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Abstract. Generative Adversarial Networks (GANs) are an innovative class of deep learning 
generative model that has been popular among academics recently. GANs are able to learn 
distributions on complex high-dimensional data which made it efficient in images and audio 
processing. Nevertheless, in the training of GANs, some major challenges exist namely mode 
collapse, non-convergence, and instability. In recent years, in order to overcome these challenges, 
researchers have proposed many variants of GANs by redesigning network architecture, 
changing the form of objective functions, and altering optimization algorithms. In this research, 
we conducted a comprehensive investigation on the progress of GANs design and optimization 
solutions. Finally, according to the classification method, we provided a problem-solving 
structure to solve conquer the GANs training challenges. 

1. Introduction 
Generative adversarial networks (GANs) are an innovative class of deep generative models that have 
been developed continuously over the past several years. It was first proposed in 2014 by Goodfellow 
as an alternative training methodology to generative model [1]. Since its birth, GANs have been used in 
a broad range of applications for their great performance in dealing with complex and high-dimensional 
data, for instance, computer vision, natural language, or other academic domains such as music 
generation or security. 

The design of Generative Adversarial Networks is inspired by the theory of game. Generally, GAN 
is composed of two neural networks, a generator, and a discriminator. During adversarial training, 
generator and discriminator compete with one another to approach the Nash equilibrium. The core task 
of generator is to generate fake data through learning the potential probability distribution of the real 
data as much as possible. To be more specific, the discriminator gives the probability that the sample 
comes from the training set. Thus, a “perfect” discriminator should output the sample from the training 
set with probability 1 and output probability 0 for the generated sample from the generator. As for 
generator, it tries to capture the essential pattern of the training set, generates the sample, and sends the 
sample to the discriminator D; it is attempted to “deceive” the discriminator so as to make the 
discriminator mistakenly believe that the sample comes from the training set and outputs probability 1. 
Through this adversarial training, GAN can generate samples that fit the real distribution without 
assuming a certain form of probability distribution explicitly. 

Despite wide applications of GANs and continuous developments, the training of GANs is suffered 
from problems like mode collapse, instability, and non-convergence. Generally, researchers will 
innovate in the design of network architecture, the choice of loss function, and the use of optimization 
algorithms to achieve a better GANs architecture. To solve these problems, solutions have been 
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proposed. In this survey, we focus on two major problems in training, model collapse and non-
convergence, and the latest solutions to these issues. 

The remainder of this paper is organized as follows: The architecture, principle, and algorithms of 
Basic GANs are introduced in Section 2; sections 3 discusses how GANs have been improved; section 
4 presents and describes two typical GAN variants; the applications where GANs have been widely 
employed are discussed in Section 5; and Section 6 concludes the survey. 

2. Architecture 
In the basic GAN architecture, the generator G takes the role of producing real-like fake samples from 
the noise vector z. The generated samples would be merged with real data as the input of Discriminator. 
The Discriminator calculates the probability that each sample comes from real data and determine 
whether it comes from G or real data. The result of D would be learned by G to decide the direction to 
optimize its parameters in the next iteration. G and D compete with each other in every round to attain 
their individual goals. This is exactly how adversarial training is performed in GANs. This adversarial 
training can be formulated as Equation (1) shown below, 

min max   V G;  D  min max  E  logD x   E  log 1 D G z      1  
V (G; D) is a double cross-entropy work that is regularly utilized for binary classification problems. 

From D’s perspective, thus the log part of Equation (1), if a sample is identified to be from real data, D 
will maximize its output; whereas, if a sample comes from G, D will minimize its output. Each generator 
and the discriminator have their own loss functions, as two individual players in a game theory, which 
was denoted as J(G) and J(D) respectively. In the first version’s GANs [2], the discriminator D is defined 
as a binary classifier, and the loss function is represented by the cross entropy. 

In Equation (2), x denotes the true data, z denotes the random noise vector, the fabricates data 
generated by the generator are G(z), and E indicates the expectation. D(x) is the probability calculated 
by D on whether x belonged to real data, and correspondingly D(G(z)) expresses the probability on x 
comes from generated data. The aim of D is to correctly discriminate where data come from, so it expects 
the value of D(G(z)) to be as close to 0 as possible. While the aim of G is to make D(G(z)) approach 0. 
Based on this adversarial concept, there exists a zero-sum game between these two networks. Through 
simplification, the loss function of the generator can be transformed to a form that derived form of the 
discriminator as the Equation (2) shows below. 

J (G) = - J (D)                                   (2) 
Through the training process, the parameter of G and D are updated simultaneously. Theoretically, 

this updating process ends when G(z) = 0, which means the generator can deceive the discriminator.  
In this status, the model achieves the global optimal solution. 
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Figure 1. Basic GANs Architecture 

3. The Variant GANs Models 
In addition to basic GANs, researchers have proposed various variants GANs models and they are 
created to serve certain problems recognized by researchers with regard to basic GANs. 

3.1 Model Collapse 
Model collapse is one of the key reasons for instability of GANs training. Theoretically, it happens when 
the max-min solution to the GANs work couldn’t coordinate with the min-max solution. 

Figure 1 shows GAN training on a playground dataset where G generates only single mode instead 
of simulating multi-modes real data distribution. The generator continuously cycles between several 
single modes while D keeps refusing samples from G. In this process, GANs inflating from a single 
mode to another single mode never reach Nash equilibrium. 

Generally, model collapse is the result of poor generalization of model. Mode collapse can be 
divided into two types: (1) most of the modes from the real data are absent from the generated data, (2) 
only a single mode is learned by G. The main reason for model collapse problem is the wrong selection 
of objective function. 

To handle this issue, recent studies have introduced several variants with improved network 
architecture with new objective functions or alternative optimization algorithms.  

3.1.1. Conditional Generation 
An unconditional generative model cannot control th e modes generation. To control the generation  
process, a generative model can be conditioned on additional information [3]. In this way, conditional 
GANs learn conditional probability distribution where a condition can be any auxiliary information 
about the data. 

Because the generator input is a random noise vector z, an unconstrained input can cause a collapse 
of the learning mode. Therefore, Mirza and Osindero [4] introduced a conditional variable c (variable c 
can be any type of data like text or audio) in both the generator and the discriminator to conditions to 
the model using additional information to influence the process of data generation, that’s how 
Conditional Generative Adversarial Networks (CGANs) Generative adversarial networks (CGANs) are 
proposed. In Figure 2, the conditional variable c and the noise vector z are the two inputs of the generator, 
and the inputs to the discriminator are G(z|c) of the generator and real samples under the control of the 
same conditional variable c. 
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Moreover, InfoGAN, a variant of CGANs is proposed by Chen et al. [5]. The InfoGAN enable the 
whole process of generation to be more stable and make interpretability to be possible by introducing 
mutual information. To strengthen the connection between x and c, the network should solve the 
maximum value of mutual. Although it is similar to CGANs, but InfoGAN doesn’t contain an initial 
known latent code that will be found in the training process. As an upgrade to the original GANs, 
InfoGAN designed an extra network Q for the output of conditional variables Q(c|x).  

On the basis of CGANs, Auxiliary Classifier GAN(ACGAN) was developed by Odena et al. [6]. In 
the perspective of discriminator, a conditional variable is replaced by a new classifier to display the 
probability over the class labels. Modification employed to the loss function is intended to increase the 
precision of class prediction. 

 
Figure 2. Architecture of Conditional GANs 

4. Variant GANs Models 

4.1. Non-convergence 
In the traditional GANs, G uses two loss function as already introduced. 

Ez[log(D(G(z)))]                                  (3) 

Ez[log(1-D(G(z)))]                                 (4) 

However, G’s loss can, unfortunately, prompt some potential issues in GANs training. The former 
loss function Ez[log(D(G(z))] can bring about gradient vanishing problems. Especially when D gets a 
large learning rate that it can easily distinguish between real and fake samples. Under this circumstance, 
the learning ends when the generator is still weak, in other words, the discriminator learns too fast. For 
an optimal D, the optimization of G loss is similar to the minimization of the Jenson-Shannon 
Divergence (JSD) between a real distribution and generated distribution. The JSD will be 2log2 in this 
case, which allows optimal D to give probability 1 to real samples, and 0 to fake ones and leads the 
gradient of G loss towards 0. 

In GANs, D tries to minimize a cross-entropy while G tries to maximize the same cross-entropy. 
When D haves a strong performance, D only accepts the real samples, and then G’s gradient vanishes. 
One available solution to eliminate this problem is to reverse the target label employed for the cross-
entropy cost.  
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The second one is considered as the logD trick [7][8]. The minimization of the G’s loss function 
Ez[log(D(G(z))] is equal to the minimization of equation (1), which results in unstable gradients as it 
minimizes the KL divergence and maximizes JSD simultaneously. This situation is called instability of 
G’s gradient updates. This figure also shows the growing variance of the gradients; such gradients 
updates will lead to a generation of low sample quality. 

To cope with the non-convergence and instability problems, several GANs design and optimization 
solutions have been proposed. We shall discuss key solutions in the subsequent sections. 

4.1.1. New probability distance 
JS divergence (JSD) causes Original GANs training to unstable due to its discontinuity and absence of 
a usable gradient [9]. New probabilistic distances and divergence are needed to obtain usable gradients 
everywhere. To solve the model collapse problem, researchers often introduces a new definition of 
probability distances and divergence. 

In this part, we are going to talk about several commonly used probability distance and divergence 
being used in learning distribution to increase the stability of training and solve the original GAN’s 
mode collapse problem. 

Arjovsky et al. [10] proposed a variant called Wasserstein Generative Adversarial Networks 
(WGAN) which made loss function have another role as a measure of convergence. WGAN has non-
zero gradients everywhere and the implementation includes removing the sigmoid function in the 
objective and increasing the weight of D’s network. To improve the efficiency of GANs training and 
keep the training process settled, WGAN was developed to optimize the JSD with an outstanding 
approach of Earth-Mover (EM) distance [11]. 

The EM distance is continuous and differentiable. Therefore, it can effectively solve mode collapse 
problem through stabilizing GAN training. WGAN can train critics until it reaches the optimality that 
keeps the balance between G and D. Well-trained critics provide high-quality gradients for training G. 
However, when the gradient of the loss function is large, WGAN may be unstable. Therefore, too much 
weight will be clipped after each SGD update. Although WGAN supports stability and better mode 
coverage, its training speed is very slow. Moreover, adjusting weight clipping and hyperparameters is a 
tedious task. 

WGAN [12] discussed the assumption that the model should have infinite capabilities which causes 
training problems in the basic GAN because it limits the model to be located in the Lipschitz space. For 
WGAN, the Lipschitz condition comes from the Kantorovich-Rubinstein duality, and only critics are 
bound. Loss-sensitive GAN (LS-GAN) [13] uses weight decay regularization technology to limit the 
weight of the model in a bounded area to meet the condition of the Lipschitz function. 

Guo et al. [14] proposed that a new statistical divergence could be implemented into GANs. In large-
scale calculations, Relaxed Wasserstein (RW) divergence is a fair choice whose parameters are 
determined by a series of strictly convex and differentiable functions containing different curvature 
information. RWGAN is more powerful and faster than WGAN, introduced f-GAN to minimize the 
change estimation of f-divergence [15], in which training D is formulated as a density ratio estimation. 
The purpose of f-GAN is to find the minimum of the difference between the distribution of the real data 
and the generated data. 

5.Application 
As a generative model, generating data is GANs’ fundamental use, that is, to generate fake samples with 
the distribution learned from real samples. This section will discuss the main applications of GANs, 
including the application in computer vision, natural language processing, and other domains. 

5.1. Computer Vision 
Currently, the best application area of GANs is computer vision, involving image enhancement, image 
transformation, image compounding, and video production. These applications will be talked about 
specifically as follows. 
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5.1.1. Image Resolution Enhancement 
For the purpose to enhance the resolution of image, Ledig [16] developed a Super-Resolution Generative 
Adversarial Network (SRGAN). It reads a low-resolution image and generates as input data to produce 
an image with 4 times high-solution image. A year after, Wang proposed the Enhanced Super-Resolution 
Generative Adversarial Network (ESRGAN) [17] which uplifts the realness of the texture information 
generated by SRGAN and reducing noise by redesigning the structure of the network and formats of 
loss function. 

5.1.2. Image Translation 
In order to transform image content between multiple fields, Isola proposed an image-to-image 
conversion method using Conditional GAN called pix2pix[18]. Experiments show that pix2pix is 
effective in graphics tasks as well as visual tasks. In the following versions, pix2pixHD keeps improving 
the quality and clarity of the generated images. Using an innovative anti-loss term, this method produces 
a high-quality image with a resolution of 2048×1024. Despite Pix2pix’s strong performance in image 
conversion problems, it’s training space is strictly paired in X and Y space. Nevertheless, such pairing 
data is rare in real life. Under such circumstances, CycleGAN [19], DiscoGAN [20], and DualGAN [21] 
are three encoder-decoder frameworks established on the idea of cyclic consistency, which made train 
the mapping from X space to Y space on unpaired data to be feasible.  

5.2. Natural Language Processing 
At this moment, GAN has also been an important technology in the field of language and speech 
processing. SeqGAN, a strategy gradient-based network outperforming most traditional methods in 
lecture, literature, and music generation was proposed by Yu et al. [22]. Lin et al. [23] used a ranker as 
a substitute for a distinguisher and developed RandkGAN which accomplish great performance. Li et 
al. [24] also apply adversarial training methods to the generation of open-domain conversation. 
Regarded as a reinforcement learning problem, this task train the generator and discriminator at the same 
time. The output of the discriminator is used as the reward part of reinforcement learning to reward the 
generator, and the conversation generated by the generator is so good that it's like two real people having 
a conversation. 

5.3. Other Domains 
GANs are also widely used in many fields. In medical treatment, Schlegl et al. [25] proposed an 
AnoGAN for detecting abnormality in scanning image abnormality, and summarize the features of 
lesions by training on health data sets. Killoran et al. [26] used GAN to optimize protein binding in DNA 
sequence generation. In the cybersecurity field, Hu and Tan [27] applied GAN to identify malware.  

6.Conclusion 
In recent years, GANs have attracted widespread attention in producing lifelike realistic images and 
have become very popular in the scientific world. Applications of GANs have seen astounding growth, 
for instance, in speech generation, cybersecurity. Nevertheless, GANs are difficult to train, and training 
faces two major problems, namely mode collapse, and non-convergence. One feasible method to make 
GAN solve these two challenges is to redesign the network architecture to get a more powerful model. 
Changing a suitable objective function, or choosing appropriate optimization algorithms. In recent years, 
many different GAN variants with different characteristics have been proposed according to these 
solutions. 

The research on GAN is very extensive, and some GAN designs and training solutions for these 
challenges are also been introduced in previous findings. In this article, we describe the original GAN 
framework and investigate the development of variants to better design and optimize GANs. Moreover, 
we summarize a novel taxonomy of GAN variants in these years and classify them by optimization 
techniques and discuss how existing work addresses these challenges. Our work attempts to provide a 
panoramic view of current progress and a comprehensive survey of the methods. Based on the new 
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taxonomy, a problem-solving structure is introduced that researchers can continue to improve in the 
future. 
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