This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Development of unsteady background-oriented schlieren system in an indraft supersonic wind tunnel

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Guoshuai Li et al 2021 J. Phys.: Conf. Ser. 1786 012052 DOI 10.1088/1742-6596/1786/1/012052

1742-6596/1786/1/012052

Abstract

To visualize the flow in the test section of an indraft supersonic wind tunnel in the University of Glasgow as long as possible, a background-oriented schlieren system was built up preliminarily. A MATLAB program based on a random dot algorithm developed in this study provides a fully customizable tool to generate background patterns with different sizes and dot densities. Background patterns produced by the in-house developed program then can be printed by a common ink-jet printer. To enhance the signal-noise ratio of the measurement system, white reflective film sheets, or semi-transparent paper can be employed. The correlation algorithm base on fast Fourier transform that is also applicable for PIV was chosen to process background oriented schlieren images. A validation test was performed to visualize the flow structure around a Pitot tube at M = 2.0. The experimental result proves that the BOS system established in this study is capable of visualizing the supersonic flow structure around the Pitot tube and sensitive enough to reveal weak density changes produced by the boundary layer, expansion waves, and weak oblique shock waves. Next, the current BOS system will be improved further by increasing the intensity of light sources to shorten the exposure time, using new cameras with better spatial resolution, and optimizing the background pattern.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1786/1/012052