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Abstract. In this work we introduce the concept of quasi – injective gamma acts as a 

generalization of both injective and weakly injective gamma acts. In general we study 

the endomorphism set of gamma acts and certain types of gamma subacts which are 

used later. In the main part, we study basic properties of  quasi – injective gamma 

acts and the effect of  their endomorphism set to quasi – injective. We show that for 

any gamma act there is quasi – injective extension.   

1. Introduction  

A semigroup (S, ⋆) consist of a nonempty set S on which an associative operation ⋆ is 

defined. The concept of semigroup has been generalized to the nontion of gamma semigroups 

in [2]. Let S and Γ be two nonempty sets.  S is called Γ-semigroup if there exists a mapping  S 

×  Γ × S → S, written (s1, 𝛼, s2 ) ↦ s1𝛼s2 such that (s1𝛼s2)𝛽s3 =  s1𝛼(s2𝛽s3) for all s1, s2, s3 ∈ S 

and 𝛼, 𝛽 ∈ Γ. 

 

 

       An element, denoted by,  0 in a Γ-semigroup S is called right (left ) zero, if 0 = 0𝛼s ( 0 = 

s𝛼0 ) for all s ∈ S and 𝛼 ∈ Γ, and is called zero element if it is both right and left zero. An 

element, denoted by 1 in Γ-semigroup S is called Γ-identity, if 1𝛼s = s = s𝛼1 for all s ∈ S and 

𝛼 ∈ Γ.  

 

For an arbitrary fixed element 𝛼 ∈ Γ. An element, denoted by 1α in S is called 𝛼 – identity if 

(1) s𝛼1α = s = 1α𝛼s (2) s𝛽1α = 1α𝛽s for all s ∈ S and 𝛽 ∈ Γ \ {𝛼}, then S is called a Γ-

monoid  ( an 𝛼-monoid) having  a Γ-identity (an 𝛼 –identity) 1  (1α) .  

 

      A nonempty subset  A of  a Γ-semigroup S is called right ( left ) Γ- ideal of S, if AΓS ⊆ A 

( SΓA ⊆ A ), where XΓY = { x𝛼y | x ∈ X, y ∈ Y, 𝛼 ∈ Γ and a ∈ A } for any nonempty subset 

X and Y of S. 
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Let S and T be two Γ-semigroups. A mapping g : S → T is called Γ-homomorphism if  

g(s1𝛼s2) = g(s1)𝛼g(s2)  for all s1, s2 ∈ S and 𝛼 ∈ Γ.  

 

A Γ-semigroup S is called commutative if a𝛼b = b𝛼a for all 𝛼 ∈ Γ and a, b ∈ S. Let S be a Γ-

semigroup and 𝛼 ∈ Γ be an arbitrary fixed element in Γ.  An element x in S is called 𝛼- 

idempotent, if x𝛼x = x. 

             

             In [3]. The authors introduced a generalization of a Γ - semigroup as follows.  Let S 

be a Γ-semigroup. A nonempty set M is called a right gamma act over S ,denoted by SΓ-act, if 

there is a  mapping  M × Γ × S → M written (m, 𝛼, s) → m𝛼s such that   (m𝛼s1)𝛽s2 = 

m𝛼(s1𝛽s2) for all s1, s2 ∈ S , 𝛼, 𝛽 ∈ Γ and m ∈ M. Similarly we can define a left gamma act.  

 

        Let S and T be two Γ-semigroups. A nonempty set M is called (T – S)Γ-biact, if (1)  M is 

a  right SΓ-act, (2) M is a left TΓ-act, and (3) t𝛼(m𝛽s) = (t𝛼m)𝛽s,  for all m ∈ M, 𝛼, 𝛽 ∈ Γ, t ∈ 

T, and s ∈ S, 

 

       A right  SΓ-act M is Γ – unitary (𝛼 – unitary, for arbitrary fixed 𝛼 ∈ Γ), if S has Γ- 

identity 1 (𝛼- identity 1α)  such that  m = m𝛽1 for all 𝛽 ∈ Γ( m = m𝛼1α) A nonempty subset 

N of an SΓ-act M is called SΓ-subact, denoted by N ≤ M,  if NΓS ⊆ N where NΓS = {n𝛼s | n ∈ 

N, 𝛼 ∈ Γ, and s ∈ S}. A nonempty subset N of a (T-S)Г-biact M is called (T-S)Г-subbiact of M 

if  N is an SΓ-subact of the right SΓ-act M and the  left TΓ-act of M.  

 

      An element ϴ in a right SΓ-act M is called a fixed element if ϴ = ϴ𝛼s for all 𝛼 ∈ Γ and s 

∈ S. If  S has a zero element 0. Then m𝛼0 is a fixed element in M for all m ∈ M and 𝛼 ∈ Γ. It 

is possible for SΓ-act has more than one fixed elements. An SΓ-act M is called Γ-centered, if it 

has a unique fixed element ϴ, and in this case we say that ϴ is the zero element of M, every 

SΓ-subact N of M must contain ϴ where S has zero 0. An SΓ-act M is called simple SГ-act, if 

it contains no gamma subact  other than ϴ and M itself. 

      

        Let S be Γ-semigroup and { Mi | i ∈ I } be an arbitrary  family of  Γ-centered right SΓ-

acts. Then the Cartesian product of Mi which is denoted by  ∏ Mii∈I   has the structure of a 

right SΓ-act componentwisely. ∏ Mii∈I  is called the product of  Mi , i ∈ I. The direct sum 

⊕i∈I Mi of {Mi | i ∈ I} is a subset of ∏ Mii∈I  which contain all element (mi)i∈I ∈ ∏ Mii∈I  such 

that the set {i | mi ≠ ϴMi
} is finite.  ⊕i∈I Mi is an SΓ-subact of  ∏ Mii∈I .  

 

       Let { Mi | i ∈ I } be an arbitrary  family of  Γ-centered right SΓ-acts. Then  the coproduct  

of Mi, denoted by ∐ Mii∈I  is the the disjoint union ⊍i∈I Mi of Mi . Clearly ∐ Mii∈I  is a right SΓ-

act. 

 

Let S be Γ-semigroup and M and N two right SΓ-acts. A mapping f : M → N is called SΓ-

homomorphism, if f(m𝛼s) = f(m)𝛼s for all m ∈ M, s ∈ S and 𝛼 ∈ Γ.  An SΓ-homomorphism is 

called SΓ-monomorphism (SΓ-epimorphism, SΓ- isomorphism) if it is injective (surjective , 

bijective ). We say that two right SΓ-acts M and N is isomorphic, if there exist an SΓ- 

isomorphism between them and denoted by M ≅ N. 
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           Let M be a right SΓ-act. An equivalence relation 𝜌 on M is called SΓ-congruence, if 

(a𝛼s, b𝛼s) ∈ 𝜌 for all s ∈ S, 𝛼 ∈ Γ, and (a, b) ∈ 𝜌. Then the set M/𝜌 = { x𝜌 | x ∈ M } is called 

the quotient of M by 𝜌, where x𝜌 is the equivalent class of x under 𝜌. M/  have the structure 

of righ gamma act by the mapping   (x𝜌)𝛼s ↦ (x𝛼s)𝜌 for all x ∈ M, 𝛼 ∈ Γ, and s ∈ S.   Let N 

be an SΓ-subact of an SΓ-act M. The equivalence relation 𝜌𝑁  on M which is define by 𝜌𝑁  = 

{(m, n) ∈ M × M | m, n ∈ N or m = n} is an SΓ-congruence on M, 𝜌𝑁 is called Rees SΓ-

congruence of M with respect to N. 

         

       Nowadays, A. A. Mustafa in his Ph. D thesis studying the concept of injective gamma 

acts. An SΓ-act M is called injective if given any SΓ-monomorphism  f : A → B where A and 

B are any two SΓ-acts and for any SΓ-homomorphism g : A → M, there exists an SΓ-

homomorphism g̅ : B → M such that  g̅f = g.  He explicit a lot of properties of  injective 

gamma acts analogous to that in the module and act theory, but there are properties in module 

theory not hold in gamma act theory. The most famous characterization of injective module is 

so – called is Baer's condition, in fact the criterion is not true in gamma acts. So he introduced 

a generalization of injective gamma acts which satisfies Baer's condition and called weakly 

injective. Finally he proved that for any gamma act, there exists an injective extension gamma 

act called the injective envelope and it is unique up to isomorphism. 

 

2.  Endomorphism of gamma acts. 

         In this section we define the endomorphism set of gamma act, and we show the set of 

endomorphism becomes gamma semigroup under some condition, after this, we can consider 

it as gamma biact by considering the set of endomorphism is gamma semigroup.  

 

          Let f : M → N be SГ-homomorphism . Then we defined the kernel of f as follows ker(f) 

= {(m1, m2) ∈ M × M | f(m1) = f(m2)}, and ker(f) is SΓ-congruence  for any SΓ-homomorphism 

in SΓ-act M. 

           

         The set of all SΓ-homomorphisms from M into N denoted by HomSΓ
(M, N). In 

particular if  M = N then HomSΓ
(M, M) denoted by EndSΓ

(M) and is called the 

endomorphism set of M. It is well - known that in module theory the endomorphism set forms 

a ring with identity and in act theory it forms a monoid. In gamma acts we have the following.   

Let M be a right Γ – unitary SΓ-act . Define a mapping 

 

EndSΓ
(M) × Γ × EndSΓ

(M) → EndSΓ
(M) 

Which (f, 𝛾, g) ↦ f𝛾g       

Where f𝛾g (m) = f(g(m)𝛾1) for all m ∈ M      

 

Then EndSΓ
(M)  is Γ-monoid. But in case M is 𝛼-unitary SΓ-act, then EndSΓ

(M) may not be 

Γ-monoid with respect the above mapping as in the following example  
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Example. (2.1).  Let S = {a, b, c, d, e, f} and Γ = {𝛼, 𝛽} and consider the multiplication 

tables as follows 

 

 

 

 

 

 

 

 

Then S is Γ-semigroup and has 𝛼- identity a,  we can consider S as an SΓ-act, it is a matter of 

checking that each SΓ-endomorphism of S is of the form  𝑥α
𝑙  where 𝑥α

𝑙 (m) = x𝛼m for all m 

and s in S. But EndSΓ
(S) is not Γ-monoid, since 𝑐α

𝑙  , 𝑑α
𝑙  ∈ EndSΓ

(S) then  𝑐α
𝑙 𝛽𝑑α

𝑙  is not in 

EndSΓ
(S),  indeed 

(𝑐α
𝑙 𝛽𝑑α

𝑙 )(e𝛼f) = (𝑐α
𝑙 𝛽𝑑α

𝑙 )(a) = 𝑐α
𝑙 (𝑑α

𝑙 (a)𝛽a) = 𝑐α
𝑙 (d𝛽a) =  𝑐α

𝑙 (a) = c and 

(𝑐α
𝑙 𝛽𝑑α

𝑙 )(e)𝛼f = 𝑐α
𝑙 (𝑑α

𝑙 (e)a)𝛼f  = 𝑐α
𝑙 (b𝛽a)𝛼f  = 𝑐α

𝑙 (f)𝛼f  = b𝛼f = d which implies that 

(𝑐α
𝑙 𝛽𝑑α

𝑙 )(e𝛼f)   ≠ (𝑐α
𝑙 𝛽𝑑α

𝑙 )(e)𝛼f. 

 

We consider conditions under which EndSΓ
(M) being  -monoid  for 𝛼-unitary SΓ-act M 

 

Definition. (2.2). An SΓ-act M is called Γ-commute if the following condition is hold  

m(s1𝛽s2 ) = m𝛽(s1𝛼s2) for all s1, s2 ∈ S, 𝛼, 𝛽 ∈ Γ and m ∈ M. 

Examples. (2.3).  

(1). Z as 𝑍𝑁- act with usual addition and multiplication is N-commute. 

(2). Let S = {(
a b
c d

) | a, b, c and d ∈ Z} and Γ = {(
a a
b b

) | a, and b ∈ Z}. Then S is SΓ-act  

which is not Γ-commute under usual multiplication of matrices. 

(3). Example (2.1) is not Γ – commute 

 

     The above definition depends only on elements in Γ which satisfies the condition of 

associative in SΓ-act. Firstly, we have the following, if M is Γ-commute 𝛼- unitary, then 

EndSΓ
(M) is 𝛼 - monoid. Indeed,  let f, g ∈ EndSΓ

(M) and 𝛾 ∈ Γ we will show f𝛾g ∈ 

EndSΓ
(M), for each m  ∈ M, 𝛼 ∈ Γ and s ∈ S,  (f𝛾g)(m𝛼s) = f(g(m𝛼s)𝛾1α) =  f((g(m)𝛼s)𝛾1α) 

=  f(g(m)𝛼(s𝛾1α)) = f(g(m)𝛼(1α 𝛾s)) = f(g(m)𝛾(1α 𝛼s)))  =  f((g(m)𝛾1α)𝛼s) = (f𝛾g)(m)𝛼s 

which implies that the above  multiplication  *  is absolute mapping which is belong to 

EndSΓ
(M). Secondly, we will show the associative law is hold. Let f, g, t ∈ EndSΓ

(M), 𝛽, 𝛾 ∈ 

Γ and for m ∈ M we have (f𝛾(g𝛽t))(m) = f ((g𝛽t)(m)𝛾1α ) = f (g(t(m)𝛽1α) = (f𝛾g)(t(m)𝛽1α) = 

((f𝛾g)𝛽t)(m) that is  f𝛾(g𝛽t) = (f𝛾g)𝛽t.  Then EndSΓ
(M) is 𝛼-monoid with 𝛼–identity 1α.    

 

 

 

𝛼 a b c d e f 

a a b c d e f 

b b a e f c d 

c c f a e d b 

d d e f a b c 

e e d b c f a 

f f c d b a e 

𝛽 a b c d e f 

a d e f a b c 

b f c d b a e 

c e d b c f a 

d a b c d e f 

e c f a e d b 

f b a e f c d 
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This preface the way to consider M as a gamma act over the 𝛼-monoid EndSΓ
(M) as follows:  

     For any right 𝛼-unitary Γ-commute SΓ-act M, we define the mapping 

 

EndSΓ
(M) × Γ × M → M defined by 

(f, 𝛾, m ) ↦ f(m𝛾1α)  for  m ∈ M, 𝛾 ∈ Γ and f ∈ EndSΓ
(M) 

 

To check the associative law, for f, g ∈ EndSΓ
(M), 𝛼, 𝛽 ∈ Γ and m ∈ M,  (f𝛼g)𝛽m = 

(f𝛼g)(m𝛽1α) = f(g(m𝛽1)𝛼1α) = f𝛼(g(m𝛽1α)) = f𝛼(g𝛽m), then M is also 𝛼- unitary left 

EndSΓ
(M)Γ – act . Now we have for any right SΓ-act can consider M is (EndSΓ

(M) – S )Γ – 

biact. Indeed, let f ∈ EndSΓ
(M), 𝛼, 𝛽 ∈ Γ, s ∈ S, and m ∈ M, then (f𝛼m)𝛽s = f(m𝛼1α)𝛽s = 

f(m)𝛼( 1α  𝛽s) = f(m)𝛽(s𝛼 1α )  = f(m𝛽(s𝛼 1α )) = f((m𝛽s)𝛼 1α ) = f𝛼(m𝛽s). Thus M is 

(EndSΓ
(M) – S )Γ – biact.  In case Γ-unitary SΓ-act M, it is clear directly EndSΓ

(M) is Γ-

monoid and hence M is (EndSΓ
(M) – S )Γ – biact.    

 

From now the word “SΓ-act” means Γ-commute right 𝛼 – unitary Γ-centered SΓ-act.  

 

3. Some types of gamma subacts 

     In this section we introduce the notions Γ-essential, Γ- meet SΓ-subacts, and we investigate 

the relationship between them, we give definition of another classes SΓ-subacts,  as Γ-retract, 

and Γ-direct summand.  

 

        Let M be an SΓ-act. An SΓ-subact N of M is called Γ-essential (or Γ-large) in M, if for 

any SΓ-homomorphism g : M → B (B is any SΓ-act) such that g|N is SΓ-monomorphism, then 

g is SΓ-monomorphism  itself.  We denote this situation by N ⊆𝛤−𝑒𝑠𝑠 M [1] 

         If this is a case, then M is called Γ-essential extension of N.  In [1] give a 

characterization of above definitions as follows:  An SΓ-act M is Γ-essential extension of SΓ-

subact N if and only if for every SΓ-congruence 𝜌 on M such that 𝜌 ≠ IM implies that 𝜌|N ≠IN.    

And he proved if N1, N2 be two SΓ-subacts of M with N1 ≤ N2  . Then N1 ⊆𝛤−𝑒𝑠𝑠  M  if and 

only if   N1 ⊆𝛤−𝑒𝑠𝑠 N2 and N2 ⊆𝛤−𝑒𝑠𝑠 M.                              

 

Definition. (3.1). Let M be an SΓ-act. An SΓ-subact N of M is called Γ-direct summand in M, 

if there exist an SΓ-subact L of M such that M = N ⋃ L and N ⋂ L = 0. 

 

Definition. (3.2). An SΓ-subact N of an SΓ-act M is called Γ-retract of M if there exists SΓ-

homomorphisms f : M → N and g : N → M  such that fg = 1N, we denote this  notion by M 
𝑓
⊂
𝑔
 

N, and f if is called Γ-retraction SΓ-homomorphism 
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Example. (3.3). Let S = {1, a, b, 0} and Γ = {𝛼, 𝛽} and consider the following  tables as 

follows 

 

 

 

 

 

 

 

Then S is right SΓ-act, let N = {a, b}. Then N is a Γ-retract SΓ-subact of S. 

 

Any Γ-retract SΓ-subact is Γ-direct summand, but the converse may not true as in the 

following example. 

 

Example. (3.4). It is well – known that 𝑍6 is ZN-act with multiplication mapping, then N = 

{0̅, 3̅} is Γ-retract, but not Γ-direct summand.  

 

Definition. (3.5). An SΓ-act M is called Γ- completely reducible, if it is disjoint union of 

simple SΓ-subacts, that mean M = ⋃ Mii∈I  and Mi is simple SΓ-subact of M for all i ∈ I, and 

Mi ⋂ Mj = 0 for i ≠ j. 

 

Proposition. (3.6). Let M be a Γ- completely reducible SΓ-act. Then 

1. If N is a SΓ-subact of M, then N is Γ-direct summand. 

2.  Any nonzero SΓ-subact of M contains a proper simple SΓ-subact.    

 

Proof.  1. Let N be an SΓ-act of a Γ- completely reducible SΓ-act M = ⋃ Mii∈I  where Mi is 

simple SΓ-act for all i ∈ I. Then there exists a subset I° of  I such that N    =    ⋃ Mii∈I°
 and 

hence M = ⋃ Mii∈I  = [⋃ Mii∈I°
 ] ⋃ [⋃ Mii∈𝑖°

𝑐  ] = N ⋃ ⋃ Mii∈𝑖°
𝑐                           

2. Let N be a proper nonzero SΓ-subact of a Γ- completely reducible SΓ-act M and let m (≠ 0) 

∈ M with m ∉ N. Consider the following set    

G = { L ≤ M | m ∉ L }. 

As an application of Zorn’s lemma, G has a maximal element B say.  By (1)  B is a Γ-direct 

summand SΓ-subact of  M, that is M = B  ⊍ C. We claim that C is a simple SΓ-subact of M 

which contained in N. If  C is not simple, then there is an SΓ-subact D of M which contained 

in C, so C = D ⊍ E, hence M = B ⊍ (D ⊍ E). By maximally of B in G, m ∈ B ⋃ D and m ∈ B 

⋃ E, then m ∈ E ⋂ D, which contradicts E ⋂ D = 0.                                                                                                     

       

 

Proposition. (3.7). Let S be an 𝛼-moniod. Then the following statements are equivalent 

1. Any 𝛼-unitary SΓ-act M is Γ- completely reducible. 

2. S is a Γ- completely reducible SΓ-act. 

Proof. (1)  → (2) it is clear (2) → (1). Let S = ⨃i∈I Vi where Vi is simple SΓ-subact of S for all 

i ∈ I. Since M = ∪𝑚∈𝑀 m𝛼S, then M = ∪𝑚∈𝑀 m(⨃i∈I Vi ) =  ∪𝑚∈𝑀 ⨃i∈I(m𝛼Vi). It is enough 

𝛼 1 a b 0 

1 1 a b 0 

a a a b 0 

b b b a 0 

0 0 0 0 0 

𝛽 1 a b 0 

1 1 b a 0 

a b b a 0 

b a a b 0 

0 0 0 0 0 
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show that m𝛼Vi is simple SΓ-subact  of M for all m ∈ M and i ∈ I. If  m𝛼Vi is not simple, then 

there is a nonzero SΓ-subact L of m𝛼Vi , hence there exists a nonzero element �̅� ∈ Vi such that 

m𝛼�̅� ∉ L, but m𝛼�̅� ∈ m𝛼Vi. Consider the following subset T of  Vi where T = {v ∈ Vi | m𝛼v ∈ 

L}.  Then clearly that T is SΓ-subact of Vi and T ≠ Vi , since �̅� ∉ T. Which contradicts the 

simplicity of  Vi.        

 

Corollary. (3.8).   Let M be an SΓ-act. Then M is a Γ- completely reducible if and only if any 

SΓ-subact N of M is Γ-direct summand.   

 

We will introduce another class of SΓ-subacts which contains that of Γ-essential SΓ-subacts.  

 

Definition. (3.9). Let M be an SΓ-act. An SΓ-subact N of M  is called Γ – meet large in M if 

for any nonzero SΓ-subact L of  M implies that N ⋂ L is nonzero. If this is the case we use the 

notions Γ-⋂-large, and write N ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 M.  If N is Γ-⋂-large in M, then M is called 

gamma meet extension of N. 

 

The following propositions give properties of  Γ-⋂-large SΓ-subacts.  

 

Proposition. (3.10). Let M be SΓ-act, and N, T be two SΓ-subacts of M. Then  

(1). If N, T ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 M then N ⋂ T ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 M, in particular the finite intersection of 

Γ-⋂-large SΓ-subacts of M is Γ-⋂-large. 

(2). Let N ≤ T ≤ M. Then N ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 T ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 M if and only if  N ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 T 

⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 M. 

(3). Let f ∈ HomSΓ
(M, L) and B be a Γ-⋂-large in L. Then f −1(B) is Γ-⋂-large in M. 

 

Proof. 1. Let A be a nonzero SΓ-subact of M, then A ⋂ N is nonzero SΓ-subact of M and 

hence  (A ⋂ N) ⋂ T is nonzero SΓ-subact of M.  

2.  Let   N ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 T ⊆𝛤−⋂ −𝑙𝑎𝑟𝑔𝑒 M, and H a nonzero SΓ-subact of M. Then N ⋂ H = ( 

N ⋂ T ) ⋂ H = N ⋂ (T ⋂ H) is nonzero SΓ-subact in M. Conversely, let H be any nonzero SΓ-

subact of M, then N ⋂ H ⊆ T ⋂ H and N ⋂ H is nonzero SΓ-subact, implies that T ⋂ H is 

nonzero SΓ-subact of M.  

3. without loss of generality we can assume that f is nonzero SΓ-homomorphism. Let H be any 

SΓ-subact of M with   f −1(B) ⋂ H = 0M. Then B ⋂ f(H) = 0L, but B is Γ-⋂-large in L, then 

f(H) = 0L  and hence  H ⊆ f −1(B).                                                                                   

 

     Let M be an SΓ-act and x, y, a, b ∈ M. Then the two elements x and y are`called drivable 

by the two elements a and b, if there exist elements s1, s2 ∈ S, and 𝛼1, 𝛼2 ∈ Γ such that x = 

a𝛼1s1   and    b𝛼2s2 = y 

 

Theorem. (3.11). Let M be an SΓ-act. If N is Γ-essential SΓ-subact of M, then N is Γ-⋂-large 

in M. 
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Proof.  Assume that N is a Γ-essential SΓ-subact of M, and A a nonzero SΓ-subact of M. For 

any distant elements a, b ∈ A. Define a relation 𝜌 on M by 𝜌 = W1 ⋃ IM ⋃ W2 where W1 = 

{(x, y) ∈ M × M | x and y are drivable by a and b} and W2  = {(a, b), (b, a)}. Clearly that 𝜌 is 

SΓ-congruence on M, and since 𝜌 ≠ IM.  Then 𝜌|N ≠ IN , there exists (m, n) ∈ 𝜌|N such that m, 

n ∈ N and  m ≠ n. Thus either (m, n) ∈ W1 or (m, n) ∈ W2. Since A is an SΓ-subact of M, then 

in either cases we have A ⋂ N is nonzero                  

 

Corollary. (3.12). Let M be SΓ-act and N be  Γ-⋂-large SΓ-subact in M. Then for all 𝛼 ∈ Γ 

and m ∈ M,  m−1𝛼N = {s ∈ S | m𝛼s ∈ N}  is Γ-⋂-large SΓ-subact in  S.  

 

         Let M be SΓ-act and 𝛼 ∈ Γ. We define the following relation on M by  

ΨM
α  = {(m, n) ∈ M × M | there exists Γ-⋂-large SΓ-subact H in S such that m𝛼h = n𝛼h for all h 

∈ H}. 

 ΨM
α  is called 𝛼-singular relation on M.  If M is a Γ-commute 𝛼-unitary, then  ΨM

α  is SΓ-

congruence on M. The proof of the following proposition is trivial, so we omitted.  

 

Proposition. (3.13). Let M be and  SΓ-act and N be an SΓ-subact of M. If   ΨM
α  = IM for some 

𝛼 ∈ Γ, then  ΨN
α (= (ΨM

α  )|𝑁)= IN.  

 

For the converse of   Proposition. (2.13) we have the following.  

 

Proposition. (3.14). If N is Γ-essential SΓ-subact of M and ΨN
α = IN for some 𝛼 ∈ Γ, then  ΨM

α  

= IM.            

Proof.    Let M be an SΓ-act and N be an SΓ-subact of N with and ΨN
α = IN for some 𝛼 ∈ Γ. 

Now if N is Γ-essential of M such that  ΨM
α  ≠ IM then we have a contradiction                                            

         

 

Definition. (3.15). Let M be an SΓ-act. An SΓ-subact N of M is called Γ-invariant in M if f(N) 

⊆ N for all f ∈ EndSΓ
(M). 

 

The following proposition gives a characterization of Γ- invariant SΓ-subact. 

  

Proposition. (3.16). Let M be an SΓ-act. The following statements are equivalent for an SΓ-

subact N of M.  

(1). N is Γ-invariant of M.  

(2). N is (EndSΓ
(M) – S )Γ – subbiact. 

 

Proof. (1) → (2). Let f ∈ EndSΓ
(M), n ∈ N, and 𝛽 ∈ Γ. Then f𝛽n = f(n𝛽1𝛼) ∈ N.  (2) → (1). 

Let f ∈ EndSΓ
(M) and n ∈ N then f(n) = f(n𝛼1𝛼) =  f𝛼n ∈ N.                        
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Lemma. (3.17). Let f and g ∈ EndSΓ
(M) and f, g be coincide one some Γ-⋂-large SΓ-subact 

of  M. If ΨM
α  = IM for some 𝛼 ∈ Γ, then f = g. 

 

Proof.  Let f, g : M → M be SΓ-homomorphism with f(n) = g(n) for all n ∈ N and N is Γ-⋂-

large SΓ-subact of M. Let m ∈ M then m−1𝛼N is Γ-⋂-large SΓ-subact of SΓ-act S. By using 

corollary (3.12) and f(m)𝛼s = f(m𝛼s) = g(m𝛼s) = g(m)𝛼s for all s ∈ m−1𝛼N imply that 

(g(m), f(m)) ∈ ΨM
α  = IM and  hence g(m) = f(m).                                                                            

 

4. Quasi – injective gamma act  

In the following we investigate a generalization of injectivity which contains both injective 

and weakly – injective gamma act, we will study the most of their properties.  

 

Definition. (4.1). Let M be an SΓ-act.  M is called quasi – injective, if for any SΓ-subact N of 

M and any f ∈ HomSΓ
(N, M), there exists an extension f ̅ ∈ EndSΓ

(M) to f, that is fi̅N = f, 

where  iN is the inclusion mapping of N into M. 

 

Example. (4.2).   

1. It is clear from the definition that any injective gamma act is quasi – injective. 

 

2.  Z6 is a quasi – injective ZN- act with multiplication mapping, but not injective  ( we 

will see this later). 

       3. Q as 𝑍𝑁- act with multiplication mapping is quasi – injective 

       4.   Let S = {0 , a, b, 1} and Γ = {𝛼, 𝛽},   Consider the multiplication tables.   

 

 

 

 

 

        

 

Then S is quasi – injective SΓ-act. {0}, {0, a}, {0, b}, {0, a, b}| and S itself are the only SΓ-

subacts of S  

5.  Z4  is 𝑍𝑁 – act with multiplication mapping is quasi – injective. 

 

Lemma. (4.3). Let M be an SΓ-act. If M is Γ- invariant SΓ-subact in E(M), then M is quasi – 

injective . 

Proof. Let N be an SΓ-subact of M and f ∈ HomSΓ
(N, M). By injectivtly of E(M), there is f ̅∈ 

EndSΓ
(E(M)), but f(̅M) ⊆ M, so f ̅|M   is an extension of f.                                              

         

 

 

𝛼 1 a b 0 

1 1 a b 0 

a a a a 0 

b b b b 0 

0 0 0 0 0 

𝛽 1 a b 0 

1 0 0 0 0 

a 0 0 0 0 

b 0 0 0 0 

0 0 0 0 0 
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For the converse we have the following.  

Proposition. (4.4). Let M be a quasi – injective SΓ-act with ΨM
α  = IM for some 𝛼 ∈ Γ.  Then M 

is Γ- invariant SΓ-subact of E(M).  

 

Proof. Let h ∈ EndSΓ
(E(M)). Since M is Γ-essential SΓ-subact of E(M), then by theorem 

(2.11) M is Γ-⋂-large in E(M), hence h−1 (M) ⋂ M is Γ-⋂-large SΓ-subact  of  E(M), 

proposition. (2.10).  Let N = h−1(M) ⋂ M, and define a : N → M by a(x) = h(x) for all x ∈ N. 

Quasi – injectivity of M implies that  there exists b ∈ EndSΓ
(M) to a such that a(n) = b(n) for 

all n ∈ N. Now by injectivtly of E(M) there exists an extension c ∈ EndSΓ
(E(M)) such that 

c(x) = b (x) for all x ∈ M, hence c(n) = b(n) = a(n) = h(n) for all n ∈ N. Since  ΨM
α  = IM, then 

by proposition. (2.14) we get that ΨE(M)
α  = IE(M). By the help of lemma (2.17) we get that c = 

b and so h(M) = c(M) ⊆ M.  This shows that M is Γ- invariant SΓ-subact of E(M)   

                                   

 

Theorem. (4.5).  Let M be an SΓ-act for which ΨM
α  = IM for some 𝛼 ∈ Γ.  Then the following 

are equivalent. 

1.  M is quasi – injective. 

2. EndSΓ
(M) ≅ EndSΓ

(E(M)) as Γ-semigroup.     

 

Proof. (2) → (1). We can consider M is (EndSΓ
(E(M))-S)𝛤 – subbiact of E(M), implies that 

M is Γ- invariant SΓ-subact of E(M). Thus M is Quasi – injective, lemma (4.4) (1) → (2).  

Define 𝜑 : EndSΓ
(M) → EndSΓ

(E(M)) as follows : for each 𝛼 ∈ EndSΓ
(M), by injectivity of 

E(M) there exists �̅� ∈EndSΓ
(E(M)), put 𝜑(𝛼) = �̅�. Let f, g ∈ EndSΓ

(M) and f = g. Then by 

injectivty of E(M) there exist f ̅ and g̅ ∈ EndSΓ
(E(M))  which is extension of  f, g respectively.  

lemma (3.17) implies that f ̅ = g̅ . For   f, g ∈ EndSΓ
(M) and 𝛾 ∈ Γ, (f𝛾g) = fγg̅̅ ̅̅  =  f ̅𝛾g̅ = 

(f)𝛾𝜑(g),  and hence 𝜑 is Γ-homomorphism. To show that 𝜑 is onto. Let g ∈ EndSΓ
(E(M). 

Then by  proposition. (4.4) M is  Γ – invariant in E(M), and hence g|𝑀 ∈ EndSΓ
(M) with 

𝜑(g|𝑀 ) = g. It is clear that 𝜑 is injective.           

 

Proposition. (4.6). A Γ- retract of quasi – injective gamma act is quasi – injective.  

 

Proof. Let M be a quasi – injective SΓ-act and N be a Γ-retract of M. Then there exist an SΓ-

homomorphisms g : M → N and f : N → M with gf = IN. Let L be an SΓ-subact of  N and 𝛼 ∈ 

HomSΓ
(L, N). By quasi – injectivtly of M there exists an extension �̅�  ∈ EndSΓ

(M) of 𝛼. 

Define   �̿� ∈ EndSΓ
(N) by �̿� = g�̅�iN   where iN is the inclusion mapping of N into M. This 

implies that �̿�iL = (g�̅�iN )iL = g�̅�(iN iL) = g(�̅�iL) = g(f𝛼) = (gf)𝛼 = IN𝛼 = 𝛼                           

        

 

Corollary. (4.7). Let {Mi | i ∈ I} be a family of SΓ-acts. If  ∏ M𝑖i∈I  is quasi – injective SΓ-act, 

then Mi is quasi – injective for all i ∈ I.                                                                                        

 

Proof.  It is straightforward since Mi is Γ- retract of ∏ M𝑖i∈I  for all i ∈ I                            
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Corollary. (4.8). Any Γ-direct summand SΓ-subact of quasi – injective SΓ-act is quasi 

injective, and hence every Γ- completely reducible SΓ-act is quasi - injective                      

          

 

It is well - known that every gamma act has a gamma injective envelope which is unique up 

to isomorphism. It is a natural question is arising, for every gamma act is there a quasi – 

injective  envelope? Let M be a 𝛼 – unitary SΓ-act with H = EndSΓ
(E(M)).  We define the 

following set  

 

H × Γ × M = {h𝛽m ∈ E(M) | h∈ H, 𝛽 ∈ Γ m ∈ M}. 

= {h(m𝛽1𝛼) ∈ E(M) | h ∈ H, 𝛽 ∈ Γ m ∈ M}. 

 

Clearly that M is Γ- invariant SΓ-subact of  H × Γ × M, by using lemma. (3.4) we have the 

following    

 

Proposition. (4.9). Let M be an SΓ-act. Then  H × Γ × M is quasi – injective SΓ-subact of 

E(M) which Γ- essential extension of M. 

 

      Let M be an SΓ-act. In the following theorem we investigate an some condition under 

which the set  H × Γ × M   is the smallest quasi – injective SΓ-act which contains M.   

 

Theorem. (4.10). Let M be an SΓ-act and ΨM
α  = IM for some 𝛼 ∈ Γ. Then H × Γ × M = 

⋂ 𝐵𝐵∈Ω   where 𝛺 = {B ≤  E(M) | B is quasi – injective  SΓ-act contain M}.  

 

Proof. Let P ∈ 𝛺. We will show that  H × Γ × M ⊆ 𝐻 × Γ × P ⊆ P. Let f ∈ H, p ∈ P, and 𝛽 ∈ 

Γ.  M is Γ-⋂-large SΓ-subact in E(M) and M  ≤  P  ≤  E(M), then  P is Γ-⋂-large in E(M) by 

proposition(2.10) and 0 ≠ P ⋂ f −1(P) is Γ-⋂-large SΓ-subact in E(M). Consider the mapping  : 

P ⋂ f −1(P) → P which define by 𝜑(x) = f(x) for all x ∈ P ⋂ f −1(P). By quasi – injectivitly of  

P, there exists �̅� ∈ EndSΓ
(P) such that �̅� extension of 𝜑. Injectivity of  E(M) implies that 

there exists �̆�  ∈ H which extends  �̅�,  thus �̆�(P) ≤ P and �̆�(x) = �̅�(x) = 𝜑(x) = f(x) for all x ∈ 

P ⋂ f −1(P). lemma (3.17) implies that f = �̆� and hence  f𝛽p ∈ P                               

 

       Let M be an SΓ-act, m ∈ M and 𝛾 ∈ Γ. Consider the following subset of  S × S  denoted  

by  Rs
γ
(m)  is defined by Rs

γ
(m)  = {(s, t) ∈ S × S | m𝛾s = m𝛾t}. Rs

γ
(m) is called  the right 

annihilator of m with respect to 𝛾 in S.     Let M be an SΓ-act. For each right Γ-ideal I of S. 

Define the set 

Ω(M) = {f : I → M | there are  m ∈ M and 𝛾 ∈ Γ with  Rs
γ
(m)  ∣ 𝐈  ⊆  ker(f)}, where Rs

γ
(m)  ∣ 𝐈   

= Rs
γ
(m) ⋂ (I × I). 

The following theorem gives a characterization of quasi – injective SΓ-acts which analogist to 

that of quasi – injective modules.    

 

Theorem. (4.11). An 𝛼- unitary  SΓ-act M is quasi – injective if and only if for any right Γ-

ideal I of S, and SΓ-homomorphism f : I → M with f ∈ Ω(M), there exists an extension SΓ-

homomorphism   g : S → M   of  f. 
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Proof. Let I be right Γ-ideal of Γ-semigroup S, and f : I → M be an SΓ-homomorphism such 

that f ∈ Ω(M). Then there exists m ∈ M, 𝛾 ∈ Γ such that Rs
γ
(m)  ∣𝐈   ⊆  ker(f). Put N = m𝛾I. 

Then N is an SΓ-subact of M. Define the mapping  g : N → M by g(m𝛾i) = f(i) for all m𝛾i ∈ 

N. g is well-defined, for  let m𝛾i1 = m𝛾i2 ∈ N then (i1, i2) ∈ Rs
γ
(m)  ⋂ I × I ⊆ ker(f) implies 

that f(i1) = f(i2) and it is clear that g is an SΓ-homomorphism. By quasi- injectivity of M, there 

exist extension g̅  : M → M of g. Define f ̅ : S → M by f ̅ (s) = g̅ (m𝛾s) for all s ∈ S. Clearly f ̅ 
is an SΓ-homomorphism and it is an extension to f.  Conversely. Let N be an SΓ-subact of M 

and f : N → M be an SΓ-homomorphism. Define 

 

Ѡ = {(C, h) | N ≤  C  ≤ M and h : C → M is an SΓ-homomorphism with h |N = f }. 

 

Then Ѡ is nonempty set and ordered the set Ѡ by (C1, f1) ≤ (C2, f2) if and only if C1 ≤ C2 

and f2 |C1 = f1 .  Zorn’s lemma  Implies that Ѡ has a maximal element (C0,f0)  say. If  C0 = M, 

then the proof is complete. Otherwise, let m0 ∈ M and m0 ∉ C0. Consider the right Γ-ideal   I 

= {s ∈ S | m0𝛼s ∈  C0 }. Define g : I → M by g(i) = f0(m0𝛼i) for all i ∈ I. Let (s1, s2) 

∈ Rs
α(m0) ⋂ I × I. Then m0𝛼s1 = m0𝛼s2 and hence f0(m0𝛼s1) = f0(m0𝛼s2) so g(s1) = g(s2). 

Thus  Rs
α(m0) ∣𝐈  ⊆ ker(g) and hence g ∈ Ω(M). The hypothesis implies that there exists      

g̅ : S → M such that  g̅  ∣𝐈  = g. Now define an SΓ-homomorphism  f0̅ : C0 ⋃ m0𝛼S → M by 

f0̅(c) = f0(c) for all c ∈ C0  and f0̅(m0𝛼s) = g̅(s) for all 𝑠 ∈ S. To show f0̅ is well-defined, let c 

= m0𝛼s ∈ C0  ⋂ m0𝛼S, then s ∈ I implies that f0̅(m0𝛼s) = g̅(s) = g(s) = f0(m0𝛼s) = f0(c) = 

f0̅(c), thus  f0̅ is well-defined and it is an easy matter to see that f0̅ is SΓ-homomorphism, so 

we have (C0,f0) ≤ (C0 ⋃ m0𝛼S, f0̅) which contradicts the maximally of (C0,f0) in Ѡ            

      

Corollary. (4.12). Every  weakly - injective SΓ-act is quasi- injective                                   

     

The converse of above corollary may not be true in general as in the following example.  

 

Example. (4.13). Let S = {1, a, b, 0} and Γ = { , 𝛽} and consider the following tables.  

 

 

 

 

 

 

 

Then S is 𝛼 – monoid. Let M = {z, x, c} and consider the mapping M × Γ × S → M which 

define by the tables  

 

 

 

 

 

𝛽 1 a b 0 

1 0 0 0 0 

a 0 0 0 0 

b 0 0 0 0 

0 0 0 0 0 

𝛼 1 a b 0 

1 1 a b 0 

a a a a 0 

b b b b 0 

0 0 0 0 0 
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Then M is an 𝛼 – unitary SΓ-act. Let I = {0, a, b}. Then I is a right Γ – ideal of S. Consider the 

mappiong     f : I → M which define by f(a) = z, f(b) = x, and f(0) = c. f  is an SΓ-

homomorphism  which has no extension, so M is not weakly - injective SΓ-act, but it is easy 

to see M is quasi injective, since N1 = {c}, N2 = { c, x} and N3 = {c, z} are the only nontrivial  

SΓ-subacts of M, and any SΓ-homomorphism form N1, N2, and N3 to M has an extension.  

 

For the converse, we consider the following concepts. 

 

Definition. (4.14). Let M be an SΓ-act,    ∈ Γ. Then M is called 

(1). 𝛼 – faithful. If  for all nonzero m ∈ M and t1 , t2 ∈ S, m𝛼t1 = m𝛼t2  implies that t1 = t2. 

(2). Γ- faithful. If for all nonzero m ∈ M, 𝛽 ∈ Γ and t1, t2 ∈ S,  m𝛽t1 = m𝛽t1 implies that t1 = t2. 

(3). Strongly 𝛼 - faithful. If there exists nonzero m ∈ M,  m𝛼t1 = m𝛼t1 implies that t1 = t2. 

 

Theorem. (4.15). Let M be a quasi – injective SΓ-act. If M is strongly 𝛼 –faithful for some   𝛼 

∈ Γ, then M is weakly – injective.  

 

Proof. Let I be a Γ – ideal of S and f : I → M be a nonzero  SΓ-homomorphism.  Then there 

exists a nonzero h =  f(i) ∈ M for some i ∈ I. Since M is strongly 𝛼 –faithful, then RS
α(h)  = IS, 

so  Rs
α(h)  ∣ 𝐈  ⊆  ker(f)  and hence f ∈ Ω(M). By quasi – injectivity of M there exists an 

extension SΓ-homomorphism g : S → M of  f,  Theorem. (3.11)                             

   

 

Proposition. (4.16).   Let {Mi | i ∈ I } be family of  SΓ-acts and ∐ Mii∈I  is quasi – injective. 

Then Mi is quasi – injective for all i ∈ I. 

 

Proof. Let I be a right Γ-ideal of S and f : I → Mi an SΓ-homomorphism such that f ∈ Ω(M), 

that is, there exists m ∈ Mi and 𝛾 ∈ Γ such that RS
γ
(m) ∣ 𝐈    ⊆  ker(f). By definition of ∐ Mii∈I ,  

m ∈ ∐ Mii∈I . Then quasi – injectivity of  ∐ Mii∈I   implies that exists an SΓ-homomorphism g : 

S → ∐ Mii∈I   such that g | I = iMi f, where iMi  is the injection mapping of  Mi into ∐ Mii∈I  . 
Consider the mapping h : S → Mi defined by h = PMi

g, hence h is an extension of f, where  

PMi
 is the projection mapping from  ∐ Mii∈I   onto  Mi .                                                  

          

 

Proposition. (4.17). Let M be a quasi – injective SΓ-act and  ΨM
α  = IM for some 𝛼 ∈ Γ. If  

E(M) = ⨃j∈I Ej. Then M =  ⨃j∈I (M ⋂Ej ). 

 

𝛼 1 a b 0 

x x x x c 

z z z z c 

c c c c c 

𝛽 1 a b 0 

x c c c c 

z c c c c 

c c c c c 
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Proof. By Proposition. (3.4)  M is Γ- invariant SΓ-subact  of  E(M) and hence for each i ∈ J 

the projection   SΓ-endomorphism  𝑃𝑖 : E(M) → 𝐸𝑖 ⊆ E(M)  is satisfy 𝑃𝑖(M) ⊆ M. That is 

mean M⋂ 𝐸𝑖  ⊆ M for all i ∈ I, and hence M =  ⨃𝑗∈𝐼 (M⋂𝐸𝑗 )                      
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