This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Experimental modelling of segregation on reinforced concrete beam using a graded concrete approach

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation M M A Pratama et al 2021 J. Phys.: Conf. Ser. 1833 012023 DOI 10.1088/1742-6596/1833/1/012023

1742-6596/1833/1/012023

Abstract

Segregation is a phenomenon that commonly arises in concrete because concrete is a multiphasic material. The segregation causes the concrete to create non-uniformly distributed along with the height of structural members so that it affects the material characteristics such as strength, stiffness, creep, durability, and structural performance resulting in a higher impact on maintenance costs and shorter structure life. To understand the effect of segregation on the RC beams as flexural elements on experimental works, researchers aim to model the beam underwent segregation using a graded concrete approach. To model this segregated element, a high strength concrete mix will be cast at lower fibre, while a mix of lower concrete strength is positioned at the upper fibre. In rupture stage, the segregated element gained its benefit in load performance due to the greater of the material strength at the bottom fibre. At yield and the ultimate stage, the beam exhibited a decrease in load performance due to the lower concrete strength in the area of neutral axis to the compressive fibre; creating a low resistance in load and stress transfer during the loading. After the yield of tensile rebars, the segregated beam fluctuates in the reading of load and deflection increments towards the ultimate point. With the accumulation of concrete density in the middle to the base of the beam element, interlocking action between the aggregates in the compression fibre has absent. When the beam performs a large curvature, the interlocking force of the material in charge of providing resistance to external forces is drastically reduced.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1833/1/012023