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Abstract. Boron dipyrrin (BODIPY) family is one of the most studied collection of fluorophores, 
many of which are specifically designed for vital medical uses, such as cell imaging. In this 
research area, near-infrared absorbing and emitting compounds play the key role. Because of 
their long wavelength of absorption, they can be effectively excited by taking advantage of 
therapeutic window of human tissues. Herein we report the repeat of the synthesis of two 
vinylthiophene-substituted derivatives with extended π-electron systems and their computational 
investigation. Those dyes were prepared starting from methyl-substituted ones via addition 
reaction of aldehyde-containing thiophene following the literature. Obtained experimental and 
theoretical data will allow us to design promising tools not only for cell imaging, but also for 
fluorescent detection of heavy cations via coordination and possibly more. 

1.  Introduction 
Among all fluorophores, boron dipyrrin (BODIPY) derivatives definitely stand out due to their 
evergrowing popularity. BODIPY dyes are characterized by narrow and intense [1] absorption and 
emission bands, good thermo- and chemostability as well as tunability of spectral properties. Main areas 
of their application include but are not limited to fluorescent live cell imaging [2, 3, 4] and fluorescent 
response to the molecular environment i.e. solution viscosity [5, 6], pH [7], etc. Much thought has been 
put into extending the bathochromic shift of absorption of BODIPY dyes to take better advantage of 
NIR therapeutic tissue window [8, 9]. Another area that deserves attention is functional modification of 
BODIPY core to allow sensoric activity towards specific ions [10]. There are a lot of available options 
when it comes to the design of a BODIPY dye, but not all of them are theoretically understood.  

Quantum chemistry has become quite a widespread way to explain obtained experimental results and 
predict/design the properties of new compounds. Although methods such as DFT for ground state or 
TD-DFT for response have become de facto standard for many molecules and solids, BODIPY dyes 
present their unique challenges. Indeed, most applications of BODIPY derivatives are related to their 
spectral properties or band gaps. Brown and Momeni have shown [11] that there is no quick black-box 
method to get accurate spectral properties for cyanine-like compounds. Standard errors associated with 
TD-DFT range from 0.3 to 1.0 eV. 

A promising approach for such molecular systems relies on the use of Green’s functions. Blase and 
coworkers have shown [12] that reasonable compromise between speed and accuracy can be achieved 
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by using Bethe–Salpeter equation, a single-reference method, on top of preliminary GW with 
remarkable success. Although the cost is certainly more than that of the TD-DFT calculation, its 
accuracy rivals much heavier methods such as CC3 or MC-PDFT.  

Herein we report the synthesis, spectral properties and results of the quantum chemical investigation 
of 1,3,7-trimethyl-5-(2-vinylthiophene)-8-(2,4-dimethylphenyl)-BODIPY (later referenced as MONO) 
and 1,7-dimethyl-3,5-di(2-vinylthiophene)-8-(2,4-dimethylphenyl)-BODIPY (later referenced as BI) 
(figure 1). Thiophenyl substituted BODIPY and Aza-BODIPY dyes have recently been shown to 
possess NIR absorption and emission [13, 14] and good power conversion efficiency [15]. By using 
ethylene linking units between thiophene and BODIPY fragments we were able to further extend the pi-
electron conjugation. 

 
Fig. 1. Objects of the current study and nomenclature used throughout this paper. 

2.  Materials and methods  

2.1.  Synthesis 
In a round bottom flask equipped with a Dean-Stark apparatus, a mixture of BODIPY (64 mg, 0.2 
mmol), 2-thiophene-carboxaldehyde (40 mg, 0.4 mmol), glacial acetic acid (0.4 mL, 7.0 mmol), and 
piperidine (0.8 mL, 8 mmol) in toluene (20 mL) was refluxed for 10 h. The solution was heated at reflux 
for 12 h. After cooling to room temperature, the mixture was washed three times with water. MgSO4 
was added to dry the organic phase, and the solvent was evaporated under the reduced pressure. The 
crude residue was purified by silica-gel column chromatography (eluent: hexane/ethyl acetate (3:1)). 

2.2.  Experimental spectra 
Absorption spectra were recorded on the Avantes AvaSpec-2048 spectrometer and emission spectra 
were recorded on the Cary Eclipse fluorescence spectrometer. Both compounds were dissolved in 
tetrachloromethane. To measure fluorescence, excitation wavelengths of 560 nm and 640 nm were used 
for MONO and BI compounds respectively. 

2.3.  Quantum chemistry 
Conformational analysis was done by meta-dynamical simulations and automatic conformer-rotamer 
finding algorithm of the CREST program [16] using semi-empirical tight-binding GFN2-xTB [17]. All 
obtained conformers were resorted based on the Gibbs free energy. Relaxed potential energy surface 
scans were also performed with GFN2-xTB with a step of 1°.  

DFT calculations were done using ORCA [18] software package. B3LYP/N07D model [19] was 
chosen for its good performance [20] and relatively small size. All optimized structures were confirmed 
to be minima based on vibrational analysis.  
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G0W0/B3LYP/6-31G and subsequent BSE calculations were done with the MOLGW [21] suit. RI 
approximation was employed together with the frozen core approximation wherever possible. BSE was 
used to obtain only the first seven roots instead of full diagonalization to save computational time.  

No solvent model was used throughout the calculations for consistency as MOLGW does not have 
PCM implementation. 

3.  Results and discussion  

3.1.  Synthesis 
The synthesis was controlled primarily by monitoring spectral properties of reaction mixture. As a result 
of chromatography two compounds were isolated and purified (MONO and BI). As a result of the 
introduction of thiophene substituents through the methene bridge there is a strong shift of absorption 
and fluorescence bands in the longer wavelength region (figure 2). Introduction of each such functional 
group leads to a bathochromic shift of spectral bands approximately by 0.3 eV. The low Stokes shift and 
intense fluorescence are preserved from the precursor. 

 
Fig. 2. Absorption and emission spectra of MONO and BI dyes obtained in CCl4. 

3.2.  Molecular geometry 
Out of four possible MONO conformers and eight possible BI conformers the lowest energy corresponds 
to the inwards-facing sulfur atoms. Structures optimized at B3LYP/N07D level of theory are shown in 
figure 3. One immediately obvious advantage of ethenyl linkages is planar conjugation between 
thiophene and BODIPY core. Indeed, as was previously shown [14], direct bonding between those two 
fragments would result in steric hindrance (particularly between C2-H and thiophenyl’s C-H 
hydrogends) and less than ideal pi-electron conjugation. 

 
Fig. 3. Ground state geometries of MONO and BI dyes at the B3LYP/N07D level. 
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Because of the repulsion that 1, 7-methyl and 8-phenyl groups experience, dimethylphenyl fragment 
is exactly perpendicular to the rest of the molecule. From this we can expect essentially no conjugation 
between the two aromatic systems. Although this phenyl substitution helps to prevent attacks to the 
vulnerable 8-position via steric factors as well as stabilizes charged intermediates during the synthesis, 
its impact on the spectral properties is minimal. In fact, the depth of the PES at equilibrium geometry 
(figure 4) would render any rotational motion of phenyl fragment negligible. Thus, we can expect such 
derivatives to show high fluorescence quantum yield [22] and no viscosity sensitivity.  

Quite big Sulfur-Sulfur distance of 7Å would allow coordination of heavier metal cations and 
subsequent detection by changes in absorption/emission wavelengths. 

 
Fig. 4. Potential energy surfaces of MONO and BI dyes corresponding to the dimethylphenyl rotation 

at the GFN2-xTB. 

3.3.  Molecular orbitals 
Figure 5 depicts frontier molecular orbitals isosurfaces and the respective G0W0 corrected energies. 
Introduction of a second vinylthiophenyl substituents results in the decrease of HOMO-LUMO gap by 
ca. 0.58 eV. Interestingly, along with the stabilization of the LUMO, a destabilization of the HOMO is 
observed. Spatial extent of the frontier molecular orbitals covers BODIPY core and 3, 5-substituents, 
but not the dimethylphenyl fragment, which is a direct consequence of geometries of MONO and BI. 

 
Fig. 5. Calculated HOMO and LUMO energies for MONO and BI dyes and corresponding isosurfaces 

visualized at 0.03 cutoff and calculated at BSE/G0W0/B3LYP/6-31G level. 

3.4.  Molecular orbitals 
Vertical absorption spectra (figure 6) were calculated via BSE calculation on top of G0W0/B3LYP 
calculation. Obtained theoretical data is in a very good agreement with the experimental one. Here we 
can infer that the absorption peak at approximately 590 nm for BI is of vibronic structure - what is 
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usually called a “shoulder” and is characteristic for all BODIPY compounds. For the MONO dye the 
shoulder coincides with the precursors peak (500 nm. according to the literature [16]. Small peak at 650 
nm for MONO is a BI fraction that could not have been prevented from forming. 

 
Fig. 6. Calculated vertical excitation spectra of MONO and BI dyes and corresponding transitions 

calculated at BSE/G0W0/B3LYP/6-31G level compared to the experimental absorption. 

The main absorption band is dominated by a straightforward HOMO -> LUMO transition, so the 
introduction of a second aromatic substituent results in a broader conjugation and further bathochromic 
shift. 

4.  Conclusions 
In this research we report the successful synthesis of 3-(2-vinylthiophene) and 3,5-di(2-vinylthiophene) 
substituted BODIPY dyes. Used computational methods tested on those new structures proved to be 
quite effective. Remarkable agreement between theoretical and experimental absorption spectra will 
allow us to predict spectral properties of similar compounds before synthesizing them. One 
straightforward extension of this synthesis is to start from 8-methyl substituted BODIPY and introduce 
vinylthiophenyl or vinylfuranyl fragments [23] to obtain 3,5,8-trisubstituted dyes. 
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