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Abstract. This paper considers an (s, S) inventory system with production in which demand
occurs according to a Bernoulli process and service time follows a geometric distribution. The
maximum inventory that can be accommodated in the system is S. When the items in the on-
hand inventory are reduced to a pre-assigned level of s due to service, production is started. The
production time follows a geometric distribution. The production process is stopped as soon as
the inventory level reaches the maximum. Customer who arrives during the inventory level is
zero is assumed to be lost. Using the stochastic decomposed solution obtained for the steady-
state probability vector, we analyzed the inventory cycle. A suitable cost function is defined
using the performance measures. Numerical experiments are also incorporated to highlight the
minimum value of the cost function against the parameter values.

Keywords: Discrete-time production inventory, Bernoulli process, Geometric distribution,
Stochastic decomposition, Matrix-Analytic Method.

Mathematics Subject Classification: 60K25, 90B05 and 91B70

1. Introduction
Queueing systems with inventory have extensively studied by several researchers for the last
few decades. A complete review of queueing inventory models was done in the survey by
Krishnamoorthy et al. [7]. Positive service time in Queueing inventory was introduced by
Sigman and Simchi-Levi [20]. Assuming Poisson arrivals and arbitrary distribution for service
time, they developed an explicit expression for the expected delay in terms of underlined system
parameters. Berman et al. [3] proposed the processing time of inventory with deterministic
service. The notion in that paper resulted in the situation for the analysis of queueing inventory
in which demands occur when items in the inventory are stock out. In the production inventory
system with positive service time and no restriction for customers to enter in the system when the
inventory level zero is analysed by Krishnamoorthy and Narayanan [8]. The authors assumed
that the server goes on vacation when either there is no inventory or no customers present.
Krishnamoorthy and Jose [6] compared three retrial queueing inventory systems and analysed
them using Matrix-Analytic Method. They obtained algorithmic solutions for the model and
found out the most profitable model within the given parameter values.

The first reported work on closed-form expression in the queueing inventory system is carried
out by Schwarz et al. [18]. The product form solution to this model is obtained by considering the
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assumption that customers are not allowed to enter the system when the inventory level is zero.
Schwarz and Daduna [17] developed approximation for performance measures in the M/M/1
queueing system in which delivery of inventory is considered as service with the assumption
that customers can join in the system even when the inventory level is zero(back-ordering). To
get a closed-form expression and avoid the loss of customers, Schwarz et al. [19] considered a
queueing inventory model by incorporating the assumption that the demand that comes during
stock the out period is re-routed to other service stations. Saffari and Haji [16] analysed a
queueing inventory model with the product form solution by assuming high replenishment cost
for instantaneous replenishment during the stock out period to prevent the loss of customers.
M/M/1 queueing inventory system under (s,Q) policy is analysed by Saffari et al. [15] in which
the demand during the stock out period is assumed to be lost. They obtained explicit expression
for system performance measures. To avoid the loss of customers during the stock out period,
the concept of local purchase is discussed in [9, 11]. All the mentioned works on product form
solutions are studied in a continuous-time setup. The analogue work on discrete-time inventory
is not reported so far. Notable work on a discrete-time queue is done by Meisling [13]. The
author derived the results in the continuous system as a limiting case discrete system. Dafermos
and Neuts [4] illustrated an example of a single server queueing model in the discrete case and
discussed the time-dependent character of the queue using a bivariate Markov chain. Lian et
al. [12] introduced inventory in a discrete-time inventory system having common life. They
derived a closed-form expression for the expected total cost. We use the discrete version of the
Matrix-Analytic Method (MAM), explained in Alfa [1, 2], to analyse the stability of the model.
For elementary details of MAM, one can refer to Neuts [14].

The investigation of stochastic decomposition of production (s, S) inventory system in discrete
time is not received much attention from researchers. To obtain an explicit expression for the
steady-state distribution, Krishnamoorthy and Viswanath [10] restricted the entry of customers
according to the inventory level. They obtained an explicit expression for the production cycle
and optimized the cost function associated with the model with respect to maximum storage S.
Deepthi [5] considered a similar model in discrete time with another distribution in the steady-
state. The author obtained the optimum value of the expected total cost for the maximum
inventory level S. The present paper is a generalization of Krishnamoorthy and Viswanath [10]
to a discrete-time setup and the modification of the paper by Deepthi [5]. The objective of this
work is to provide a suitable blocking set to obtain the desired form of steady-state probability
vector a similar model with a different steady-state distribution.

The rest of the content of this paper is organized as follows. Section 2 provides mathematical
modeling and analysis. The stability condition is derived in section 3. Steady-state probability
vector and its explicit expression are discussed in section 4. The analysis of production is
explained in section 5. The distribution of waiting time is discussed in section 6. Some relevant
performance measures and their explicit forms are included in section 7. Finally, section 8
contains numerical experiments.

2. Mathematical Modeling and Analysis
This paper looks into a single sever production (s, S) production inventory system in which
the arrival of customers follows a Bernoulli process with parameter p, service time follows a
geometric distribution with parameter q. Each customer receives one inventory after completing
the service. When the items in the inventory reduce s due to demands, production starts. The
production time of the individual item in the inventory follows a geometric distribution with
parameter r. The production is stopped when the inventory is reached to the maximum level of
S. We assume that arrival and service completion (if any) occurs at the beginning of a slot and
production of the individual item (if any) takes place at the end of a slot.
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Notations

N(n) : Number of customers in the system at an epoch n.

I(n) : Inventory level at the epoch n.

C(n) : The production status, which is

{
0,when production is off

1,when the production is on

x̄ : 1− x, for 0 ≤ x ≤ 1.

Then {(N(n), I(n)), c(n);n = 0, 1, 2, 3, ..} is a Quasi Birth Death process with state space

{(i, j); 0 ≤ j ≤ s} ∪ {(i, j, k); s+ 1 ≤ j ≤ S − 1, k = 0, 1} ∪ {(i, S)}, for i ≥ 0

considering order of the state space as the dictionary order, the transition probability matrix of
the above QBD process is given by,

P =


B1 B0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .

 ,
where, the blocks B0, B1, A0, A1 and A2 square matrix of order 2S − s and are given by

B1 =



r̄ r
p̄r̄ p̄r

. . .
. . .

p̄r̄ B0
1

B1
1 B2

1
. . .

. . .

B1
1 B3

1

p̄



with B0
1 =

[
0 p̄r

]
,

B1
1 =

[
p̄ 0
0 p̄r̄

]
,

B2
1 =

[
0 0
0 p̄r

]
,B3

1 =

[
0
p̄r

]

B0 =



0 0
pr̄ pr

. . .
. . .

pr̄ B0
0

B1
0 B2

0
. . .

. . .

B1
0 B3

0

p



with B0
0 =

[
0 pr

]
,

B1
0 =

[
p 0
0 pr̄

]
,

B2
0 =

[
0 0
0 pr

]
,B3

0 =

[
0
pr

]

A0 =



0 0
pq̄r̄ pq̄r

. . .
. . .

pq̄r̄ A0
0

A1
0 A2

0
. . .

. . .

A1
0 A3

0

pq̄



with A0
0 =

[
0 pq̄r

]
,

A1
0 =

[
pq̄ 0
0 pq̄r̄

]
,

A2
0 =

[
0 0
0 pq̄r

]
,A3

0 =

[
0
pq̄r

]
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A1 =



r̄ r
pqr̄ t pq̄r

. . .
. . .

. . .

pqr̄ t A0
1

A3
1 A1

1 A2
1

. . .
. . .

. . .

A3
1 A1

1 A4
1

A5
1 p̄q̄



with t = p̄q̄r̄ + pqr

A4
1 =

[
0
p̄q̄r

]
, A2

1 =

[
0 0
0 p̄q̄r

]
A3

1 =

[
pq 0
0 pqr̄

]
, A5

1 =
[
pq 0

]
A0

1 =
[

0 p̄q̄r
]

A1
1 =

[
p̄q̄ 0
0 p̄q̄r̄ + pqr

]

A2 =



0 0
p̄qr̄ p̄qr

. . .
. . .

p̄qr̄ p̄qr
A2

2∗ A1
2

. . .
. . .

A2
2 A1

2

A3
2∗ 0



with A2
2∗ =

[
p̄q
0

]
,

A1
2 =

[
0 0
0 p̄qr

]
,

A2
2 =

[
p̄q 0
0 0

]
A3

2∗ =
[
p̄q 0

]

3. Stability Condition
Theorem 3.1. The necessary and suffiient condition for the stability of the system is p < q

Proof. Consider the matrix A = A0 +A1 +A2. Then,

A =



r̄ r
qr̄ u∗ qr̄

. . .
. . .

. . .

qr̄ u∗ D0
1

D3
1 D1

1 D2
1

. . .
. . .

. . .

D3
1 D1

1 D4
1

D5
1 q̄



with u∗ = q̄r̄ + qr

D4
1 =

[
0
q̄r

]
, D2

1 =

[
0 0
0 q̄r

]
D3

1 =

[
q 0
0 qr̄

]
, D5

1 =
[
q 0

]
D0

1 =
[

0 q̄r
]

D1
1 =

[
q̄ 0
0 u∗

]
Let ψ = (ψ0, ψ1, . . . , ψs, ψs+1,0, ψs+1,1, . . . , ψS−1,0, ψS−1,1, ψS) be the steady-state probability
vector of A. Then, ψ is obtained by solving ψA = ψ and ψe = 1, which leads to

ψ0 =
q

r
(1− vS−s)vsψS

ψj =
q

(r − q)
(1− vS−s)vs−jψSfor 1 ≤ i ≤ s

ψS =
(1− v)(r − q)

p2(vS − vs) + r2(1− v)(S − s)

ψj,1 =
q

r − q
(1− vS−j)ψS

ψs+1,0 = ψs+2,0 = · · · = ψS−1,0 = ψS
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where v =
qr̄

q̄r
.

The Markov chain considered above is stable if and only if the mean left drift exceeds the mean
right drift (see Neuts [14]).
That is, ψA0e < ψA2e.
On simplification, we get pq̄ < p̄q, which leads to p < q.

4. Steady-State Analysis
To find the steady-state probability vector of P , consider the production inventory system with
negligible service time. Then, the corresponding Markov chain (j(n), c(n)) having the finite
state space given by
∪sj=0{j} ∪ ∪

S−1
i=s+1{(j, 0), (j, 1)} ∪ S

Corresponding transition probability matrix of the process, p̂ is given by

p̂ =



r̄ r
pr̄ t∗ pr̄

. . .
. . .

. . .

pr̄ t∗ C0
1

C3
1 C1

1 C2
1

. . .
. . .

. . .

C3
1 C1

1 C4
1

C5
1 p̄



with t∗ = p̄r̄ + pr

C4
1 =

[
0
p̄r

]
, C2

1 =

[
0 0
0 p̄r

]
C3
1 =

[
p 0
0 pr̄

]
, C5

1 =
[
p 0

]
C0
1 =

[
0 p̄r

]
C1
1 =

[
p̄ 0
0 p̄r̄ + pr

]

Let π̂ = (π̂0, π̂1, . . . , π̂s, π̂s+1,0, π̂s+1,1, . . . , π̂S−1,0, π̂S−1,1, πS) be the steady-state probability vec-

tor of P̂
Simplifying the expressions π̂P̂ = P̂ and π̂e = 1 leads to

π̂0 =
p

r
(1− kS−s)ksπ̂S

π̂j =
p

(r − p)
(1− kS−s)ks−j π̂Sfor 1 ≤ i ≤ s

π̂S =
(1− k)(r − p)

p2(kS − ks) + r2(1− k)(S − s)

π̂j,1 =
p

r − p
(1− kS−j)π̂S

π̂s+1,0 = π̂s+2,0 = · · · = π̂S−1,0 = π̂S

where k =
pr̄

p̄r

Theorem 4.1. The steady-state probability vector Π = (π0,π1,π2, . . . ) of P is given by

πi =


(
q − p
q

)π̂ for i = 0

(
q − p
q

)
p

p̄q
ρi−1π̂ for i ≥ 1

(1)

where ρ =
pq̄

p̄q
.



ICMMCMSE 2020
Journal of Physics: Conference Series 1850 (2021) 012027

IOP Publishing
doi:10.1088/1742-6596/1850/1/012027

6

Proof. From the structure of the trasition probability matrix P and P̂ ,

B1 +
p

p̄q
A2 = P̂

p̄q

p
B0 +A1 +

pq̄

p̄q
A2 = P̂

p̄q

pq̄
A0 +A1 +

pq̄

p̄q
A2 = P̂

Now

π0B1 + π1A2 = (
q − p
q

)π̂(B1 +
p

p̄q
A2)

= (
q − p
q

)π̂P̂

= (
q − p
q

)π̂

= π0

π0B0 + π1A1 + π2A2 = (
q − p
q

)
p

p̄q
π̂(
p̄q

p
B0 +A1 +

pq̄

p̄q
A2)

= (
q − p
q

)
p

p̄q
π̂P̂

= π1

and for i ≥ 2,

πi−1A0 + πiA1 + πi+1A2 = (
q − p
q

)
p

p̄q
(
pq̄

p̄q
)i−1π̂(

p̄q

pq̄
A0 +A1 +

pq̄

p̄q
A2)

= (
q − p
q

)
p

p̄q
(
pq̄

p̄q
)i−1π̂P̂

= πi

Using the above equation, ΠP = Π, and on summing, we have Πe = 1

5. Production Process
The production will start when the items in the inventory reduced to s and will be stopped
as soon as the inventory level reached to S. During the production process the inventory level
varies from 0 to S − 1 for any number of customers. Let N(n) be the number of customers in
the system and I(n) the number of items in the inventory at an epoch n. Consider the absorbing
discrete time Markov Chain (N(n), I(n)) with state space {(i, j); i ≥ 0, 0 ≤ j ≤ S − 1} ∪ {∆},
where ∆ represents the absorbing state when the production process is stopped. The transition
probability matrix Pp of the process is given by

Pp =

[
T t
0 1

]

Where T =

C1 C0

D2 D1 D0

. . .
. . .

. . .

 and t = e− Te
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,

C1 =


r̄ r

p̄r̄ p̄r
. . .

. . .

p̄r̄ p̄r
p̄r̄

 , C0 =


0 0

pr̄ pr
. . .

. . .

pr̄ pr
pr̄

 , D2 =


0 0
p̄qr̄ pqr

. . .
. . .

p̄qr̄ pqr
p̄qr̄


,

D1 =


r̄ r
pqr̄ p̄q̄r̄ + pqr p̄r

. . .
. . .

. . .

pqr̄ p̄q̄r̄ + pqr p̄r
pqr̄ p̄q̄r̄ + pqr

 , D0 =


0 0

pq̄r̄ pqr
. . .

. . .

pq̄r̄ pqr
pq̄r̄


Let α̂ = (α1,α2,α3, . . . ) be the initial probability vector representing the state of the system

when production starts

Then αj =


q − p
q
es+1 for j = 0

(
q − p
q

)
p

p̄q
ρj−1es+1 for j ≥ 1

Where es+1 is the row vector of dimension S, whose (s + 1)th entry is one and the remaining
entries are zeros. To calculate the time till the absorption we have to truncate the length of the
queue. For this, choose ε > 0 and N large enough so that

∞∑
i=N+1

ρi−1 <
ε

(
q − p
q

)
p

p̄q

Using the truncation level N , we truncate T to a finite square matrix T ∗ of order (N + 1)S and
α̂ to a finite row vector α̂∗ of size (N + 1)S defined by,

α̂∗ = (α∗1,α
∗
2, . . . ,α

∗
N ) with α∗j =

αj(
1− p

q
ρN
)

Hence the length of the production time is a d phase-type distribution in discrete time with
parameters (α̂∗, T ∗)

Then, the expected length of the production process, EPR,

EPR = α̂∗(I − T ∗)−1e

6. Waiting Time Distribution
For computing the waiting time distribution of arriving customer in the queue, by considering the
position(rank) of the arriving customer, we use discrete phase-type distribution. Suppose that
the arriving customer in the queue is of rank r1. Consider the absorbing discrete-time Markov
chain (N ′(n), I(n), c(n)) where N ′(n) denotes the rank (position) of the arriving customer, I(n)
the items in the inventory and c(n) the production status at the epoch n, Then the state-space
of this Markov process is {1, 2, . . . , r1} × {0, 1, 2, . . . s, (s + 1, 0), (s + 1, 1), . . . , (S − 1, 0), (s −
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1, 1), S} ∪ {∆1}, where, ∆1 represents the absorbing state when the tagged customer is entered
into service. The transition probability matrix of this process is given by

Pw =

[
1 0
tw Tw

]
,

where Tw =


U1

U2 U1

. . .
. . .

U2 U1

 and tw =


q
...
q
0


0 is column zero vector of order (r1 − 1)(2S − s) and U1 and U2 are square matrices of order
2S − s defined below.

U1 =



r̄ r
q̄r̄ q̄r

. . .
. . .

q̄r̄ U0
1

U1
1 U2

1
. . .

. . .

U1
1 U3

1

pq̄



with U0
1 =

[
0 q̄r

]
,

U1
1 =

[
q̄ 0
0 q̄r̄

]
,

U2
1 =

[
0 0
0 q̄r

]
,U3

1 =

[
0
q̄r

]

U2 =



0 0
qr̄ qr

. . .
. . .

qr̄ qr
U2
2 ∗ U1

2
. . .

. . .

U2
2 U1

2

U3
2 ∗ 0



with U2
2 ∗ =

[
q
qr̄

]
,

U1
2 =

[
0 0
0 qr

]
,

U2
2 =

[
q 0
0 qr̄

]
U3
2 ∗ =

[
q 0

]
Now the waiting of the tagged customer is the time until the absorption of the Markov chain
(N ′(n), I(n), c(n)), n ≥ 0. The average waiting time of the tagged customer is given by

EWr = α′(I − Tw)−1e,

where e is a column vector of 1’s having dimension (2S − s)r1 and α′ = (0, . . . ,0, π̂).

7. Performance Measures
i) Expected queue size, EQ, is given by

EQ =

∞∑
i=0

S∑
j=0

iπij =
pp̄

(b− a)

ii) Expected inventory level, EIL, is
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EIL =

∞∑
i=0

S∑
j=0

jπij

=
r

r − p
(s+ 1 + s+ 2 + · · ·+ S − 1)π̂S + Sπ̂S

+
p

r − p
ks−1(1 + 2.

1

k
+ · · ·+ s.

1

ks−1
)π̂S

− p

r − p
kS−1(1 + 2.

1

k
+ · · ·+ (S − 1).

1

kS−2
)π̂S

=

[
r

r − p
(S + s)(S − s− 1)

2
+

p

r − p
(ks−1 − kS−1 + S)k2 − (S + s)k + s

(k − 1)2
+ S

]
π̂S

iii) Expected rate of production,EPR, is

EPR =r

s∑
j=0

π̂i + r

S∑
i=s+1

π̂i,1

=(1− (S − s)rπ̂S)

iv) Expected loss of customers, ELR is given by

ELR =π̂0p

=
p2

r
(1− kS−s)ksπ̂S

v) Expected production switching on rate, EON , is

EON = q
∞∑
i=1

(
q − p
q

)
p

p̄q
ρi−1π̂s+1,0 = pπ̂S

8. Numerical Experiments
8.1. Cost Analysis
Based on the above performance measures, we define a suitable cost function. For this, we define
individual cost c0, c1, c2, c3 and c4 as

c0 : switching cost for a production to start

c1 : production / unit inventory / unit time

c2 : holding of inventory / unit / unit time

c3 : holding cost of customers / unit / unit time

c4 : cost due to loss of customers / unit / unit time

Define expected total cost (ETC) per unit time as,

ETC = c0EON + c1EPR+ c2EIL+ c3ELR
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8.2. Tabular Illustrations
Through this section, we provide a numerical interpretation of the above system performance
measures and optimization of the defined cost function. Since explicit expressions for system
performance measures and hence cost function are obtained, we can optimize the cost function
using the calculus method. One can also decide the nature of the system characteristics with
respect to the underlined parameters. The numerical illustrations are given below.

Table 1 shows the effect of production probability r with various performance measures and
cost function by keeping all other parameters constant. As r creases, the expected rate of
production and expected inventory increase while expected switching rate and expected loss
rate of customers decrease since the possibility of stock out period decreases. The optimum
value of expected total cost is 14.289 at r = 0.48.

Similarly, Table 2 illustrates the effect of p on various measures and expected total cost. As
p increases, the expected loss rate of customers decreases since the possibility of being stock out
increases. The expected production rate and production switching rate also decrease with an
increase of p due to the loss of some arrivals during the stock out period. The optimum value
of ETC is obtained at p = 0.4 and the corresponding minimum expected total cost is 13.866.

The two dimensional Table 3 is designed to find the optimum value of ETC by varying the
re-order point and maximum inventory level. From this table, it is clear that the minimum value
of ETC is 15.8231 and is obtained at s = 4 and S = 24. This indicates that an optimum (s, S)
pair for the model is (4, 24).

Table 1: Effect of r on ETC

(c0, c1, c2, c3, p, q, s, S) = (150, 30, 0.1, 250, 0.4, 0.6, 8, 20)
r π̂S EIL EPR Eon ELR ETC

0.42 0.00575 9.07 0.39104 0.00230 0.00896 15.2220
0.44 0.00847 10.22 0.39530 0.00339 0.00470 14.5640
0.46 0.01131 11.09 0.39759 0.00452 0.00241 14.3180
0.48 0.01410 11.72 0.39877 0.00564 0.00123 14.2890
0.50 0.01677 12.19 0.39938 0.00671 0.00062 14.3620
0.52 0.01928 12.54 0.39968 0.00771 0.00032 14.4800
0.54 0.02163 12.80 0.39984 0.00865 0.00016 14.6130
0.56 0.02382 13.01 0.39992 0.00953 0.00008 14.7480
0.58 0.02587 13.17 0.39996 0.01035 0.00004 14.8780
0.60 0.02778 13.30 0.39998 0.01111 0.00002 15.0010

Table 2: Effect of p on ETC

(c0, c1, c2, c3, q, r, s, S) = (250, 15, 0.5, 250, 0.6, 0.5, 8, 20)
p π̂S EIL1 EPR1 Eon1 ELR1 ETC

0.34 0.02668 13.10 0.33994 0.00907 0.00006 13.9340
0.36 0.02336 12.87 0.35986 0.00841 0.00014 13.9690
0.38 0.02005 12.57 0.37970 0.00762 0.00030 13.9610
0.4 0.01677 12.19 0.39938 0.00671 0.00062 13.9190
0.42 0.01355 11.69 0.41872 0.00569 0.00128 13.8680
0.44 0.01043 11.02 0.43741 0.00459 0.00259 13.8660
0.46 0.00751 10.14 0.45492 0.00346 0.00508 14.0270
0.48 0.00494 9.01 0.47038 0.00237 0.00962 14.5580
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Table 3: ETC vs. (S, s)

(c0, c1, c2, c3, p, q, r) = (150, 30, 0.1, 250, 0.45, 0.55, 0.6)

S
s

1 2 3 4 5 6 7
21 16.5509 16.1164 15.9195 15.8565 15.8724 15.9373 16.0357
22 16.5009 16.0868 15.8990 15.8385 15.8525 15.9121 16.0023
23 16.4603 16.0649 15.8857 15.8278 15.8403 15.8958 15.9793
24 16.4278 16.0497 15.8784 15.8231 15.8348 15.8869 15.9649
25 16.4024 16.0402 15.8764 15.8237 15.8348 15.8841 15.9577
26 16.3832 16.0357 15.8790 15.8287 15.8396 15.8867 15.9565
27 16.3694 16.0357 15.8856 15.8378 15.8485 15.8937 15.9604

Conclusion
This paper analysed a discrete production queueing inventory system with positive service time
and obtained the closed-form solution to the model. The production process and waiting-
time distribution of an arriving customer are analyzed using absorbing Markov chain. Explicit
expression for other relevant performance measures are obtained. Numerical interpretations are
incorporated to highlight the convexity of the cost function. The loss of customers during stock
out period can be minimized either by decreasing the service rate or increasing the production
rate when the on-hand inventory level is less than a prefixed level. The model can be extended by
avoiding the lost sale due to zero inventory by introducing a local purchase, (an instantaneous
purchase with some additional cost). One can also minimize the local purchase quantity to
optimize profit.
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