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Abstract. Semiconductor materials used as potential barriers in the study are GaAs, GaSb, and 

AlAs. These materials will be arranged in certain combinations to form triple potential barrier 

structures and the effect of combinations will be analysed against transmission coefficient 

values. In this study, the maximum energy of the electron is 1 eV and the matrix propagation 

method is used where the effect of the combinations structure on transmission coefficient values 

is numerically analysed using a computational program. The results showed that the structuring   

potential barrier affects the value of the transmission coefficient. In the uniform barriers 

arrangements, the value of the transmission coefficient decreases with increasing potential 

barrier energy. Whereas in the arrangement of different barrier combinations, two opposing 

combination arrangements have the same transmission coefficient values. Thus, from six 

combination arrangements, there are three kinds of transmission coefficient values. The 

maximum transmission coefficient value is 1.000 in the triple potential barrier of GaSb at 0.49 

eV. Research on the tunnel effect contributed to the development of electronic and optoelectronic 

devices such as transistors and lasers. 

1. Introduction 

In the 19th century, new phenomena related to the concept of modern physics began to appear. New 

phenomena are related to physical objects of microscopic size such as atoms and particles which cannot 

be explained by the concept of classical physics. This is what causes scientists to develop new theories 

that can explain the physical behavior of particles and atoms. The branch of Physics that can answer 

these problems is called quantum mechanics. 

One of the interesting phenomena in quantum mechanics is the tunneling effect. Tunneling effect is 

a state where quantum electrons can pass through the potential barrier even though their energy is less 

than the potential energy of the barrier. Tunneling effect allows particles with less energy to pass through 

a potential barrier and given the opportunity for transmission. The transmission coefficient is the 

probability that a particle can break through a potential barrier [4]. The tunneling effect is widely applied 

in everyday life, including in the development of nano-scale electronic devices. The sophisticated 

electronic equipment used in today's technology cannot be separated from the use of transistors. 

Electronic devices such as transistors and ICs use semiconductor materials because these materials have 

a barrier potential. 

A semiconductor is a material that has electrical conductivity between the insulator and the conductor 

[11]. In general, the basic components of active electronics such as diodes, transistors, and ICs 

(Integrated Circuits) are made of semiconductor materials. In semiconductor materials there is an empty 

area between the valence band and the conduction band which is called the bandgap energy. Every 
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semiconductor material has a different energy gap at a certain temperature [5]. GaAs is a material with 

great potential for electronic and optoelectronic device applications because of its high electron mobility. 

GaAs is typically used for laser diodes and high-speed transistors. GaAs has an energy band gap 

structure with a direct transition (direct band gap) of 1.424 eV with a width of 0.565 nm [8]. GaSb is an 

alloy III-V semiconductor material that has a direct band gap with an energy band gap of 0.721 eV at 

room temperature [7] with a width of 0.610 nm [10]. Antimony-based alloy semiconductors have 

relatively high carrier mobility properties. With these properties, this material is interesting to be applied 

in electronic and optoelectronic devices such as lasers, infrared detectors, magnetic sensors and high-

speed switching devices [3]. AlAs is a III-V alloy semiconductor material which is widely applied to 

optoelectronic devices such as laser diodes. AlAs has a fairly large energy band gap of about 2.95 eV 

[10] with a width of 0.566 nm [2]. With a lattice constant similar to GaAs, AlAs has a small induced 

voltage which allows high mobility of high-performance electrons, so that AlAs can also be applied to 

HEMT (High Electron Mobility Transistor) transistors [1]. 

In this study, GaAs, GaSb, and AlAs semiconductors were used. GaAs was chosen because GaAs is 

a potential material for electronic device applications with an energy band gap of 1.424 eV [8]. GaSb 

material has a high enough mobility which can produce high-speed devices with an energy band of 0.721 

eV [7]. In addition, AlAs material is widely applied in diode lasers because AlAs has a large energy 

band gap of 2.95 eV [10]. Apart from being characterized by the presence of barrier potential energy, 

semiconductor materials also have the characteristics of the width of the barrier they have. GaSb has a 

barrier width of 0.610 nm [10], GaAs has a barrier width of 0.565 nm [8], and AlAs has a similar barrier 

width to GaAs of 0.566 nm [2].GaAs, GaSb, and AlAs materials will be arranged in certain combinations 

to form a triple potential barrier structure and then analyzed the effect of the combination on the value 

of the transmission coefficient. In this study the matrix propagation method is used to analyze the 

transmission coefficient. The matrix propagation method is the spread or transmission of a wave using 

a matrix [6]. The matrix propagation method is easier to understand and the operation is very simple, 

where the effect of the combination arrangement on the transmission coefficient is analyzed numerically 

using a computer program. 

2. Method 

The tunneling effect is a phenomenon in quantum physics when a particle with energy 𝐸 breaks through 

the potential barrier 𝑉 (V > E). In this study, the semiconductor materials used as a barrier are Gallium 

Arsenide (GaAs), Gallium Antimonide (GaSb), and Aluminum Arsenide (AlAs), each of which has a 

potential energy of 0.721 eV, 1.424 eV, and 2.95 eV. The electron particle is passed through the barrier 

potential with the energy regulated in the range 0 ≤ 𝐸 ≤ 1 eV. The potential barriers to each other are 

arranged with a gap width of 1 nm. 

 

 
Figure 1. Triple barrier potential model 

 

The mathematical solution for a particle with momentum 𝑝 must be a wave function with 𝜆 = ℎ/𝑝 

[9]. Where 𝑝 = ℏ𝑘, the kinetic energy of the free particle with de Broglie wavelength can be formulated 

as follows: 

𝐾 =
𝑝2

2𝑚
=

ℏ2𝑘2

2𝑚
 (1) 
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Figure 1 shows the triple barrier potential model with barrier widths 𝑎, 𝑏, and 𝑐. Ѱ represents the 

wave function of the particle with the wave number k which has an energy of 𝐸. It can be seen that in 

the region 1 or 𝑥 < 0 the particle acts as a free particle because the particle is not affected by any force 

or 𝑉(𝑥) = 0. So that the particle has a wave number 𝑘1 =
1

ℏ
√2𝑚𝐸. The free particle, then moves from 

left to right, when the particle enters the 0 ≤ 𝑥 ≤ 𝑎 region, the particle encounters a potential of 𝑉 =

𝑉0, so the particle has 𝑘2 =
1

ℏ
√2𝑚(𝐸 − 𝑉0). Because 𝑉0 > 𝐸, then 𝑘2 =

1

ℏ
√2𝑚(𝐸 − 𝑉0) can be written 

as 𝑘2 =
1

ℏ
√2𝑚(𝑉0 − 𝐸) or 𝑘2 = 𝑖𝑞, where 𝑞 =

1

ℏ
√2𝑚(𝑉0 − 𝐸). When the particle successfully breaks 

through to 𝑥 > 𝑎, the particle returns to a free particle with 𝑉 = 0, so the particle has 𝑘3 = 𝑘1 =
1

ℏ
√2𝑚𝐸. The wave functions associated with these wave numbers are 

Ѱ1(𝑥) =
𝐴

√𝑘1

𝑒𝑖𝑘1𝑥 +
𝐵

√𝑘1

𝑒−𝑖𝑘1𝑥 (2) 

Ѱ2(𝑥) =
𝐶

√𝑘2

𝑒𝑘2𝑥 +
𝐷

√𝑘2

𝑒−𝑘2𝑥 (3) 

Ѱ3(𝑥) =
𝐹

√𝑘1

𝑒𝑖𝑘1𝑥 +
𝐺

√𝑘1

𝑒−𝑖𝑘1𝑥 (4) 

Ѱ4(𝑥) =
𝐻

√𝑘3

𝑒𝑘3𝑥 +
𝐼

√𝑘3

𝑒−𝑘3𝑥 (5) 

Ѱ5(𝑥) =
𝐽

√𝑘1

𝑒𝑖𝑘1𝑥 +
𝐿

√𝑘1

𝑒−𝑖𝑘1𝑥 (6) 

Ѱ6(𝑥) =
𝑀

√𝑘4

𝑒𝑘4𝑥 +
𝑁

√𝑘4

𝑒−𝑘4𝑥 (7) 

Ѱ7(𝑥) =
𝑂

√𝑘1

𝑒𝑖𝑘1𝑥 +
𝑄

√𝑘1

𝑒−𝑖𝑘1𝑥 (8) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽, 𝐿, 𝑀, 𝑁, 𝑂, and 𝑄 are constants. 

First, we examine the wave functions Ѱ1 and Ѱ2 which are bound by boundary conditions so that 

the wave function must meet the continuity requirements, namely 

Ѱ1|𝑠𝑡𝑒𝑝 = Ѱ2|𝑠𝑡𝑒𝑝  

and 

𝑑Ѱ1

𝑑𝑥
|

𝑠𝑡𝑒𝑝
=

𝑑Ѱ2

𝑑𝑥
|

𝑠𝑡𝑒𝑝
  

by applying the boundary conditions obtained 

𝐴

√𝑘1

+
𝐵

√𝑘1

=
𝐶

√𝑘2

+
𝐷

√𝑘2

 (9) 

and 
𝐴

√𝑘1

−
𝐵

√𝑘1

=
𝑘2

𝑖𝑘1

𝐶

√𝑘2

−
𝑘2

𝑖𝑘1

𝐷

√𝑘2

 (10) 

Equations (9) and (10) can be rewritten in matrix form 

1

√𝑘1

[
1

1
  

1

−1
] [

𝐴

𝐵
] =

1

√𝑘2

[
1

𝑘2
𝑖𝑘1

  
1

−
𝑘2
𝑖𝑘1

] [
𝐶

𝐷
] (11) 

To eliminate the 2 × 2 matrix on the left must be multiplied by the inverse of the matrix. So that equation 

(11) can be rewritten with 

[
𝐴

𝐵
] =

1

2√𝑘1𝑘2

[
𝑘1 − 𝑖𝑘2

𝑘1 + 𝑖𝑘2
  

𝑘1 + 𝑖𝑘2

𝑘1 − 𝑖𝑘2
] [

𝐶

𝐷
] (12) 

From equation (12) it can be seen that the propagation for the potential step up 1 is 
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𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 1 =
1

2√𝑘1𝑘2

[
𝑘1 − 𝑖𝑘2

𝑘1 + 𝑖𝑘2
  

𝑘1 + 𝑖𝑘2

𝑘1 − 𝑖𝑘2
] (13) 

The propagation in the 0 ≤ 𝑥 ≤ 𝑎 region can be calculated by: 

Ѱ𝐶𝑒𝑘2𝑎 = Ѱ𝐹 

Ѱ𝐷𝑒−𝑘2𝑎 = Ѱ𝐺 
 

if written in the matrix yet then 

[𝑒𝑘2𝑎 0
0 𝑒−𝑘2𝑎] [

𝐶
𝐷

] = [
𝐹
𝐺

]  

[
𝐶
𝐷

] = [𝑒−𝑘2𝑎 0
0 𝑒𝑘2𝑎] [

𝐹
𝐺

] (14) 

So the propagation across the potential barrier is 

𝑝̂𝑓𝑟𝑒𝑒 1 = [𝑒−𝑘2𝑎 0
0 𝑒𝑘2𝑎] (15) 

In the same way when calculating 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 1, 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 1 can be calculated by applying the 

continuity condition to the potential boundary between Ѱ2 dan Ѱ3 obtained: 

𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 1 =
1

2√𝑘1𝑘2

[
𝑘2 + 𝑖𝑘1

𝑘2 − 𝑖𝑘1
  

𝑘2 − 𝑖𝑘1

𝑘2 + 𝑖𝑘1
] (16) 

The total propagation of the first potential barrier is the product of the propagation step up 1, the 

propagation of the area between the step up potential 1 and the propagation step down 1. 

𝑃̂ 1 = 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 1 ∙ 𝑝̂𝑓𝑟𝑒𝑒 1 ∙ 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 1 (17) 

𝑃̂ 1 =
1

2√𝑘1𝑘2

[
𝑘1 − 𝑖𝑘2

𝑘1 + 𝑖𝑘2
  

𝑘1 + 𝑖𝑘2

𝑘1 − 𝑖𝑘2
] [

𝑒−𝑘2𝑎

0
  

0

𝑒𝑘2𝑎]
1

2√𝑘1𝑘2

[
𝑘2 + 𝑖𝑘1

𝑘2 − 𝑖𝑘1
  

𝑘2 − 𝑖𝑘1

𝑘2 + 𝑖𝑘1
] 

𝑃̂ 1 =
1

4𝑘1𝑘2
[
(𝑘1 − 𝑖𝑘2)𝑒−𝑘2𝑎

(𝑘1 + 𝑖𝑘2)𝑒−𝑘2𝑎   
(𝑘1 + 𝑖𝑘2)𝑒𝑘2𝑎

(𝑘1 − 𝑖𝑘2)𝑒𝑘2𝑎] [
𝑘2 + 𝑖𝑘1

𝑘2 − 𝑖𝑘1
  

𝑘2 − 𝑖𝑘1

𝑘2 + 𝑖𝑘1
] (18) 

Meanwhile, the propagation of the triple potential barrier consists of 3 propagation steps up 

(𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 1, 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 2 and 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 3), 3 propagations on the potential barrier (𝑝̂𝑓𝑟𝑒𝑒 1, 𝑝̂𝑓𝑟𝑒𝑒 3 and 

𝑝̂𝑓𝑟𝑒𝑒 5), 2 propagations in the gap between the step up potential (𝑝̂𝑓𝑟𝑒𝑒 2 and 𝑝̂𝑓𝑟𝑒𝑒 4) and 3 step down 

propagation (𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 1, 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 2 and 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 3). The propagation on the triple barrier is stated: 

𝑃̂ = 𝑃̂ 1 ∙ 𝑃̂ 2 ∙ 𝑃̂ 3 (19) 

where 

𝑃̂ 1 = 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 1 ∙ 𝑝̂𝑓𝑟𝑒𝑒 1 ∙ 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 1 

𝑃̂ 2 = 𝑝̂𝑓𝑟𝑒𝑒 2 ∙ 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 2 ∙ 𝑝̂𝑓𝑟𝑒𝑒 3 ∙ 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 2 

𝑃̂ 3 = 𝑝̂𝑓𝑟𝑒𝑒 4 ∙ 𝑝̂𝑠𝑡𝑒𝑝 𝑢𝑝 3 ∙ 𝑝̂𝑓𝑟𝑒𝑒 5 ∙ 𝑝̂𝑠𝑡𝑒𝑝 𝑑𝑜𝑤𝑛 3 

so 

𝑃̂ = [
𝑃11

𝑃21
  

𝑃12

𝑃22
] 

and the transmission coefficient in the matrix propagation method is expressed by: 

𝑇3 =
1

|𝑃11|2 (20) 

The triple barrier potential model consists of two structures, the first with the same three materials 

and the second, the combination arrangement of GaAs, GaSb, and AlAs. So that there are 6 combination 

arrangements. The transmission coefficient is obtained by analytical and numerical calculations. The 

analytical calculation is in the form of calculating the transmission coefficient of free particles when 

experiencing a breakthrough effect using the matrix propagation method. Numerical calculations are 

carried out by applying the matrix propagation method to the Matlab2018a software.  
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3. Result and Discussion 

3.1. Analytic analysis 

The tunneling effect is a phenomenon when particles break through a potential barrier that classical 

physics cannot do. The electrons are represented by the wave function Ψ in each region. The electrons 

moving from the left towards the first barrier have a momentum of √2𝑚𝐸. However, when the electron 

is in the potential region of 𝑉𝑗 , it will be inhibited until it has a momentum of √2𝑚(𝑉𝑗 − 𝐸) where 𝑗 is 

the sequence of barrier potentials (𝑗 = 1,2,3). After breaking through the potential barrier, the electron 

will accelerate until it has momentum √2𝑚𝐸 in the region 𝑉 = 0 𝑒𝑉. The wave function representing 

electrons has a different shape in the region 𝑉 = 0 and 𝑉 = 𝑉𝑗. In the region 𝑉 = 0, the wave function 

in the complex exponential form with value 𝑘1𝑥 is imaginary (𝑖). However, when the electron is in the 

potential region 𝑉 = 𝑉𝑗 , the wave function is exponential with the value 𝑘𝑗𝑥 is real where 𝑗 = 2,3,4. 

This happens because in the 𝑉 = 0 regions, electrons have material properties.  

When electrons break through the barrier, according to de Broglie's postulate, the properties of the 

particles change to wave properties.Based on the research results, the transmission coefficient value of 

the breakthrough effect that occurs when the electrons break through the triple potential barrier GaSb, 

GaAs, and AlAs is obtained by using the matrix propagation method, analytically, it is obtained the 

equation of the transmission coefficient on the triple potential barrier, namely 

𝑇3 =
𝑇1|𝑡2|2|𝑡3|2

|1 − (𝛼 + 𝑖𝛽)𝑒𝑖𝑘1(𝐿1+𝐿2) −
𝑟1𝑟3𝑡2

𝑡2
∗ 𝑒𝑖2𝑘1(𝐿1+𝐿2)|

2 
(21) 

where 𝑇1 is the value of the transmission coefficient on the barrier 1, 𝑡𝑗 (with 𝑗 = 2 and 3) are the values 

of the transmission coefficient on the barrier 𝑗 and 𝑟𝑗  (with 𝑗 = 1, 2, and 3) are the values of reflection 

coefficient on the barrier 𝑗.  

3.2. Numeric analysis 

This research examines the effect of the potential barrier arrangement on the transmission coefficient. 

The potential barrier arrangement is divided into two, namely an arrangement with a uniform barrier 

type and an arrangement with a combination barrier type. The potential barriers used include GaSb, 

GaAs, and AlAs. So that with the triple potential barrier model, there are 9 arrangements, namely 3 

uniform arrangements and 6 combination arrangements.  

3.2.1. Uniform arrangements. In a uniform arrangement, the following transmission coefficient values 

are obtained. In this case, A is a GaSb semiconductor, B is a GaAs semiconductor, and C is an AlAs 

semiconductor. From Table 4.1, the greater energy of the electron does not make the transmission 

coefficient bigger. In the uniform GaSb barrier potential arrangement, the transmission coefficient value 

can reach a maximum value of 1,000, meaning that at 0.49 eV electron energy, all electrons can pass 

through the potential barrier. This is because GaSb has a potential energy value of 𝑉 < 𝐸𝑚𝑎𝑘𝑠. In 

addition, a uniform arrangement of potential barriers causes resonance so that the probability of 

electrons passing is greater until it reaches a maximum. Furthermore, in the formation of the GaAs 

uniform barrier potential, the maximum coefficient value is 0.9797. In the AlAs arrangement, the 

transmission coefficient value only reaches 0.2809. From these results it can be seen that when the 

potential energy value of the barrier is greater, the value of the transmission coefficient is getting smaller.  

 

Table 4.1 Transmission coefficients in the uniform 

arrangement 

Electron 

Energy (eV) 
𝑇  

AAA BBB CCC 

0.005 0.005 0.000 0.000 

0.490 1.000 0.1561 0.0009 

0.585 0.9484 0.4981 0.0021 

0.744 0.896 0.9797 0.0095 

1.000 0.9688 0.7564 0.2809 
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Figure 2. Triple potential 

barrier of GaSb. 
 Figure 3. Triple potential 

barrier of GaAs. 
Figure 4. Triple potential 

barrier of AlAs. 

 

 

  
Figure 5. The transmission 

coefficient on the triple 

potential barrier of GaSb. 

 Figure 6. The transmission 

coefficient on the triple 

potential barrier of GaAs 

Figure 7. The transmission 

coefficient on the triple 

potential barrier of AlAs 
 

Figure 5 until figure 7 shows the results of the simulation on the triple potential barrier A, B, and C. 

It can be seen that the transmission coefficient increases with increasing electron energy until it reaches 

a maximum value before decreasing the coefficient. If you look further, the transmission coefficient on 

GaSb can reach a maximum value of 1,000, while the GaAs and AlAs are not up to 1. The transmission 

coefficient reaches a maximum value after experiencing a significant increase, but then decreases. This 

decreation occurs because the basic function of the transmission coefficient is in the form of hyperbolic 

trigonometry which causes the transmission coefficient to be periodic. At some point, the value will 

reach a maximum then drop to a minimum and will rise again. In the combination arrangement there is 

one of the barrier potentials whose magnitude 𝐸 > 𝑉, this results in resonance. This resonance 

phenomenon causes the transmission coefficient to be close to 1 or even 1 at certain electron energies 

because it is caused by one potential barrier affecting the other potential barrier and this also occurs 

because the three potential walls are symmetrical.  
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3.2.2. Combination arrangements. At the triple potential barrier with a combination arrangement, the 

value of the transmission coefficient varies even though the barrier is composed of the same 3 types of 

material. In this case, A is a GaSb semiconductor, B is a GaAs semiconductor, and C is an AlAs 

semiconductor. 

 

Table 4.2 Transmission coefficients in combination arrays. 
Electron 

Energy 

(eV) 

𝑇 

ABC CBA CAB BAC BCA ACB 

0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.490 0.0641 0.0641 0.2004 0.2004 0.0398 0.0398 

0.585 0.1594 0.1594 0.5996 0.5996 0.0896 0.0896 

0.744 0.3541 0.3541 0.2659 0.2659 0.2972 0.2972 

1.000 0.4425 0.4425 0.2239 0.2239 0.7939 0.7939 

       

 

 

 

  
Figure 8. Triple potential 

barrier of ABC. 
 Figure 9. Triple potential 

barrier of CBA. 
Figure 10. Triple potential 

barrier of CAB. 

 

 

  
Figure 11. The transmission 

coefficient on the triple 

potential barrier of ABC. 

 Figure 12. The transmission 

coefficient on the triple 

potential barrier of CBA. 

Figure 13. The transmission 

coefficient on the triple 

potential barrier of CAB. 
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Figure 14. Triple potential 

barrier of BAC. 
 Figure 15. Triple potential 

barrier of BCA. 
Figure 16. Triple potential 

barrier of ACB. 

 

 

  

Figure 17. The transmission 

coefficient on the triple 

potential barrier of BAC. 

 Figure 18. The transmission 

coefficient on the triple 

potential barrier of BCA. 

Figure 19. The transmission 

coefficient on the triple 

potential barrier of ACB. 

 

Based on the figure and table above, it can be seen the value of the transmission coefficient on the 

combinatorial arrangement. It can be seen that there are 3 kinds of transmission coefficient values from 

6 combination arrangements. Where 2 reverse combination arrangements show the same transmission 

coefficient value. That is, the transmission coefficient value of ABC is identical to CBA, CAB is 

identical to BAC, and BCA is identical to ACB. The largest transmission coefficient value is 0.7939 at 

the BCA and ACB arrays, this value corresponds to the electron energy of 1 eV. Furthermore, in the 

CAB and BAC arrangements, the largest transmission coefficient value is 0.5995 when the electron 

energy is 0.585 eV. And the value of the transmission coefficient in the ABC and CBA arrangements is 

0.4425 when the electron energy is 1 eV. So that the arrangements that are more effective for generating 

large transmission coefficient values are BCA and ACB. Even though the 6 combinations consist of the 

same 3 semiconductor materials, it turns out that different arrangements produce different transmission 

coefficient values. 

4. Conclusion 
It can be concluded that the potential barrier arrangement affects the transmission coefficient value. In 

the uniform barrier arrangements, the value of the transmission coefficient decreases with increasing 
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potential barrier energy. The maximum transmission coefficient value in the uniform arrangement is 

1.000 in the triple potential barrier of GaSb at 0.49 eV electron energy. In this state all electrons can 

pass through the potential barrier. Whereas in the arrangement of different barrier combinations, two 

opposing combination arrangements have the same transmission coefficient value. Thus from 6 

combination arrangements, there are 3 kinds of transmission coefficient values. The largest transmission 

coefficient value is 0.7939 at the BCA and ACB arrays, this value corresponds to the electron energy of 

1 eV. 
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