PAPER • OPEN ACCESS

Quasi - injective Gamma acts

To cite this article: Mehdi. S. Abbas et al 2021 J. Phys.: Conf. Ser. 1818 012047

View the article online for updates and enhancements.

You may also like

- Non-injective gas sensor arrays: identifying undetectable composition changes Nickolas Gantzler, E Adrian Henle, Praveen K Thallapally et al.
- (<u>.m)-N-Injective Modules</u> Akeel Ramadan Mehdi and Dhuha Taima Abd Al-Kadhim
- <u>Restriction and induction of</u> <u>indecomposable modules over the</u> <u>Temperlev–Lieb algebras</u> Jonathan Belletête, David Ridout and Yvan Saint-Aubin

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.142.197.198 on 27/04/2024 at 02:25

Quasi – injective Gamma acts

Mehdi. S. Abbas¹, Saad. A. Al – Saadi² and Abdulgader Faris³

¹Department of Mathematics, College of Education, Al-Zahraa University for women, Iraq,

²Department of Mathematics, College of Science, Al-Mustansiriyah University, Iraq,

³Department of Mathematics, College of Science, Al-Mustansiriyah University, Iraq.

¹mhdsabass@gmail.com

²saadalsaadi08@yahoo.com

³abdulqaderfaris2@gmail.com

Abstract. In this work we introduce the concept of quasi – injective gamma acts as a generalization of both injective and weakly injective gamma acts. In general we study the endomorphism set of gamma acts and certain types of gamma subacts which are used later. In the main part, we study basic properties of quasi - injective gamma acts and the effect of their endomorphism set to quasi – injective. We show that for any gamma act there is quasi - injective extension.

1. Introduction

A semigroup (S, \star) consist of a nonempty set S on which an associative operation \star is defined. The concept of semigroup has been generalized to the nontion of gamma semigroups in [2]. Let S and Γ be two nonempty sets. S is called Γ -semigroup if there exists a mapping S $\times \Gamma \times S \rightarrow S$, written $(s_1, \alpha, s_2) \mapsto s_1 \alpha s_2$ such that $(s_1 \alpha s_2)\beta s_3 = s_1 \alpha (s_2 \beta s_3)$ for all $s_1, s_2, s_3 \in S$ and $\alpha, \beta \in \Gamma$.

An element, denoted by, 0 in a Γ -semigroup S is called right (left) zero, if $0 = 0\alpha s$ (0 = $s\alpha 0$) for all $s \in S$ and $\alpha \in \Gamma$, and is called zero element if it is both right and left zero. An element, denoted by 1 in Γ -semigroup S is called Γ -identity, if $1\alpha s = s = s\alpha 1$ for all $s \in S$ and $\alpha \in \Gamma$.

For an arbitrary fixed element $\alpha \in \Gamma$. An element, denoted by 1_{α} in S is called α – identity if (1) $s\alpha 1_{\alpha} = s = 1_{\alpha} \alpha s$ (2) $s\beta 1_{\alpha} = 1_{\alpha} \beta s$ for all $s \in S$ and $\beta \in \Gamma \setminus \{\alpha\}$, then S is called a Γ monoid (an α -monoid) having a Γ -identity (an α -identity) 1 (1 $_{\alpha}$).

A nonempty subset A of a Γ -semigroup S is called right (left) Γ - ideal of S, if A Γ S \subseteq A $(S\Gamma A \subseteq A)$, where $X\Gamma Y = \{x\alpha y \mid x \in X, y \in Y, \alpha \in \Gamma \text{ and } a \in A\}$ for any nonempty subset X and Y of S.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

Let S and T be two Γ -semigroups. A mapping $g : S \to T$ is called Γ -homomorphism if $g(s_1 \alpha s_2) = g(s_1) \alpha g(s_2)$ for all $s_1, s_2 \in S$ and $\alpha \in \Gamma$.

A Γ -semigroup S is called commutative if $a\alpha b = b\alpha a$ for all $\alpha \in \Gamma$ and $a, b \in S$. Let S be a Γ -semigroup and $\alpha \in \Gamma$ be an arbitrary fixed element in Γ . An element x in S is called α -idempotent, if $x\alpha x = x$.

In [3]. The authors introduced a generalization of a Γ - semigroup as follows. Let S be a Γ -semigroup. A nonempty set M is called a right gamma act over S ,denoted by S_{Γ} -act, if there is a mapping $M \times \Gamma \times S \rightarrow M$ written $(m, \alpha, s) \rightarrow m\alpha s$ such that $(m\alpha s_1)\beta s_2 = m\alpha(s_1\beta s_2)$ for all $s_1, s_2 \in S$, $\alpha, \beta \in \Gamma$ and $m \in M$. Similarly we can define a left gamma act.

Let S and T be two Γ -semigroups. A nonempty set M is called $(T - S)_{\Gamma}$ -biact, if (1) M is a right S_{Γ} -act, (2) M is a left T_{Γ} -act, and (3) $t\alpha(m\beta s) = (t\alpha m)\beta s$, for all $m \in M$, $\alpha, \beta \in \Gamma$, $t \in T$, and $s \in S$,

A right S_{Γ} -act M is Γ – unitary (α – unitary, for arbitrary fixed $\alpha \in \Gamma$), if S has Γ identity 1 (α - identity 1_{α}) such that $m = m\beta 1$ for all $\beta \in \Gamma(m = m\alpha 1_{\alpha})$ A nonempty subset N of an S_{Γ} -act M is called S_{Γ} -subact, denoted by $N \leq M$, if $N\Gamma S \subseteq N$ where $N\Gamma S = \{n\alpha s \mid n \in$ N, $\alpha \in \Gamma$, and $s \in S$ }. A nonempty subset N of a (T-S)_{Γ}-biact M is called (T-S)_{Γ}-subbiact of M if N is an S_{Γ} -subact of the right S_{Γ} -act M and the left T_{Γ} -act of M.

An element Θ in a right S_{Γ} -act M is called a fixed element if $\Theta = \Theta \alpha s$ for all $\alpha \in \Gamma$ and $s \in S$. If S has a zero element 0. Then $m\alpha 0$ is a fixed element in M for all $m \in M$ and $\alpha \in \Gamma$. It is possible for S_{Γ} -act has more than one fixed elements. An S_{Γ} -act M is called Γ -centered, if it has a unique fixed element Θ , and in this case we say that Θ is the zero element of M, every S_{Γ} -subact N of M must contain Θ where S has zero 0. An S_{Γ} -act M is called simple S_{Γ} -act, if it contains no gamma subact other than Θ and M itself.

Let S be Γ -semigroup and { $M_i \mid i \in I$ } be an arbitrary family of Γ -centered right S_{Γ} -acts. Then the Cartesian product of M_i which is denoted by $\prod_{i \in I} M_i$ has the structure of a right S_{Γ} -act componentwisely. $\prod_{i \in I} M_i$ is called the product of M_i , $i \in I$. The direct sum $\bigoplus_{i \in I} M_i$ of { $M_i \mid i \in I$ } is a subset of $\prod_{i \in I} M_i$ which contain all element $(m_i)_{i \in I} \in \prod_{i \in I} M_i$ such that the set { $i \mid mi \neq \Theta_{M_i}$ } is finite. $\bigoplus_{i \in I} M_i$ is an S_{Γ} -subact of $\prod_{i \in I} M_i$.

Let $\{ M_i | i \in I \}$ be an arbitrary family of Γ -centered right S_{Γ} -acts. Then the coproduct of M_i , denoted by $\coprod_{i \in I} M_i$ is the the disjoint union $\bigcup_{i \in I} M_i$ of M_i . Clearly $\coprod_{i \in I} M_i$ is a right S_{Γ} -act.

Let S be Γ -semigroup and M and N two right S_{Γ} -acts. A mapping $f: M \to N$ is called S_{Γ} -homomorphism, if $f(m\alpha s) = f(m)\alpha s$ for all $m \in M$, $s \in S$ and $\alpha \in \Gamma$. An S_{Γ} -homomorphism is called S_{Γ} -monomorphism (S_{Γ} -epimorphism, S_{Γ} - isomorphism) if it is injective (surjective , bijective). We say that two right S_{Γ} -acts M and N is isomorphic, if there exist an S_{Γ} -isomorphism between them and denoted by $M \cong N$.

Iraqi Academics Syndicate International Cor	ference for Pure and Applie	d Sciences	IOP Publishing
Journal of Physics: Conference Series	1818 (2021) 012047	doi:10.1088/1	742-6596/1818/1/012047

Let M be a right S_{Γ} -act. An equivalence relation ρ on M is called S_{Γ} -congruence, if (a α s, b α s) $\in \rho$ for all $s \in S$, $\alpha \in \Gamma$, and (a, b) $\in \rho$. Then the set $M/\rho = \{x\rho \mid x \in M\}$ is called the quotient of M by ρ , where $x\rho$ is the equivalent class of x under ρ . M/ have the structure of righ gamma act by the mapping $(x\rho)\alpha s \mapsto (x\alpha s)\rho$ for all $x \in M$, $\alpha \in \Gamma$, and $s \in S$. Let N be an S_{Γ} -subact of an S_{Γ} -act M. The equivalence relation ρ_N on M which is define by $\rho_N =$ $\{(m, n) \in M \times M \mid m, n \in N \text{ or } m = n\}$ is an S_{Γ} -congruence on M, ρ_N is called Rees S_{Γ} congruence of M with respect to N.

Nowadays, A. A. Mustafa in his Ph. D thesis studying the concept of injective gamma acts. An S_{Γ} -act M is called injective if given any S_{Γ} -monomorphism $f: A \to B$ where A and B are any two S_{Γ} -acts and for any S_{Γ} -homomorphism $g: A \to M$, there exists an S_{Γ} -homomorphism $\overline{g}: B \to M$ such that $\overline{g}f = g$. He explicit a lot of properties of injective gamma acts analogous to that in the module and act theory, but there are properties in module theory not hold in gamma act theory. The most famous characterization of injective module is so – called is Baer's condition, in fact the criterion is not true in gamma acts. So he introduced a generalization of injective gamma acts which satisfies Baer's condition and called weakly injective. Finally he proved that for any gamma act, there exists an injective extension gamma act called the injective envelope and it is unique up to isomorphism.

2. Endomorphism of gamma acts.

In this section we define the endomorphism set of gamma act, and we show the set of endomorphism becomes gamma semigroup under some condition, after this, we can consider it as gamma biact by considering the set of endomorphism is gamma semigroup.

Let $f: M \to N$ be S_{Γ} -homomorphism. Then we defined the kernel of f as follows ker(f) = { $(m_1, m_2) \in M \times M \mid f(m_1) = f(m_2)$ }, and ker(f) is S_{Γ} -congruence for any S_{Γ} -homomorphism in S_{Γ} -act M.

The set of all S_{Γ} -homomorphisms from M into N denoted by $\operatorname{Hom}_{S_{\Gamma}}(M, N)$. In particular if M = N then $\operatorname{Hom}_{S_{\Gamma}}(M, M)$ denoted by $\operatorname{End}_{S_{\Gamma}}(M)$ and is called the endomorphism set of M. It is well - known that in module theory the endomorphism set forms a ring with identity and in act theory it forms a monoid. In gamma acts we have the following. Let M be a right Γ – unitary S_{Γ} -act. Define a mapping

 $\begin{aligned} \operatorname{End}_{S_{\Gamma}}(M) \times \Gamma \times \operatorname{End}_{S_{\Gamma}}(M) &\to \operatorname{End}_{S_{\Gamma}}(M) \\ \end{aligned}$ $\begin{aligned} & \text{Which } (f, \gamma, g) \mapsto f\gamma g \\ \end{aligned}$ $\begin{aligned} & \text{Where } f\gamma g \ (m) = f(g(m)\gamma 1) \ \text{for all } m \in M \end{aligned}$

Then $\operatorname{End}_{S_{\Gamma}}(M)$ is Γ -monoid. But in case M is α -unitary S_{Γ} -act, then $\operatorname{End}_{S_{\Gamma}}(M)$ may not be Γ -monoid with respect the above mapping as in the following example

Example. (2.1). Let S = {a, b, c, d, e, f} and $\Gamma = \{\alpha, \beta\}$ and consider the multiplication tables as follows

β	а	b	c	d	e	f	α	a	b	c	d	e
a	d	e	f	а	b	с	a	a	b	с	d	e
b	f	с	d	b	а	e	b	b	a	e	f	с
с	e	d	b	с	f	а	с	с	f	a	e	d
d	а	b	с	d	e	f	d	d	e	f	a	b
e	с	f	а	e	d	b	e	e	d	b	с	f
f	b	а	e	f	с	d	f	f	c	d	b	a

Then S is Γ -semigroup and has α - identity a, we can consider S as an S_{Γ}-act, it is a matter of checking that each S_r-endomorphism of S is of the form x_{α}^{l} where $x_{\alpha}^{l}(m) = x\alpha m$ for all m and s in S. But $\operatorname{End}_{S_{\Gamma}}(S)$ is not Γ -monoid, since c_{α}^{l} , $d_{\alpha}^{l} \in \operatorname{End}_{S_{\Gamma}}(S)$ then $c_{\alpha}^{l}\beta d_{\alpha}^{l}$ is not in $End_{Sr}(S)$, indeed

$$(c_{\alpha}^{l}\beta d_{\alpha}^{l})(e\alpha f) = (c_{\alpha}^{l}\beta d_{\alpha}^{l})(a) = c_{\alpha}^{l}(d_{\alpha}^{l}(a)\beta a) = c_{\alpha}^{l}(d\beta a) = c_{\alpha}^{l}(a) = c \text{ and}$$
$$(c_{\alpha}^{l}\beta d_{\alpha}^{l})(e)\alpha f = c_{\alpha}^{l}(d_{\alpha}^{l}(e)a)\alpha f = c_{\alpha}^{l}(b\beta a)\alpha f = c_{\alpha}^{l}(f)\alpha f = b\alpha f = d \text{ which implies that}$$
$$(c_{\alpha}^{l}\beta d_{\alpha}^{l})(e\alpha f) \neq (c_{\alpha}^{l}\beta d_{\alpha}^{l})(e)\alpha f.$$

We consider conditions under which $End_{Sr}(M)$ being -monoid for α -unitary S_{Γ} -act M

Definition. (2.2). An S_{Γ}-act M is called Γ -commute if the following condition is hold

 $m(s_1\beta s_2) = m\beta(s_1\alpha s_2)$ for all $s_1, s_2 \in S$, $\alpha, \beta \in \Gamma$ and $m \in M$.

Examples. (2.3).

(1). Z as Z_N - act with usual addition and multiplication is N-commute.

(2). Let $S = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c \text{ and } d \in Z \}$ and $\Gamma = \{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} \mid a, and b \in Z \}$. Then S is S_Γ-act which is not Γ -commute under usual multiplication of matrices. (3). Example (2.1) is not Γ – commute

The above definition depends only on elements in Γ which satisfies the condition of associative in S_{Γ} -act. Firstly, we have the following, if M is Γ -commute α - unitary, then $\operatorname{End}_{S_{\Gamma}}(M)$ is α - monoid. Indeed, let f, $g \in \operatorname{End}_{S_{\Gamma}}(M)$ and $\gamma \in \Gamma$ we will show $f\gamma g \in$ $\operatorname{End}_{S_{\Gamma}}(M)$, for each $m \in M$, $\alpha \in \Gamma$ and $s \in S$, $(f\gamma g)(m\alpha s) = f(g(m\alpha s)\gamma 1_{\alpha}) = f((g(m)\alpha s)\gamma 1_{\alpha})$ $= f(g(m)\alpha(s\gamma 1_{\alpha})) = f(g(m)\alpha(1_{\alpha} \gamma s)) = f(g(m)\gamma(1_{\alpha} \alpha s))) = f((g(m)\gamma 1_{\alpha})\alpha s) = (f\gamma g)(m)\alpha s$ which implies that the above multiplication * is absolute mapping which is belong to $\operatorname{End}_{S_{\Gamma}}(M)$. Secondly, we will show the associative law is hold. Let f, g, t $\in \operatorname{End}_{S_{\Gamma}}(M)$, $\beta, \gamma \in$ Γ and for $m \in M$ we have $(f\gamma(g\beta t))(m) = f((g\beta t)(m)\gamma 1_{\alpha}) = f(g(t(m)\beta 1_{\alpha}) = (f\gamma g)(t(m)\beta 1_{\alpha}) = ((f\gamma g)\beta t)(m)$ that is $f\gamma(g\beta t) = (f\gamma g)\beta t$. Then $\operatorname{End}_{S_{\Gamma}}(M)$ is α -monoid with α -identity 1_{α} . This preface the way to consider M as a gamma act over the α -monoid End_{Sr}(M) as follows:

For any right α -unitary Γ -commute S_{Γ}-act M, we define the mapping

$$\operatorname{End}_{S_{\Gamma}}(M) \times \Gamma \times M \to M \text{ defined by}$$

(f, γ , m) \mapsto f(m $\gamma 1_{\alpha}$) for m \in M, $\gamma \in \Gamma$ and f \in End_{Sr}(M)

To check the associative law, for f, $g \in End_{S_{\Gamma}}(M)$, α , $\beta \in \Gamma$ and $m \in M$, $(f\alpha g)\beta m = (f\alpha g)(m\beta 1_{\alpha}) = f(g(m\beta 1)\alpha 1_{\alpha}) = f\alpha(g(m\beta 1_{\alpha})) = f\alpha(g\beta m)$, then M is also α - unitary left $End_{S_{\Gamma}}(M)_{\Gamma} - act$. Now we have for any right S_Γ-act can consider M is $(End_{S_{\Gamma}}(M) - S)_{\Gamma} - biact$. Indeed, let $f \in End_{S_{\Gamma}}(M)$, α , $\beta \in \Gamma$, $s \in S$, and $m \in M$, then $(f\alpha m)\beta s = f(m\alpha 1_{\alpha})\beta s = f(m)\alpha(1_{\alpha} \beta s) = f(m)\beta(s\alpha 1_{\alpha}) = f(m\beta(s\alpha 1_{\alpha})) = f((m\beta s)\alpha 1_{\alpha}) = f\alpha(m\beta s)$. Thus M is $(End_{S_{\Gamma}}(M) - S)_{\Gamma} - biact$. In case Γ -unitary S_Γ-act M, it is clear directly $End_{S_{\Gamma}}(M)$ is Γ -monoid and hence M is $(End_{S_{\Gamma}}(M) - S)_{\Gamma} - biact$.

From now the word "S_{Γ}-act" means Γ -commute right α – unitary Γ -centered S_{Γ}-act.

3. Some types of gamma subacts

In this section we introduce the notions Γ -essential, Γ - meet S_{Γ} -subacts, and we investigate the relationship between them, we give definition of another classes S_{Γ} -subacts, as Γ -retract, and Γ -direct summand.

Let M be an S_{Γ} -act. An S_{Γ} -subact N of M is called Γ -essential (or Γ -large) in M, if for any S_{Γ} -homomorphism $g: M \to B$ (B is any S_{Γ} -act) such that $g|_N$ is S_{Γ} -monomorphism, then g is S_{Γ} -monomorphism itself. We denote this situation by N $\subseteq_{\Gamma-ess} M$ [1]

If this is a case, then M is called Γ -essential extension of N. In [1] give a characterization of above definitions as follows: An S_{Γ} -act M is Γ -essential extension of S_{Γ} -subact N if and only if for every S_{Γ} -congruence ρ on M such that $\rho \neq I_M$ implies that $\rho|_N \neq I_N$. And he proved if N_1 , N_2 be two S_{Γ} -subacts of M with $N_1 \leq N_2$. Then $N_1 \subseteq_{\Gamma-ess} M$ if and only if $N_1 \subseteq_{\Gamma-ess} N_2$ and $N_2 \subseteq_{\Gamma-ess} M$.

Definition. (3.1). Let M be an S_{Γ} -act. An S_{Γ} -subact N of M is called Γ -direct summand in M, if there exist an S_{Γ} -subact L of M such that $M = N \cup L$ and $N \cap L = 0$.

Definition. (3.2). An S_{Γ}-subact N of an S_{Γ}-act M is called Γ -retract of M if there exists S_{Γ}-homomorphisms f : M \rightarrow N and g : N \rightarrow M such that fg = 1_N, we denote this notion by M $_{c}^{f}$ N, and f if is called Γ -retraction S_{Γ}-homomorphism

Example. (3.3). Let S = {1, a, b, 0} and $\Gamma = {\alpha, \beta}$ and consider the following tables as follows

α	1		b			β	1	а	b	0
1	1		b	-	-	1	1	b	а	0
а	а	а	b	0	-	а	b	b	а	0
b			а		-	b	а	а	b	0
0	0	0	0	0	-	0	0	0	0	0

Then S is right S_{Γ} -act, let $N = \{a, b\}$. Then N is a Γ -retract S_{Γ} -subact of S.

Any Γ -retract S_{Γ} -subact is Γ -direct summand, but the converse may not true as in the following example.

Example. (3.4). It is well – known that Z_6 is Z_N -act with multiplication mapping, then $N = \{\overline{0}, \overline{3}\}$ is Γ -retract, but not Γ -direct summand.

Definition. (3.5). An S_{Γ} -act M is called Γ - completely reducible, if it is disjoint union of simple S_{Γ} -subacts, that mean $M = \bigcup_{i \in I} M_i$ and M_i is simple S_{Γ} -subact of M for all $i \in I$, and $M_i \cap M_j = 0$ for $i \neq j$.

Proposition. (3.6). Let M be a Γ - completely reducible S_{Γ} -act. Then

- 1. If N is a S_{Γ} -subact of M, then N is Γ -direct summand.
- 2. Any nonzero S_{Γ} -subact of M contains a proper simple S_{Γ} -subact.

Proof. 1. Let N be an S_{Γ} -act of a Γ - completely reducible S_{Γ} -act $M = \bigcup_{i \in I} M_i$ where M_i is simple S_{Γ} -act for all $i \in I$. Then there exists a subset I₀ of I such that $N = \bigcup_{i \in I_0} M_i$ and hence $M = \bigcup_{i \in I} M_i = [\bigcup_{i \in I_0} M_i] \cup [\bigcup_{i \in I_0^c} M_i] = N \cup \bigcup_{i \in I_0^c} M_i$

2. Let N be a proper nonzero S_{Γ} -subact of a Γ - completely reducible S_{Γ} -act M and let m ($\neq 0$) \in M with m \notin N. Consider the following set

$$G = \{ L \leq M \mid m \notin L \}.$$

As an application of Zorn's lemma, G has a maximal element B say. By (1) B is a Γ -direct summand S_{Γ} -subact of M, that is $M = B \cup C$. We claim that C is a simple S_{Γ} -subact of M which contained in N. If C is not simple, then there is an S_{Γ} -subact D of M which contained in C, so $C = D \cup E$, hence $M = B \cup (D \cup E)$. By maximally of B in G, $m \in B \cup D$ and $m \in B \cup U$ E, then $m \in E \cap D$, which contradicts $E \cap D = 0$.

Proposition. (3.7). Let S be an α -moniod. Then the following statements are equivalent

- **1.** Any α -unitary S_{Γ}-act M is Γ completely reducible.
- **2.** S is a Γ completely reducible S_{Γ}-act.

Proof. (1) \rightarrow (2) it is clear (2) \rightarrow (1). Let $S = \bigcup_{i \in I} V_i$ where V_i is simple S_{Γ} -subact of S for all $i \in I$. Since $M = \bigcup_{m \in M} m\alpha S$, then $M = \bigcup_{m \in M} m(\bigcup_{i \in I} V_i) = \bigcup_{m \in M} \bigcup_{i \in I} (m\alpha V_i)$. It is enough

show that $m\alpha V_i$ is simple S_{Γ} -subact of M for all $m \in M$ and $i \in I$. If $m\alpha V_i$ is not simple, then there is a nonzero S_{Γ} -subact L of $m\alpha V_i$, hence there exists a nonzero element $\bar{v} \in V_i$ such that $m\alpha \bar{v} \notin L$, but $m\alpha \bar{v} \in m\alpha V_i$. Consider the following subset T of V_i where $T = \{v \in V_i \mid m\alpha v \in L\}$. Then clearly that T is S_{Γ} -subact of V_i and $T \neq V_i$, since $\bar{v} \notin T$. Which contradicts the simplicity of V_i .

Corollary. (3.8). Let M be an S_{Γ} -act. Then M is a Γ - completely reducible if and only if any S_{Γ} -subact N of M is Γ -direct summand.

We will introduce another class of S_{Γ} -subacts which contains that of Γ -essential S_{Γ} -subacts.

Definition. (3.9). Let M be an S_{Γ} -act. An S_{Γ} -subact N of M is called Γ – meet large in M if for any nonzero S_{Γ} -subact L of M implies that N \cap L is nonzero. If this is the case we use the notions Γ - \cap -large, and write N $\subseteq_{\Gamma-\cap -large}$ M. If N is Γ - \cap -large in M, then M is called gamma meet extension of N.

The following propositions give properties of Γ - \cap -large S_{Γ}-subacts.

Proposition. (3.10). Let M be S_{Γ} -act, and N, T be two S_{Γ} -subacts of M. Then

(1). If N, T $\subseteq_{\Gamma \cap -large}$ M then N \cap T $\subseteq_{\Gamma \cap -large}$ M, in particular the finite intersection of $\Gamma \cap -large S_{\Gamma}$ -subacts of M is $\Gamma \cap -large$.

(2). Let $N \leq T \leq M$. Then $N \subseteq_{\Gamma \cap \cap -large} T \subseteq_{\Gamma \cap \cap -large} M$ if and only if $N \subseteq_{\Gamma \cap \cap -large} T \subseteq_{\Gamma \cap \cap -large} M$.

(3). Let $f \in Hom_{S_{\Gamma}}(M, L)$ and B be a Γ - \cap -large in L. Then $f^{-1}(B)$ is Γ - \cap -large in M.

Proof. 1. Let A be a nonzero S_{Γ} -subact of M, then A \cap N is nonzero S_{Γ} -subact of M and hence $(A \cap N) \cap T$ is nonzero S_{Γ} -subact of M.

2. Let $N \subseteq_{\Gamma-\bigcap -large} T \subseteq_{\Gamma-\bigcap -large} M$, and H a nonzero S_{Γ} -subact of M. Then $N \cap H = (N \cap T) \cap H = N \cap (T \cap H)$ is nonzero S_{Γ} -subact in M. Conversely, let H be any nonzero S_{Γ} -subact of M, then $N \cap H \subseteq T \cap H$ and $N \cap H$ is nonzero S_{Γ} -subact, implies that $T \cap H$ is nonzero S_{Γ} -subact of M.

3. without loss of generality we can assume that f is nonzero S_{Γ} -homomorphism. Let H be any S_{Γ} -subact of M with $f^{-1}(B) \cap H = 0_M$. Then $B \cap f(H) = 0_L$, but B is Γ - \cap -large in L, then $f(H) = 0_L$ and hence $H \subseteq f^{-1}(B)$.

Let M be an S_{Γ}-act and x, y, a, b \in M. Then the two elements x and y are`called drivable by the two elements a and b, if there exist elements $s_1, s_2 \in S$, and $\alpha_1, \alpha_2 \in \Gamma$ such that $x = a\alpha_1s_1$ and $b\alpha_2s_2 = y$

Theorem. (3.11). Let M be an S_{Γ} -act. If N is Γ -essential S_{Γ} -subact of M, then N is Γ - \cap -large in M.

Proof. Assume that N is a Γ -essential S_{Γ} -subact of M, and A a nonzero S_{Γ} -subact of M. For any distant elements a, $b \in A$. Define a relation ρ on M by $\rho = W_1 \cup I_M \cup W_2$ where $W_1 = \{(x, y) \in M \times M \mid x \text{ and } y \text{ are drivable by a and } b\}$ and $W_2 = \{(a, b), (b, a)\}$. Clearly that ρ is S_{Γ} -congruence on M, and since $\rho \neq I_M$. Then $\rho|_N \neq I_N$, there exists $(m, n) \in \rho|_N$ such that m, $n \in N$ and $m \neq n$. Thus either $(m, n) \in W_1$ or $(m, n) \in W_2$. Since A is an S_{Γ} -subact of M, then in either cases we have $A \cap N$ is nonzero

Corollary. (3.12). Let M be S_{Γ} -act and N be Γ - \cap -large S_{Γ} -subact in M. Then for all $\alpha \in \Gamma$ and $m \in M$, $m^{-1}\alpha N = \{s \in S \mid m\alpha s \in N\}$ is Γ - \cap -large S_{Γ} -subact in S.

Let M be S_{Γ} -act and $\alpha \in \Gamma$. We define the following relation on M by

 $\Psi_{M}^{\alpha} = \{(m, n) \in M \times M \mid \text{there exists } \Gamma \cap \text{-large } S_{\Gamma} \text{-subact } H \text{ in } S \text{ such that } m\alpha h = n\alpha h \text{ for all } h \in H \}.$

 Ψ_{M}^{α} is called α -singular relation on M. If M is a Γ -commute α -unitary, then Ψ_{M}^{α} is S_{Γ} congruence on M. The proof of the following proposition is trivial, so we omitted.

Proposition. (3.13). Let M be and S_Γ-act and N be an S_Γ-subact of M. If $\Psi_M^{\alpha} = I_M$ for some $\alpha \in \Gamma$, then $\Psi_N^{\alpha} (= (\Psi_M^{\alpha})|_N) = I_N$.

For the converse of Proposition. (2.13) we have the following.

Proposition. (3.14). If N is Γ -essential S_{Γ} -subact of M and $\Psi_{N}^{\alpha} = I_{N}$ for some $\alpha \in \Gamma$, then $\Psi_{M}^{\alpha} = I_{M}$.

Proof. Let M be an S_{Γ} -act and N be an S_{Γ} -subact of N with and $\Psi_{N}^{\alpha} = I_{N}$ for some $\alpha \in \Gamma$. Now if N is Γ -essential of M such that $\Psi_{M}^{\alpha} \neq I_{M}$ then we have a contradiction

Definition. (3.15). Let M be an S_{Γ} -act. An S_{Γ} -subact N of M is called Γ -invariant in M if $f(N) \subseteq N$ for all $f \in \text{End}_{S_{\Gamma}}(M)$.

The following proposition gives a characterization of Γ - invariant S_{Γ}-subact.

Proposition. (3.16). Let M be an S_{Γ} -act. The following statements are equivalent for an S_{Γ} -subact N of M.

(1). N is Γ -invariant of M.

(2). N is $(End_{S_{\Gamma}}(M) - S)_{\Gamma}$ – subbiact.

Proof. (1) \rightarrow (2). Let $f \in End_{S_{\Gamma}}(M)$, $n \in N$, and $\beta \in \Gamma$. Then $f\beta n = f(n\beta 1_{\alpha}) \in N$. (2) \rightarrow (1). Let $f \in End_{S_{\Gamma}}(M)$ and $n \in N$ then $f(n) = f(n\alpha 1_{\alpha}) = f\alpha n \in N$.

Lemma. (3.17). Let f and $g \in End_{S_{\Gamma}}(M)$ and f, g be coincide one some Γ - \cap -large S_{Γ} -subact of M. If $\Psi_{M}^{\alpha} = I_{M}$ for some $\alpha \in \Gamma$, then f = g.

Proof. Let f, g : $M \to M$ be S_{Γ} -homomorphism with f(n) = g(n) for all $n \in N$ and N is $\Gamma \cap$ -large S_{Γ} -subact of M. Let $m \in M$ then $m^{-1}\alpha N$ is $\Gamma \cap$ -large S_{Γ} -subact of S_{Γ} -act S. By using **corollary (3.12)** and $f(m)\alpha s = f(m\alpha s) = g(m\alpha s) = g(m)\alpha s$ for all $s \in m^{-1}\alpha N$ imply that $(g(m), f(m)) \in \Psi_{M}^{\alpha} = I_{M}$ and hence g(m) = f(m).

4. Quasi – injective gamma act

In the following we investigate a generalization of injectivity which contains both injective and weakly – injective gamma act, we will study the most of their properties.

Definition. (4.1). Let M be an S_{Γ} -act. M is called quasi – injective, if for any S_{Γ} -subact N of M and any $f \in \text{Hom}_{S_{\Gamma}}(N, M)$, there exists an extension $\overline{f} \in \text{End}_{S_{\Gamma}}(M)$ to f, that is $\overline{fi}_N = f$, where i_N is the inclusion mapping of N into M.

Example. (4.2).

- 1. It is clear from the definition that any injective gamma act is quasi injective.
- 2. Z_6 is a quasi injective Z_N act with multiplication mapping, but not injective (we will see this later).
- 3. Q as Z_N act with multiplication mapping is quasi injective
- 4. Let $S = \{0, a, b, 1\}$ and $\Gamma = \{\alpha, \beta\}$, Consider the multiplication tables.

					1	i	i	i
	a	b	0	β	1	а	b	(
;	a	b	0	1	0	0	0	(
;	a	a	0	a	0	0	0	(
1	b	b	0	b	0	0	0	(
(0	0	0	0	0	0	0	
		a a b	abaabb	a b 0 a a 0 b b 0	a b 0 a a 0 b b 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Then S is quasi – injective S_{Γ} -act. {0}, {0, a}, {0, b}, {0, a, b}| and S itself are the only S_{Γ} -subacts of S

5. Z_4 is Z_N – act with multiplication mapping is quasi – injective.

Lemma. (4.3). Let M be an S_{Γ} -act. If M is Γ - invariant S_{Γ} -subact in E(M), then M is quasi – injective .

Proof. Let N be an S_{Γ} -subact of M and $f \in \text{Hom}_{S_{\Gamma}}(N, M)$. By injectively of E(M), there is $\overline{f} \in \text{End}_{S_{\Gamma}}(E(M))$, but $\overline{f}(M) \subseteq M$, so $\overline{f}|_{M}$ is an extension of f.

For the converse we have the following.

Proposition. (4.4). Let M be a quasi – injective S_{Γ} -act with $\Psi_{M}^{\alpha} = I_{M}$ for some $\alpha \in \Gamma$. Then M is Γ - invariant S_{Γ} -subact of E(M).

Proof. Let $h \in \text{End}_{S_{\Gamma}}(E(M))$. Since M is Γ -essential S_{Γ} -subact of E(M), then by theorem (2.11) M is Γ - \cap -large in E(M), hence $h^{-1}(M) \cap M$ is Γ - \cap -large S_{Γ} -subact of E(M), proposition. (2.10). Let $N = h^{-1}(M) \cap M$, and define $a : N \to M$ by a(x) = h(x) for all $x \in N$. Quasi – injectivity of M implies that there exists $b \in \text{End}_{S_{\Gamma}}(M)$ to a such that a(n) = b(n) for all $n \in N$. Now by injectivity of E(M) there exists an extension $c \in \text{End}_{S_{\Gamma}}(E(M))$ such that c(x) = b(x) for all $x \in M$, hence c(n) = b(n) = a(n) = h(n) for all $n \in N$. Since $\Psi_{M}^{\alpha} = I_{M}$, then by proposition. (2.14) we get that $\Psi_{E(M)}^{\alpha} = I_{E(M)}$. By the help of lemma (2.17) we get that c = b and so $h(M) = c(M) \subseteq M$. This shows that M is Γ - invariant S_{Γ} -subact of E(M)

Theorem. (4.5). Let M be an S_{Γ} -act for which $\Psi_{M}^{\alpha} = I_{M}$ for some $\alpha \in \Gamma$. Then the following are equivalent.

- 1. M is quasi injective.
- 2. $\operatorname{End}_{S_{\Gamma}}(M) \cong \operatorname{End}_{S_{\Gamma}}(E(M))$ as Γ -semigroup.

Proof. (2) \rightarrow (1). We can consider M is $(\text{End}_{S_{\Gamma}}(E(M))-S)_{\Gamma}$ – subbiact of E(M), implies that M is Γ - invariant S_{Γ} -subact of E(M). Thus M is Quasi – injective, lemma (4.4) (1) \rightarrow (2). Define $\varphi : \text{End}_{S_{\Gamma}}(M) \rightarrow \text{End}_{S_{\Gamma}}(E(M))$ as follows : for each $\alpha \in \text{End}_{S_{\Gamma}}(M)$, by injectivity of E(M) there exists $\overline{\alpha} \in \text{End}_{S_{\Gamma}}(E(M))$, put $\varphi(\alpha) = \overline{\alpha}$. Let f, $g \in \text{End}_{S_{\Gamma}}(M)$ and f = g. Then by injective of E(M) there exist \overline{f} and $\overline{g} \in \text{End}_{S_{\Gamma}}(E(M))$ which is extension of f, g respectively. lemma (3.17) implies that $\overline{f} = \overline{g}$. For f, $g \in \text{End}_{S_{\Gamma}}(M)$ and $\gamma \in \Gamma$, $(f\gamma g) = \overline{f\gamma g} = \overline{f} \gamma \overline{g} =$ $(f)\gamma\varphi(g)$, and hence φ is Γ -homomorphism. To show that φ is onto. Let $g \in \text{End}_{S_{\Gamma}}(E(M)$. Then by proposition. (4.4) M is Γ – invariant in E(M), and hence $g|_{M} \in \text{End}_{S_{\Gamma}}(M)$ with $\varphi(g|_{M}) = g$. It is clear that φ is injective.

Proposition. (4.6). A Γ - retract of quasi – injective gamma act is quasi – injective.

Proof. Let M be a quasi – injective S_{Γ} -act and N be a Γ -retract of M. Then there exist an S_{Γ} -homomorphisms $g : M \to N$ and $f : N \to M$ with $gf = I_N$. Let L be an S_{Γ} -subact of N and $\alpha \in Hom_{S_{\Gamma}}(L, N)$. By quasi – injectivtly of M there exists an extension $\overline{\alpha} \in End_{S_{\Gamma}}(M)$ of α . Define $\overline{\alpha} \in End_{S_{\Gamma}}(N)$ by $\overline{\alpha} = g\overline{\alpha}i_N$ where i_N is the inclusion mapping of N into M. This implies that $\overline{\alpha}i_L = (g\overline{\alpha}i_N)i_L = g\overline{\alpha}(i_Ni_L) = g(\overline{\alpha}i_L) = g(f\alpha) = (gf)\alpha = I_N\alpha = \alpha$

Corollary. (4.7). Let $\{M_i | i \in I\}$ be a family of S_{Γ} -acts. If $\prod_{i \in I} M_i$ is quasi – injective S_{Γ} -act, then M_i is quasi – injective for all $i \in I$.

Proof. It is straightforward since M_i is Γ - retract of $\prod_{i \in I} M_i$ for all $i \in I$

Corollary. (4.8). Any Γ -direct summand S_{Γ} -subact of quasi – injective S_{Γ} -act is quasi injective, and hence every Γ - completely reducible S_{Γ} -act is quasi - injective

It is well - known that every gamma act has a gamma injective envelope which is unique up to isomorphism. It is a natural question is arising, for every gamma act is there a quasi – injective envelope? Let M be a α – unitary S_{Γ}-act with H = End_{S_{$\Gamma}}(E(M))$. We define the following set</sub></sub>

$$\begin{split} \mathsf{H} \times \Gamma \times \mathsf{M} &= \{ \mathsf{h} \beta \mathsf{m} \in \mathsf{E}(\mathsf{M}) \mid \mathsf{h} \in \mathsf{H}, \, \beta \in \Gamma \; \mathsf{m} \in \mathsf{M} \}. \\ &= \{ \mathsf{h}(\mathsf{m} \beta \mathbf{1}_{\alpha}) \in \mathsf{E}(\mathsf{M}) \mid \mathsf{h} \in \mathsf{H}, \, \beta \in \Gamma \; \mathsf{m} \in \mathsf{M} \}. \end{split}$$

Clearly that M is Γ - invariant S_{Γ} -subact of $H \times \Gamma \times M$, by using lemma. (3.4) we have the following

Proposition. (4.9). Let M be an S_{Γ} -act. Then $H \times \Gamma \times M$ is quasi – injective S_{Γ} -subact of E(M) which Γ - essential extension of M.

Let M be an S_{Γ} -act. In the following theorem we investigate an some condition under which the set $H \times \Gamma \times M$ is the smallest quasi – injective S_{Γ} -act which contains M.

Theorem. (4.10). Let M be an S_{Γ} -act and $\Psi_{M}^{\alpha} = I_{M}$ for some $\alpha \in \Gamma$. Then $H \times \Gamma \times M = \bigcap_{B \in \Omega} B$ where $\Omega = \{B \le E(M) \mid B \text{ is quasi - injective } S_{\Gamma}\text{-act contain } M\}$.

Proof. Let $P \in \Omega$. We will show that $H \times \Gamma \times M \subseteq H \times \Gamma \times P \subseteq P$. Let $f \in H$, $p \in P$, and $\beta \in \Gamma$. M is Γ - \cap -large S_{Γ} -subact in E(M) and $M \leq P \leq E(M)$, then P is Γ - \cap -large in E(M) by proposition(2.10) and $0 \neq P \cap f^{-1}(P)$ is Γ - \cap -large S_{Γ} -subact in E(M). Consider the mapping : $P \cap f^{-1}(P) \to P$ which define by $\varphi(x) = f(x)$ for all $x \in P \cap f^{-1}(P)$. By quasi – injectivitly of P, there exists $\overline{\varphi} \in End_{S_{\Gamma}}(P)$ such that $\overline{\varphi}$ extension of φ . Injectivity of E(M) implies that there exists $\overline{\varphi} \in H$ which extends $\overline{\varphi}$, thus $\overline{\varphi}(P) \leq P$ and $\overline{\varphi}(x) = \overline{\varphi}(x) = f(x)$ for all $x \in P \cap f^{-1}(P)$. lemma (3.17) implies that $f = \overline{\varphi}$ and hence $f\beta p \in P$

Let M be an S_{Γ} -act, $m \in M$ and $\gamma \in \Gamma$. Consider the following subset of $S \times S$ denoted by $R_s^{\gamma}(m)$ is defined by $R_s^{\gamma}(m) = \{(s, t) \in S \times S \mid m\gamma s = m\gamma t\}$. $R_s^{\gamma}(m)$ is called the right annihilator of m with respect to γ in S. Let M be an S_{Γ} -act. For each right Γ -ideal I of S. Define the set

 $\Omega(M) = \{f : I \to M \mid \text{there are } m \in M \text{ and } \gamma \in \Gamma \text{ with } R_s^{\gamma}(m) \mid_I \subseteq \text{ker}(f)\}, \text{ where } R_s^{\gamma}(m) \mid_I = R_s^{\gamma}(m) \cap (I \times I).$

The following theorem gives a characterization of quasi – injective S_{Γ} -acts which analogist to that of quasi – injective modules.

Theorem. (4.11). An α - unitary S_{Γ} -act M is quasi – injective if and only if for any right Γ ideal I of S, and S_{Γ} -homomorphism $f : I \to M$ with $f \in \Omega(M)$, there exists an extension S_{Γ} homomorphism $g : S \to M$ of f.

Iraqi Academics Syndicate International Confer	ence for Pure and Applie	d Sciences	IOP Publishing
Journal of Physics: Conference Series	1818 (2021) 012047	doi:10.1088/174	2-6596/1818/1/012047

Proof. Let I be right Γ -ideal of Γ -semigroup S, and $f: I \to M$ be an S_{Γ} -homomorphism such that $f \in \Omega(M)$. Then there exists $m \in M$, $\gamma \in \Gamma$ such that $R_s^{\gamma}(m) \mid_{I} \subseteq \text{ker}(f)$. Put $N = m\gamma I$. Then N is an S_{Γ} -subact of M. Define the mapping $g: N \to M$ by $g(m\gamma i) = f(i)$ for all $m\gamma i \in N$. g is well-defined, for let $m\gamma i_1 = m\gamma i_2 \in N$ then $(i_1, i_2) \in R_s^{\gamma}(m) \cap I \times I \subseteq \text{ker}(f)$ implies that $f(i_1) = f(i_2)$ and it is clear that g is an S_{Γ} -homomorphism. By quasi- injectivity of M, there exist extension $\overline{g} : M \to M$ of g. Define $\overline{f} : S \to M$ by $\overline{f}(s) = \overline{g}(m\gamma s)$ for all $s \in S$. Clearly \overline{f} is an S_{Γ} -homomorphism and it is an extension to f. Conversely. Let N be an S_{Γ} -subact of M and $f: N \to M$ be an S_{Γ} -homomorphism. Define

 $GD = \{(C, h) \mid N \leq C \leq M \text{ and } h : C \rightarrow M \text{ is an } S_{\Gamma}\text{-homomorphism with } h \mid_N = f \}.$

Then GD is nonempty set and ordered the set GD by $(C_1, f_1) \leq (C_2, f_2)$ if and only if $C1 \leq C2$ and $f_2 |_{C1} = f_1$. Zorn's lemma Implies that GD has a maximal element (C_0, f_0) say. If $C_0 = M$, then the proof is complete. Otherwise, let $m_0 \in M$ and $m_0 \notin C_0$. Consider the right Γ -ideal I = {s $\in S | m_0 \alpha s \in C_0$ }. Define g : I $\rightarrow M$ by g(i) = $f_0(m_0 \alpha i)$ for all i \in I. Let (s_1, s_2) $\in R_s^{\alpha}(m_0) \cap I \times I$. Then $m_0 \alpha s_1 = m_0 \alpha s_2$ and hence $f_0(m_0 \alpha s_1) = f_0(m_0 \alpha s_2)$ so g(s_1) = g(s_2). Thus $R_s^{\alpha}(m_0) |_I \subseteq \text{ker}(g)$ and hence $g \in \Omega(M)$. The hypothesis implies that there exists $\overline{g}: S \rightarrow M$ such that $\overline{g} |_I = g$. Now define an S $_{\Gamma}$ -homomorphism $\overline{f_0}: C_0 \cup m_0 \alpha S \rightarrow M$ by $\overline{f_0}(c) = f_0(c)$ for all $c \in C_0$ and $\overline{f_0}(m_0 \alpha s) = \overline{g}(s)$ for all $s \in S$. To show $\overline{f_0}$ is well-defined, let c = $m_0 \alpha s \in C_0 \cap m_0 \alpha S$, then $s \in I$ implies that $\overline{f_0}(m_0 \alpha s) = \overline{g}(s) = g(s) = f_0(m_0 \alpha s) = f_0(c) = f_0(c)$, thus $\overline{f_0}$ is well-defined and it is an easy matter to see that $\overline{f_0}$ is S $_{\Gamma}$ -homomorphism, so we have $(C_0, f_0) \leq (C_0 \cup m_0 \alpha S, \overline{f_0})$ which contradicts the maximally of (C_0, f_0) in GD

Corollary. (4.12). Every weakly - injective S_{Γ} -act is quasi- injective

The converse of above corollary may not be true in general as in the following example.

Example. (4.13). Let S = {1, a, b, 0} and $\Gamma = \{ , \beta \}$ and consider the following tables.

	1	a	b	0	β	1	a	b
1	1	a	b	0	1	0	0	0
a	а	а	а	0	a	0	0	0
b	b	b	b	0	b	0	0	0
0	0	0	0	0	0	0	0	0

Then S is α – monoid. Let M = {z, x, c} and consider the mapping M × Γ × S → M which define by the tables

α	1	а	b	0		β	1	а	b	0
х	х	х	х	c		х	с	с	с	с
Z	Z	Z	Z	с		Z	с	с	с	c
с	с	с	с	с	_	c	с	с	с	c

Then M is an α – unitary S_Γ-act. Let I = {0, a, b}. Then I is a right Γ – ideal of S. Consider the mappiong f : I \rightarrow M which define by f(a) = z, f(b) = x, and f(0) = c. f is an S_Γ-homomorphism which has no extension, so M is not weakly - injective S_Γ-act, but it is easy to see M is quasi injective, since N₁ = {c}, N₂ = { c, x} and N₃ = {c, z} are the only nontrivial S_Γ-subacts of M, and any S_Γ-homomorphism form N₁, N₂, and N₃ to M has an extension.

For the converse, we consider the following concepts.

Definition. (4.14). Let M be an S_{Γ} -act, $\in \Gamma$. Then M is called

- (1). α faithful. If for all nonzero m \in M and t₁, t₂ \in S, m α t₁ = m α t₂ implies that t₁ = t₂.
- (2). Γ faithful. If for all nonzero $m \in M$, $\beta \in \Gamma$ and $t_1, t_2 \in S$, $m\beta t_1 = m\beta t_1$ implies that $t_1 = t_2$.
- (3). Strongly α faithful. If there exists nonzero $m \in M$, $m\alpha t_1 = m\alpha t_1$ implies that $t_1 = t_2$.

Theorem. (4.15). Let M be a quasi – injective S_{Γ} -act. If M is strongly α –faithful for some $\alpha \in \Gamma$, then M is weakly – injective.

Proof. Let I be a Γ – ideal of S and f : I \rightarrow M be a nonzero S_{Γ}-homomorphism. Then there exists a nonzero h = f(i) \in M for some i \in I. Since M is strongly α –faithful, then $R_{S}^{\alpha}(h) = I_{S}$, so $R_{S}^{\alpha}(h) \mid_{I} \subseteq \text{ker}(f)$ and hence $f \in \Omega(M)$. By quasi – injectivity of M there exists an extension S_{Γ}-homomorphism g : S \rightarrow M of f, **Theorem. (3.11**)

Proposition. (4.16). Let $\{M_i | i \in I\}$ be family of S_{Γ} -acts and $\coprod_{i \in I} M_i$ is quasi – injective. Then M_i is quasi – injective for all $i \in I$.

Proof. Let I be a right Γ -ideal of S and $f: I \to M_i$ an S_{Γ} -homomorphism such that $f \in \Omega(M)$, that is, there exists $m \in M_i$ and $\gamma \in \Gamma$ such that $R_S^{\gamma}(m) |_I \subseteq \ker(f)$. By definition of $\coprod_{i \in I} M_i$, $m \in \coprod_{i \in I} M_i$. Then quasi – injectivity of $\coprod_{i \in I} M_i$ implies that exists an S_{Γ} -homomorphism $g: S \to \coprod_{i \in I} M_i$ such that $g |_I = i_{M_i} f$, where i_{M_i} is the injection mapping of M_i into $\coprod_{i \in I} M_i$. Consider the mapping $h: S \to M_i$ defined by $h = P_{M_i}g$, hence h is an extension of f, where P_{M_i} is the projection mapping from $\coprod_{i \in I} M_i$ onto M_i .

Proposition. (4.17). Let M be a quasi – injective S_{Γ} -act and $\Psi_{M}^{\alpha} = I_{M}$ for some $\alpha \in \Gamma$. If $E(M) = \bigcup_{i \in I} E_{i}$. Then $M = \bigcup_{i \in I} (M \cap E_{i})$.

Proof. By Proposition. (3.4) M is Γ - invariant S_{Γ} -subact of E(M) and hence for each $i \in J$ the projection S_{Γ} -endomorphism $P_i : E(M) \to E_i \subseteq E(M)$ is satisfy $P_i(M) \subseteq M$. That is mean $M \cap E_i \subseteq M$ for all $i \in I$, and hence $M = \bigcup_{j \in I} (M \cap E_j)$

References

- [1] A. A. Mustafa, M. S. Abass, and Saad. A. Al-Saadi, Injective gamma acts.
- [2] M. K sen. (1984), On gamma semigroups. New York, vol 9,1
- [3] M. S. Abass and Abdulqader faris., 2016, Gamma Acts *International Journal of Advanced Research* **4** pp 1592-1601.