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Abstract. An overview of the parallel algorithms for ab initio molecular dynamics (AIMD) 
used in the NWChem program package is presented, including recent developments for 
computing exact exchange.  These algorithms make use of a two-dimensional processor 
geometry proposed by Gygi et al. for use in AIMD algorithms.  Using this strategy, a highly 
scalable algorithm for exact exchange has been developed and incorporated into AIMD.  This 
new algorithm for exact exchange employs an incomplete butterfly to overcome the bottleneck 
associated with exact exchange term, and it makes judicious use of data replication. Initial 
testing has shown that this algorithm can scale to over 20,000 CPUs even for a modest size 
simulation. 

1.  Introduction 
The ability to predict the properties of complex materials important in toxic waste disposal, disease 
treatment, efficient chemical processing, and electronic device performance optimization, among 
others, is of great importance to DOE’s efforts to address the nation’s energy and environmental 
problems. Because the required properties are highly sensitive to complex interactions at the 
fundamental electronic structure level (e.g., chemical bond saturation, shell structure), reliable 
parameter-free simulation of their properties requires methods based directly on the solution to the 
electronic structure problem posed by the electronic Schrödinger equation. Development of methods at 
the fundamental electronic structure level also is important in light of DOE’s investment in large-scale 
facilities such as the synchrotron light and neutron sources. These new probes are providing an 
unprecedented level of detail at the atomic and molecular scale. However, without appropriate theories 
or models, many of these new measurements cannot be readily interpreted. 
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The method of ab initio molecular dynamics (AIMD) enables researchers to treat the dynamics of 

these systems while retaining a first-principles-based description of their interactions [3-8]. This 
approach is similar to classical molecular dynamics where the motions of the atoms and molecules are 
simulated over a period of time, but here the interactions between the atoms are calculated directly 
from the electronic Schrödinger equation, rather than from empirical interaction potentials or force 
fields.  That is, at every step of a molecular dynamics simulation the locations of the electrons in the 
atoms and molecules are determined by solving a suitable approximation to the electronic Schrödinger 
equation. The instantaneous forces on the atoms are then determined by calculating their electrostatic 
forces from their interaction with other ions and electrons in the system.  

An example of the use of AIMD simulations is for the study of hydrated radionuclides under 
extreme conditions. A major obstacle to the development of nuclear power is the ability to safely store 
highly dangerous waste materials containing uranium and other radionuclides [9-11]. Most current 
storage strategies are designed to store waste in saturated and unsaturated geological formations [12-
15]. Stored in this way, the most likely means for uranium to migrate into the biosphere is through 
groundwater contact with containment canisters, resulting in a solvated UO2

2+ cation (or complexes) 
[12]. To reliably predict behavior of the radionuclide (e.g., uranium, thorium, and plutonium) waste 
products of nuclear power production over the range of conditions encountered in a storage facility 
requires a theory based at the most fundamental level on the electronic Schrödinger equation. In figure 
1, results from a recent AIMD simulation of the UO2

2+ cation in aqueous solution are shown [2]. Even 
though the UO2

2+ cation has been studied extensively over the years using a variety of static ab initio 
(e.g. static coupled cluster calculations) and classical molecular dynamics methods, these prior 
simulations either have been incomplete or inaccurate.  Static ab initio simulations have been 
incomplete because they were not able to take into account the motion of the water molecules in the 
second and apical solvent shells, and classical molecular dynamic simulations have been plagued by 
inaccurate force fields of the complex interactions between the UO2

2+ cation and water.  AIMD 
simulations, which are able to take into account complex interactions and dynamics, are able 
overcome the well-known deficiencies of other molecular simulation methods.  In fact, this AIMD 
simulation was the first molecular simulation able to reproduce the measured Extended X-ray 
Absorption Fine Structure (EXAFS) spectrum from experiments.  

Because the electronic Schrödinger equation is solved at every step in the simulation, this type of 
simulation requires an enormous amount of computational power.  The typical time-step in an AIMD 
simulation is quite small (~0.1 femtosecond=10-16 seconds) and the simulations needs to run at least 10 
picoseconds.  Many chemical processes of interest occur on the order of nanoseconds (10-9 seconds).  
Even for a 10 picosecond AIMD simulation, at least 10-11/10-16=105 evaluations of the electronic 

           
Figure 1. The experimental [1] and simulated extended x-ray absorption fine structure spectra of 
UO2

2+ in water are in perfect agreement (left). On the right, a snapshot of the inner solvation shell 
UO2

2+ is shown. The blue surface identifies the inner-coordination spheres and golden lines show the 
array of hydrogen bonds that are formed in the structure. The results shown are from NWChem ab 
initio molecular dynamics simulation of UO2

2+ and 122 H2O molecules [2]. 
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Schrödinger equation are needed. Compared to merely optimizing a molecular or solid-state structure, 
which requires at most a few hundred evaluations, this is extremely expensive. In order for this to be a 
practical method, the solution to the electronic Schrödinger equation in a single time-step must be able 
to complete within seconds. For example the computational time needed to simulate 100 picoseconds 
will be 11.5 days with a single time-step taking 1 second to complete, 115 days with a 10 second time-
step, and ~1 year with a 30 second time-step.  In general, for systems beyond a few atoms, even the 
least expensive approximations to the electronic Schrödinger equation are expensive to calculate.  

With the advent of massively parallel computers and the development of new parallel algorithms 
and software, the costs of AIMD are becoming manageable. Scalable implementations of AIMD 
began appearing on hundreds of processors in the early to mid 1990’s [16-18] and improvements 
continue to this day [19-22]. Notably (Gordon Bell Prize), F. Gygi et al. [22] have scaled a band 
structure calculation on 64K nodes of Blue Gene L using the Qbox FPMD code.  

The most popular approximation to the electronic Schrödinger equations used for AIMD today is 
Density Functional Theory (DFT) based on computationally efficient approximations to the exact 
exchange-correlation functional (e.g. LDA and GGA).  
While this level of approximation is suitable for many 
applications, it is also becoming clear that higher levels 
of exchange-correlation potential that are augmented 
with some fraction of exact exchange (hybrid-DFT, 
e.g. PBE0 [23]) are needed. The lower levels of 
exchange correlation potentials presently used in 
AIMD simulation software are unable to reliably 
predict the properties of many materials in basic 
research. Examples of interest to DOE include charge 
localization in transition elements with tightly bound d 
electrons in oxide materials (see figure 2) [24, 25], the 
underestimation of reaction barriers and band gaps in 
solids [26-28], and accurate predictions of spin 
structure of solids [29] and nanoparticles. The 
drawback of hybrid-DFT is that it adds a significant 
amount of expense to an already expensive AIMD 
simulation.  Until recently, it was infeasible to 
contemplate such computations. However, as we 
approach the Petaflop milestone, we can think about 
coping with the high computational costs through 
vastly increased parallelism.  

In this study, we present an overview of the parallel algorithms for AIMD used in the NWChem 
program package [30], including recent developments for computing exact exchange [31].  These 
algorithms make use of a two-dimensional processor geometry proposed by Gygi et al. for use in 
AIMD algorithms.  Using this strategy, we have recently developed a highly scalable algorithm for 
exact exchange and incorporated it into an AIMD application.  This new algorithm for exact exchange 
employs an incomplete butterfly to overcome the bottleneck associated with exact exchange term, and 
makes judicious use of data replication. 

2.  Key computations in AIMD  
The bulk of the computations in ab initio molecular dynamics (AIMD) algorithms revolves around the 
solution of Ne weakly nonlinear partial differential eigenvalue equations (PDEs), Hψi = εiψi, for the 
electron orbitals ψi, appearing as a result of the DFT approximation to the Schrödinger equation for an 
Ne electron system. Generally, only the Ne lowest eigenfunctions are required.  Most standard AIMD 
algorithms use non-local pseudopotentials and plane-wave basis sets to perform the DFT calculations. 
In this framework, solutions are typically approached by means of a conjugate gradient algorithm or, 

Figure 2. Illustration of a localized electron 
(i.e. polaron) on the surface of hematite 
calculated with a higher and more expensive 
level (e.g. hybrid DFT) of ab initio molecular 
dynamics.  Lower levels of ab initio molecular 
dynamics will predict a delocalized electron. 
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Figure 3. Operation count of Hψ in a plane-wave DFT simulation. 

for dynamics, a Car-Parrinello algorithm [3] that requires many evaluations of Hψi, along with 
maintaining orthogonality  

( ) ( ) jiji d ,δψψ =∫Ω
rrr     (1) 

Similar FFT-based solution methods are implemented in a number of widely distributed first 
principles simulation software packages, e.g. NWChem [30].  

For hybrid-DFT, the Hamiltonian operator H may be written as [32] 

Hψ i r( )=
−

1
2

∇2 + Vl r( )+ ˆ V NL + VH ρ[ ] r( )

+ 1−α( )Vx ρ[ ] r( )+ Vc ρ[ ] r( )

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
ψ i r( )−α Kij r( )ψ j r( )

j
∑    (2) 

where the one electron density is given by  

ρ r( )= ψi r( )2

i=1

Ne

∑       (3) 

The local and non-local pseudpootentials, Vl and VNL, represent the electron-ion interaction. The 
Hartree potential VH is given by 

∇ 2VH r( )= −4πρ r( )       (4) 
The local exchange and correlation potentials are Vx and Vc, and exact exchange kernels Kij are given 
by 

∇2Kij r( )= −4πψ j
* r( )ψ i r( )     (5) 

During the course of a total energy minimization or AIMD simulation, the electron gradient Hψi, 
(equation (2)) and orthogonalization (equation (1)) are evaluated many times (i.e. >10,000 for AIMD), 

and hence need to be calculated 
as efficiently as possible.  For a 
pseudopotential plane-wave 
calculation the main parameters 
that determine the cost of a of 
the electron gradient are Ng, Ne, 
Na, and Nproj, where Ng is the 
size of the three-dimensional 
FFT grid, Ne is the number of 
occupied orbitals, Na is the 
number of atoms, and Nproj is 
the number of projectors per 
atom. Summaries of the 
computational costs for each of 
the constituent parts of electron 

gradient (and orthogonality) are given in figure 3.  The major parts of the electron gradient in order of 
increasing asymptotic cost are (note that conventional DFT does not compute the exact exchange term; 
α = 0 in equation (2)):  

• The Hartree potential VH, including the local exchange and correlation potentials Vx+Vc. The 
main computational kernel in these computations is the calculation of Ne three-dimensional 
FFTs. 

• The non-local pseudopotential, VNL.  The major computational kernel in this computation can 
be expressed by the following matrix multiplications:  W = Pt*Y, and Y2 =P*W, where P is 
an Ng x (Nproj*Na) matrix, Y and Y2 are Ng x Ne matrices, and W is an (Nproj*Na) x Ne matrix.  
We note that for most pseudopotential plane-wave calculations Nproj*Na≈Ne. 

• Enforcing orthogonality.  The major computational kernels in this computation are following 
matrix multiplications: S=Yt*Y and Y2 = Y*S, where Y and Y2 are Ng x Ne matrices, and S is 
an Ne x Ne matrix.  
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• And when exact exchange is included, the exact exchange operator ΣKijψj.  The major 
computational kernel in this computation involves the calculation of (Ne+1)*Ne three-
dimensional FFTs. The computation of the exact exchange operator, in which O(Ne

2) 
independent Poisson equations must be solved, is by far the most demanding term in a 
pseudopotential plane-wave hybrid-DFT calculation. 

3.  Parallelization of AIMD (w/o exact exchange) 
There are several ways to parallelize a plane-wave Hartree-Fock and DFT program [7, 17, 18, 22, 33, 
34]. For many solid-state calculations, the computation can be distributed over the Brillouin zone 
sampling space [33]. This approach is very simple to implement, however, it cannot be used for Γ-
point (k=0) calculations with large unit cells. Another approach is to distribute the one-electron 
orbitals across processors [17]. The drawback of this method is that orthogonality will involve a lot of 
message passing. Furthermore this method will not work for simulations with very large cutoff energy 
requirements (i.e., using large numbers of plane-waves to describe the one-electron orbitals) on 
parallel computers that have nodes with a small amount of memory, because a complete one-electron 
must be stored on each node. Hence this approach is not practical for Car-Parrinello simulations with 
large unit cells, however, this approach can work well for simulations with modest size unit cells and 
with small cutoff energies, when used in combination with minimization algorithms that perform 
orthogonalization sparingly, e.g. RMM-DIIS [6, 35].   

Another straightforward way parallelize AIMD is to spatially decompose the one-electron orbitals 
[7, 18, 34].  This approach is versatile, easily implemented, and well suited for performing Car-
Parrinello simulations with large unit cells and cutoff energies. Moreover the parallel implementation 
of the non-local pseudopotential and orthogonality is very easy to implement, since they can be 
implemented using the simple global operation reduce.  The drawback of this approach is that a 
parallel three-dimensional fast Fourier transform (FFT) must be used, which is known not to scale 
beyond ~Ng

1/3 CPUs (or processor groups), where Ng is the number of FFT grid points.   
In figure 4, an example of timings versus the number of CPUs for this type of parallelization is 

shown.  These simulations were taken from a Car-
Parrinello simulation of UO2

2++122H2O with an FFT 
grid of Ng=963 (Ne=1000) using the plane-wave DFT 
module (PSPW) in NWChem [30].  These calculations 
were performed on all four cores on the quad-core 
Cray-XT4 system (NERSC Franklin) composed of a 
2.3 GHz single socket quad-core AMD Opteron 
processors (Budapest).  The NWChem program was 
compiled using Portland Group FORTRAN 90 
compiler, version 7.2.4, and linked with the Cray 
MPICH2 library, version 3.02, for message passing.  
The performance of the program is reasonable with an 
overall parallel efficiency of 84% on 128 CPUs 
dropping to 26% by 1024 CPUs.  However, not every 
part the program scales in exactly the same way.  For 
illustrative purposes, the timings of the FFTs, non-local 
pseudopotential, and orthogonality are also shown.  
The parallel efficiency of the FFTs is by far the worst 
of the three major parts of the computation.  Beyond 
100 CPUs no gainful work was found in the FFT 
computation.  However, at smaller CPU sizes the 
inefficiency of the FFTs are damped out due to the fact 
that these parts of the code make up less than 5% of the 
overall computation, and the largest part of the 

 
Figure 4. Overall and component timings and 
component from AIMD simulations of 
UO2

2++122H2O using 1d processor geometry.  
Overall best timings also shown for 2d 
processor geometry. Timings from 
calculations on the Franklin Cray-XT4 
computer system at NERSC. 
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Figure 5.  A parallel distribution (shown on the 
left), implemented in most plane-wave DFT 
software, each of the one-electron orbitals is 
identically spatially decomposed. The 2d parallel 
distribution suggested by Gygi et al. is shown 
on the right. 

calculation is the non-local pseudopotential 
evaluation.  Ultimately, however, the lack of 
scalability of the 3D FFT algorithm beyond ~Ng

1/3 
CPUs prevails and the simulation ceases to speedup.  
By 1000 CPUs, the non-local pseudopotential has 
also stalled. Interestingly, at this number of CPUs the 
costs of the non-local pseudopotential and the FFTs 
are roughly the same.  Only orthogonality continues 
to scale beyond 1000 CPUs. 

These results demonstrate an important guiding 
principle that is needed in the design of a parallel 
AIMD program: The number of CPUs that can be 
gainfully used in each of the major parts of the 
calculation is limited because they rely on global 
operations or all to all operations that use all CPUs in 
the calculation.  Hence the overall parallel algorithm 

for AIMD should be designed to avoid global communications that span all CPUs in the calculation.  
For example, Gygi et al. distribute across orbitals as well as over space [22], resulting in a in a 2d 
processor geometry as shown in figure 5 (where the total number of processors, Np, can be written as 
Np=Npi*Npj).  This decomposition reduces the cost of the global operations in the major parts of the 
electron gradient computation, which only need O(log Npi) or O(log Npj) communications per CPU, 
instead of O(log Np).  For example, the FFT and non-local pseudopotential tasks only need to use 
global operations that span over Npi, while the orthogonality step can be broken down into a series of 
alternating global operations that span over either Npi or Npj, e.g. like the SUMMA algorithm [36].  

The overall performance of our AIMD simulations was found to improve considerably using this 
new approach.  With the optimal processor geometries, the running time per step took 2,699 seconds 
(45 minutes) for 1 CPUs down to 3.7 seconds with a 70% parallel efficiency on 1024 CPUs.  The 
fastest running time found was 1.8 seconds with 36% parallel efficiency on 4096 CPUs.  As shown in 
figure 6, these timings were found to be very sensitive to the layout of the two-dimensional processor 
geometry.  For 256, 512, 1024, and 2048 CPUs, the optimal processor geometries were 64x4, 64x8, 
128x8 and 128x16 processor grids, respectively. The timings of the FFTs, non-local pseudopotential, 
and orthogonality are also shown in figure 6.  Not every part the program scaled perfectly. The parallel 
efficiency of several other key operations depends strongly on the shape of the processor geometry. It 
was found that distributing the processors over the orbitals significantly improved the efficiency of the 
FFTs and the non-local pseudopotential, while distributing the processors over the spatial dimensions 
favored the orthogonality computations.  

 
Figure 6. Overall and component timings in seconds for UO2

2++122H2O plane-wave DFT simulations at 
various  processor sizes (Np) and processor grids (Npj, Npi=Np/Npj). Timings were determined from 
calculations on the Franklin Cray-XT4 computer system at NERSC.
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4.  Parallelization of AIMD with exact exchange 
The 2d processor geometry method can also be used to parallelize the computation of the exact 
exchange operator.   This operator has a cost of O(Ne

2*Ng*log(Ng)), and when it is included in a plane-
wave DFT calculation it is by far the most demanding term.  The exchange term is well suited for this 
method, whereas if only the spatial or orbital dimensions are distributed then the exchange term does 
not scale well.  When only the spatial dimensions are distributed, each of the Ne(Ne+1) 3d FFTs will 
be computed one at a time on the entire machine.  The drawback of this approach is that it 
significantly underutilizes the resources, since parallel efficiency of a single 3d FFT is effectively 
bounded to ~Ng

1/3 processors.  When only the orbital dimensions are distributed the parallelization is 
realized by multicasting the O(Ne)  orbitals to set up the O(Ne

2) wave-function pairs. This multicast is 
followed by a multi-reduction which reverses the pattern. We note that with this type of algorithm one 
could readily fill a very large parallel machine by assigning each a few FFTs to each processor.  
However, in order to obtain reasonable performance from this algorithm it is vital to mask latency, 
since the interconnects between the processors will be flooded with O(Ne) streams, each on long 
messages comprising Ng floating point words of data. In which both the spatial and orbital dimensions 
are distributed we only need to compute parallel three-dimension FFTs along the processor grid 
columns, as well as broadcast the orbitals along the processor grid rows.  Compared with a multicast 
across all processors the benefit of this approach is to reduce latency costs, since broadcasting is done 
across the rows of the two-dimensional processor grid only. The basic steps involved in calculating the 
exchange operator with this distribution are given in the following algorithm. 

 
Basic parallel algorithm for calculating exact exchange in a plane-wave basis  
using a 2d processor geometry 
Input:       ψ - (Ng/Npi) x (Ne/Npj) array 
Output: Kψ  -(Ng/Npi) x (Ne/Npj) array 
Work Space: Ψ – (Ng/Npi) x Ne array 
                     KΨ – (Ng/Npi) x Ne array 
Ne    = total number of orbitals 
Np = total number of processors, where Np=Npi*Npj 
Npi/ Npj = size of column (row) processor group 
taskid_i/j = rank along the column (row) processor group 
 
Ψ(:,:), ΚΨ (:,:) = 0 
s=taskid_j*(Ne/Npj); e = s+(Ne/Npj);Ψ(:,s:e) = ψ  
Row_Reduction(Ψ) 
counter = 0 
for m=1,Ne 
   for n=1,m 
        if counter==taskid_j then 
           ρ(:)  Column_FFT_rc( (Ψ(:,m) *. Ψ(:,n)) )  
           V(:)  Column_FFT_cr( (fscreened(:) *. ρ(:)) )  
           KΨ(:,m ) -=V(:)*.Ψ(:,n) 
          if m != n then KΨ(:,n) -=V(:)*.Ψ(:,m) end if 
    end if 
    counter = mod(counter + 1,Npj) 
end for 
end for 
Row_Reduction(KΨ) 
Kψ=HΨ(:,s:e)  

 
In this algorithm, the routines Column_FFT_rc, and Column_FFT_cr are the forward and 

reverse parallel three-dimensional Fast Fourier Transforms (FFTs) along the processor columns, 
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Row_Reduction is a parallel reduction along the processor rows, and fscreened is the cutoff of Coulomb 
kernel, given by the Fourier transform of the following real-space function, 

( ) ( ){ }( )
r

Rrrf
NN/exp11 −−−

=     (6)  

where R and N are adjustable parameters [24, 31, 37].  This algorithm is very simple to implement, 
and it is perfectly load balanced since each CPU only computes (Ne*(Ne+1)/Np) three-dimension 
FFTs.  However, this simple algorithm can be improved.  One problem with it is that it uses a lot of 
workspace.  Another is that each CPU in the Row_Reduction subroutine receives and sends a total of 
(Npj-1)*(Ng/Npi)*(Ne/Npj)~=NgNe/Npi amount of data, which is approximately twice as much as is 
necessary to compute all pairs of wave functions.  We have recently developed a slightly more 
ambitious parallel algorithm for calculating the exchange operator, which halves the workspace  
and communication overhead, while maintaining a good load balance.  The key idea behind  
this algorithm is that a specially designed broadcast and reduce routines are called that basically 
implement a standard asynchronous radix-2 butterfly diagram except that instead of transferring a 
(Npj/2)NgNe/Np chunk of data at the last step, they transfer only a (Ng/Npi)(Ne/Npj)(1+(Npj-
2**Floor(Log2(Npj))))~=NgNe/Np chunk data. 

The overall best timings for hybrid-DFT calculations of an 80 atom supercell of hematite (Fe2O3) 
with an FFT grid of Ng=723 (Ne

up=272, Ne
down=272), and a 160 atom supercell of hematite (Fe2O3) with 

an FFT grid of Ng=144x72x72 (Ne
up=544 and Ne

down=544) (wavefunction cutoff energy=100Ry and 
density cutoff energy=200Ry) and orbital occupations of Ne

up=272 and Ne
down=272 are shown in figure 

7.  The overall best timing per step found for the 80 atom supercell was 3.6 seconds on 9792 CPUs, 
and for the 160 atom supercell of hematite was 17.7 seconds on 23,936 CPUs. The timings results are 
somewhat uneven, since limited numbers of processor grids were tried at each processor size. 
However, even with this limited amount of sampling, these calculations were found to have speedups 
to at least 25,000 CPUs. We expect that further 
improvements will be obtained by trying more 
processor geometry layouts. 

The time to compute the exchange operator using 
can be broken up into two parts, the time to compute 
the Ne(Ne+1) three-dimensional FFTs (tfft) and the time 
to perform the data transfer (tbutterfly) in the 
Brdcst_Step and Reduce_Step subroutines, i.e. 

butterflyfftexchange ttt +=   
     (7) 

The three-dimensional parallel FFT in the 
NWChem program packages uses a two-dimensional 
Hilbert decomposition of the three-dimensional FFT 
grid [5].  For this type of FFT, the time to compute one 
three-dimensional FFT can be approximated by 
summing up three terms corresponding to serial 
computational, data transfer, and latency times. 

Npi
Npi

N
Npi

NLogNa
t ggg

fft θ
γ

2
2)(* 21 ++=  

     (8) 
where Ng is the size of the FFT grid, Npi is the 

number of rows in the two-dimensional processor grid 
and  a, θ, γ are adjustable parameters corresponding to 
the rate  to compute one 3d FFT in serial, θ is the 

Figure 7. The overall fastest timings taken for 
an 80 and 160 atom Fe2O3 hybrid-DFT energy 
calculations. Timings from calculations on the 
Franklin Cray-XT4 computer system at 
NERSC.
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effective latency to start a message, and γ is the 
effective rate to transfer a message. 

For each incomplete butterfly broadcast and 
reduction, the bandwidth part of the data transfer per 
CPU will be proportional to (Npj/2)*(Ng/Npi)*(Ne/Npj) 
or (1/2)*(NeNg/Npi), and the number of messages per 
CPU will be proportional Log2(Npj).  Thus the overall 
timing for performing the data transfer can be written 
as 

)(4)2/1(4 2 NpjLog
Npi

NN
t eg

butterfly θγ +=      (9) 

 
The extra factor of 4 is due to the fact that both 
Log2(Npj) broadcast and  reductions steps are 
performed, and each broadcast and reduction step 
contains a send and a receive call. 

By combining equations (7-9), we arrive at the 
following equation for the time to compute the exchange operator. 

)(4

)2/1(4

)1(

2

1

NpjLog
Npi

NN

t
Npj
NNt

eg

fft
ee

exchange

θ

γ

+

+

+
=

    (10) 

From an approximate fitting of the model to the 80 Fe2O3 simulation atom simulation, the 
parameters were found to be a=4e-9, θ=2.5e-4 and γ=5e-8 (see figure 8).  As shown in figure 4, the 
fastest execution time will be obtained when Npj=Ne.  From this relation the maximum number of 
CPUs can be readily estimated by solving the following equation 

  0=
=NeNpj

exchange

dNpi
dt

    (11) 

for Npi.  The solution to equation (11) is then 
3/22max ⎟

⎠
⎞

⎜
⎝
⎛=

B
ANpi     (12) 

where  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+++=

e

e
eggge N

NNNNNNaA 112)(log1 2 γ    (13) 

( )θ12 += eNB     (14) 
Using this formula we find that the maximum number of CPUs that can be gainfully used in the 80 

and 160 atom Fe2O3 Hybrid-DFT calculations to be 14,977 CPUs and 48,032 CPUs respectively and 
we plan to validate these results in the future. 

5.  Conclusion 
An overview of the parallel algorithms used for AIMD in the NWChem program package is presented, 
including recent developments for computing exact exchange. These algorithms were based on using a 
two dimensional processor geometry, which allowed us to overcome the inefficiencies associated with 

 
Figure 8. Comparison of performance model 
with measured timings for 80 atom Fe2O3 
hybrid DFT calculation (a=4e-9, θ=2.5e-4, and 
γ=5e-8). 
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using parallel three-dimensional FFTs.  A unique aspect of our implementation of exact exchange is 
the development of an incomplete butterfly that halves the amount of data communicated, as well as 
making judicious use of data replication, in the exact exchange compared to a standard multicast 
algorithm. 

The overall performances of our AIMD calculations were found to be fairly reasonable.  For a 
UO2

2++122H2O AIMD simulation the running time per step decreased from 2,699 seconds (45 
minutes) for 1 CPUs down to 3.7 seconds with a 70% parallel efficiency on 1024 CPUs.  The fastest 
running time found was 1.8 seconds with 36% parallel efficiency on 4096 CPUs.  For an 80 atom 
Fe2O3 hybrid- DFT AIMD simulation, the overall parallel efficiency to 1024 processors was 99% 
decreasing to 53% by 9792 processors. Beyond 10,000 processors no speedups were observed for this 
calculation, and larger systems are required if we are to use higher levels of parallelism.  Limited 
simulations for a larger 160 atom Fe2O3 hybrid-DFT AIMD simulations were also carried out.  These 
calculations did not produce as good parallel efficiencies as the 80 atom simulations, however these 
calculations were found to have speedups to at least 25,000 CPUs.  We believe the communications 
overheads are still an issue, and we are exploring latency hiding techniques via run time substrates that 
implement a dataflow execution model [38-40].  

Significant progress has been made in terms of accuracy, efficiency, and scalability of AIMD 
methods in recent years.  However the algorithms and implementations of these methods need to be 
constantly upgraded to capture the performance of emerging massively parallel computers.  The 
projected size of the next generation supercomputers are very large (106-107 threads of computation) 
suggesting that current limitations in simulation times, particle sizes and levels of theory will be 
overcome in the coming years by brute force increases in computer size.  
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