstract. The achieved sufficient conditions for nonexistence of so-called Kneser
solutions are based on the new comparison principles, which help us decrease the
problem of the wavering between the third and first-order equations. Examples are
given to prove the significance of new theorems.

1. Introduction
The purpose of this work, we are concerned with third order nonlinear neutral delay
differential equations of the form(

c2(`)
((
c1(`)z

′(`)
)′)γ)′

+ q(`)yβ(m(`)) = 0, (1)

where z(`) = y(`) + p(`)y(k(`)). Further, assume the hypotheses are tacitly supposed to
hold:

(A1) γ, β is a quotient of odd positive integers, c1, c2 ∈ C(I,R+) take I = [0,∞)
p(`), q(`) > 0, 0 ≤ p(`) ≤ p0 <∞ and q does not vanish identically;

(A2) m, k ∈ C1(I,R+), m(`) < `, k′(`) ≥ k0 > 0 and lim`→∞ k(`) = lim`→∞m(`) =∞.

Moreover,

C1[`0, `] =∞, M2[`0, `] =∞ as `→∞, (2)

where

M1[`0, `] =

∫ `

`0

c
−1/γ
2 (s)ds, M2[`0, `] =

∫ `

`0

c−11 (s)ds.
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By a solution to (1), we mean a function y(`) in C2[Ty,∞) for which
(
c1(`)z

′(`)
)′

,

c2(`)
((
c1(`)z

′(`)
)′)γ

is in C1[Ty,∞) and (1) is satisfied on some interval [Ty,∞), where
Ty ≥ `0. We consider only solutions y(`) for which sup{|y(`)| : ` ≥ T} > 0 for all T ≥ Ty.
A solution of (1) is called oscillatory if it is neither eventually positive nor eventually
negative on [Ty,∞) and otherwise, it is said to be nonoscillatory. The equation itself is
termed oscillatory if all its solutions oscillate.

Kiguradze and Kondratev [8], we say that (1) has property A (almost oscillatory) if
any solution y of (1) is either oscillatory or satisfes lim`→∞ y(`) = 0.

In recent years, a great deal of research has been done on numerous aspects of
differential equations of third and higher order. These equations appear in the study of
entry-flow phenomenon, a problem of hydrodynamics, in mathematical theory of thyroid-
pituitary interaction, gravity driven flows and three-layer beams. Recently, a great deal
of interest in oscillatory properties of neutral functional differential equations has been
shown, we refer the reader to [2, 3, 4, 10, 9, 5, 6, 11] and the references cited therein.

Despite there, to the best of authors knowledge, here is nothing known regarding
oscillation of all solutions of (1) by comparison principle method with p(`) ≥ 0. So
the aim of this paper to fill this gap by establishing various sufficient conditions for
eliminating Kneser solutions of (1) and enable us also to eliminate some conditions
imposed in the cited papers on the coefficients of (1). As usual, all occurring functional
inequalities are considered to support eventually, that is, they are satisfied for all ` large
enough.

2. Nonexistence Kneser Solution of (1)
For our further reference, let us denote

Q(`) = min{q(`), q(k(`))}, Q∗(`) = min{q(m−1(`)), q(m−1(k(`)))},

M [`0, `] =

∫ `

`0

M1[`0, s]

a1(s)
ds.

Lemma 2.1 Assume a ≥ 0, b ≥ 0, β ≥ 1. Then

(a+ b)β ≤ 2β−1(aβ + bβ). (3)

Lemma 2.2 Assume a ≥ 0, b ≥ 0, 0 < β ≤ 1. Then

(a+ b)β ≤ aβ + bβ. (4)

Lemma 2.3 Assume that (A1), (A2) holds and let z(`) be an eventually positive solution
of (1), then

z(`) ∈ N0 ⇐⇒ {z′(`) > 0, z(`)(
(
c1(`)z

′(`)
)′

) < 0, z(`)(c2(`)
((
c1(`)z

′(`)
)′)γ

) > 0}

or

z(`) ∈ N2 ⇐⇒ {z′(`) > 0, z(`)(
(
c1(`)z

′(`)
)′

) > 0, z(`)(c2(`)
((
c1(`)z

′(`)
)′)γ

) > 0}.
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A positive solution y(`) whose corresponding function z(`) of (1) is said to be Kneser
solution if z(`) ∈ N0. We say that (1) has property A if its every positive solution
y(`) ∈ N0, and lim`→∞ y(`) = 0.

Theorem 2.4 Let k(`) ≤ `, k ◦m = m ◦k and β ≥ 1. If there exists a ζ(`) ∈ C(I,R+),
m(`) < ζ(`) and k−1(ζ(`) < `, k−1 is inverse function of k, such that the first-order
delay differential equation

w′(`) +
k0

k0 + pβ0

Q(`)

2β−1

(
M [ζ(`), m(`)]

)γ/β
w(k−1(ζ(`))) = 0, (5)

is oscillatory, then N0 = ∅.

Proof. Assume that (1) has a non-oscillatory solution x(`). Without loss of generality,
we can suppose that x(`) is eventually positive.

z(`) > 0, z′(`) < 0, and
(
c1(`)z

′(`)
)′
> 0 on I.

Then from (A1) and (A2) the corresponding function z(`) satisfies

zβ(m(`)) = (y(m(`)) + p(m(`)) y(k(m(`))))β

≤ (y(m(`)) + p0 y(k(m(`))))β

≤ 2β−1
(
yβ(m(`)) + pβ0 y(m(k(`)))β

)
. (6)

In view of (1) and (A2), we get(
c2(`)

((
c1(`)z

′(`)
)′)γ)′

+ q(`)yβ(m(`)) = 0, (7)

and moreover taking (A1) and (A2) into account, we have

0 =
pβ0
k′(`)

(
c2(`)

((
c1(`)z

′(k(`))
)′)γ)′

+ pβ0 q(`) y
β(m(k(`))

≥ pβ0
k0

(
c2(`)

((
c1(`)z

′(k(`))
)′)γ)′

+ pβ0 q(`) y
β(m(k(`)). (8)

Combining (7), (8) and Lemma 2.1 we are led to,

(
c2(`)

((
c1(`)z

′(`)
)′)γ)′

+
pβ0
k0

(
c2(`)

((
c1(`)z

′(k(`))
)′)γ)′

+q(`)yβ(m(`)) + pβ0q(`)y
β(m(k(`))) ≤ 0,

that is[
c2(`)

((
c1(`)z

′(`)
)′)γ

+
pβ0
k0
c2(`)

((
c1(`)z

′(k(`))
)′)γ]′

+
Q(`)

2β−1
zβ(m(`)) ≤ 0. (9)
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Since
(
c2(`)

((
c1(`)z

′(`)
)′)γ)′ ≤ 0, c2(`)

((
c1(`)z

′(`)
)′)γ

is nondecreasing. Then we have

c1(`)z
′(`) ≥ c1(`)z′(`)− c1(`0)z′(`0) =

∫ `

`0

c
1/γ
2 (s)

(
c1(s)z

′(s)
)′

c
1/γ
2 (s)

ds

≥ m1/γ
2 (`)

(
c1(`)z

′(`)
)′
M1[`0, `].

Again integrate, we get

z(`) ≥ m1/γ
2 (`)

(
c1(`)z

′(`)
)′ ∫ `

`0

M1[`0, s]

c1(s)
ds

= m
1/γ
2 (`)

(
c1(`)z

′(`)
)′
M [`0, `].

That is,

zγ(m(`)) ≥ c2(`)
((
c1(`)z

′(ζ(`))
)′)γ(

M [ζ(`), m(`)]
)1/β

. (10)

Combining (10) together with (9), we get that y(`) is a positive solution of

[
c2(`)

((
c1(`)z

′(`)
)′)γ

+
pβ0
k0
c2(`)

((
c1(`)z

′(k(`))
)′)γ]′

+
Q(`)

2β−1
c2(`)

((
c1(`)z

′(ζ(`))
)′)γ(

M [ζ(`), m(`)]
)1/β

≤ 0. (11)

Let us denote

w(`) := c2(`)
((
c1(`)z

′(`)
)′)γ

+
pβ0
k0
c2(`)

((
c1(`)z

′(k(`))
)′)γ

. (12)

Since z(`) decreasing and k(`) ≤ ` that

w(`) ≤ c2(`)
((
c1(`)z

′(`)
)′)γ (k0 + pβ0

k0

)
.

that is

c2(`)
((
c1(`)z

′(ζ(`))
)′)γ ≥ (k0 + pβ0

k0

)
w(k−1(ζ(`))).

Substituting above inequalities into (11), we have

w′(`) +
k0

k0 + pβ0

Q(`)

2β−1

(
M [ζ(`), m(`)]

)γ/β
w(k−1(ζ(`))) ≤ 0. (13)

It follows from Theorem 1 in [13] we get that w(`) is a positive solution of (13), which
contradicts the fact that this inequality does not have positive solutions. Thus, N0 = ∅.
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Corollary 2.5 Let k(`) ≤ t, k ◦m = m ◦ k and β ≥ 1. If there exists a function ζ(`) ∈
C(I,R+), m(`) < ζ(`) and k−1(ζ(`)) < t, k−1 is inverse function of k, such that

lim inf
t→∞

∫ t

k−1(ζ(`))
Q(s)Mγ/β[ζ(s), m(s)] ds >

k0 + pβ0
k0 e

, (14)

then N0 = ∅.

Proof. In view of [[15], Theorem 2.1.1], the associated equation (13) also has a positive
solution, which contradicts the oscillatory behavior of (13).

Theorem 2.6 Let k(`) ≤ t, k ◦m = m ◦k and β ≥ 1. If ψ(`) ∈ C(I,R+), ψ(`) < ` and
m(`) < k(ψ(`)) such that

lim sup
`→∞

Mγ/β[k(ψ(`)), m(`)]

∫ `

ψ(`)
Q(s) ds > 2β−1

k0 + pβ0
k0

, (15)

then N0 = ∅.

Proof. Proceeding as in the proof of Theorem 2.4, we obtain (2.3). Integrating this
inequality from ψ(`) to t and using the fact that z is decreasing, we see that

c2(`)
((
c1(`)z

′(ψ(`))
)′)γ

+
pβ0
k0
c2(`)

((
c1(`)z

′(ψ(`))
)′)γ

≥ c2(`)
((
c1(`)z

′(`)
)′)γ

+
pβ0
k0
c2(`)

((
c1(`)z

′(k(`))
)′)γ

+
1

2β−1

∫ t

ψ(`)
Q(s)zβ(m(s))ds

≥ zβ(m(`))

2β−1

∫ t

ψ(`)
Q(s)ds (16)

Since k(ψ(`)) < k(`) and c2(`)
((
c1(`)z

′(`)
)′)γ

is nonincreasing, we have

c2(`)
((
c1(`)z

′(`)
)′)γ (k0 + pβ0

k0

)
≥ zβ(m(`))

2β−1

∫ t

ψ(`)
Q(s)ds. (17)

that is,

2β−1
k0 + pβ0
k0

≥Mγ/β[k(ψ(`)), m(`)]

∫ `

ψ(`)
Q(s) ds, (18)

Taking the limsup on both sides of the above inequality, we obtain a contradiction to
(15).
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